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Neutron diffraction on a triple-axis spectrometer and a small-angle neutron scattering instrument is used
to study the magnetic phase transition in tetragonal Ba2CuGe2O7 at zero magnetic field. In addition to the
incommensurate cycloidal antiferromagnetic (AFM) long-range order, we establish that weak incommensurate
ferromagnetism (FM) also arises below the transition temperature TN identified by sharp Bragg peaks close
to the � point. The intensities of both the incommensurate AFM and FM Bragg peaks vanish abruptly at TN ,
which is indicative of a weak first-order transition. Above TN , evidence is presented that the magnetic intensity
within the tetragonal (a,b) plane is distributed on a ring in momentum space whose radius is determined by the
incommensurate wave vector of the cycloidal order. We speculate that the associated soft fluctuations are at the
origin of the weak first-order transition in the spirit of a scenario proposed by Brazovskii.
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I. INTRODUCTION

The spin-orbit coupling in noncentrosymmetric magnets
leads to a Dzyaloshinskii-Moriya interaction (DMI) [1,2]
that favors incommensurate cycloidal or helical magnetic
order. It is the competition between the symmetric exchange
interaction and the DMI that generates a one-dimensional
periodic modulation of the magnetization. In the limit of weak
spin-orbit coupling, the associated wavelength becomes large,
or, equivalently, the size of its wave vector becomes small.
At the same time, the magnetocrystalline anisotropies are, as
a consequence, less effective in fixing the orientation of the
magnetic order. Depending on the space group of the material,
the energies of periodic magnetic textures might then be almost
degenerate for orientations of their wave vectors that belong
to manifolds in momentum space, e.g., a sphere.

Such a manifold of almost degenerate states can qualita-
tively influence the phase transition between the paramagnetic
and the magnetically ordered phase. Upon approaching the
phase transition from high temperatures, the paramagnons
become soft on this manifold. The associated large phase
space gives rise to a large entropy that might drive the phase
transition first-order. This mechanism of a fluctuation-induced
first-order transition was originally proposed by Brazovskii [3]
and theoretically discussed in various contexts, for example,
for the theory of weak crystallization [4], liquid crystals [5,6],
diblock copolymers [7,8], pion condensation in nuclear matter
[9], and Bose-Einstein condensates [10].

Recently, experimental evidence was presented by
Janoschek et al. [11] that such a Brazovskii scenario of
a fluctuation-induced first-order transition is realized in the
cubic helimagnet MnSi with paramagnons becoming soft
on a sphere in momentum space. According to Brazovskii
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theory, the inverse correlation length κ of the paramagnons
will possess a characteristic temperature, T , dependence. It
changes its curvature as the critical temperature is approached
from a mean-field-like behavior, ∂2

T κ < 0, at high T to a
regime, ∂2

T κ > 0, that is governed by strong fluctuations.
Such a change in curvature was experimentally found in
MnSi [11] in addition to the latent heat associated with
the weak first-order transition [12,13]. Subsequently, it was
demonstrated that other cubic helimagnets with the same space
group, such as Cu2OSeO3 [14] and FeCo1−xSix [15], show
similar behavior.

It is an interesting open question whether such a fluctuation-
driven first-order transition might also be realized in magnetic
systems with lower symmetry. A candidate in this regard is
the noncentrosymmetric tetragonal antiferromagnet (AFM)
Ba2CuGe2O7, which crystallizes in the structure P 421m

with lattice parameters a = 8.466 Å and c = 5.445 Å.
Below TN ≈ 3.05 K, long-range order is realized with an
incommensurate, cycloidal modulation of the AFM order
parameter due to the DMI. The basic feature of Ba2CuGe2O7 is
a square arrangement of Cu2+ ions in the (a,b) plane. Nearest-
neighbor AFM exchange along the diagonal of the (a,b) plane
is the dominant magnetic interaction (J‖ ≈ 0.96 meV per
bond) [16]. The coupling between adjacent planes is weak
and ferromagnetic (J⊥ ≈ −0.026 meV), essentially leading
to a system of weakly coupled two-dimensional layers. A
schematic depiction of the unit cell of Ba2CuGe2O7 together
with the orientation of the Dzyaloshinskii-Moriya vectors can
be found in Ref. [17].

Numerous neutron scattering studies [16–22] and theo-
retical considerations [16,23–25] have established a quite
complete understanding of the AFM cycloidal order. It
is characterized by a small incommensurate wave vector
with length kcycl ≡ √

2ξ r.l.u. ≈ 0.028/Å(1 r.l.u. = 2π/a ≈
0.74/Å) and ξ = 0.027, which corresponds to a rotation
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of the AFM order by an angle of 9.7◦ per unit cell. The
wave vector is located within the (a,b) plane, and weak
magnetocrystalline anisotropies favor an alignment along the
[1, ± 1,0] direction with the magnetic moments confined to
the (1, ∓ 1,0) planes. This results in two domains that are
equally populated in the case of zero-field cooling, giving
rise to magnetic satellite reflections in reciprocal space at
(1 ± ξ, ± ξ,0) and (1 ± ξ, ∓ ξ,0) centered around (1,0,0),
which corresponds to the Néel point for Ba2CuGe2O7.

The transition between the zero-field paramagnet and the
cycloidal AFM order in Ba2CuGe2O7 is weakly first-order.
Similar to MnSi [12,26], the specific heat shows a sharp latent
heat that sits on top of a broader peak [17]. The origin of
the first-order transition, however, has remained unclear so
far. A mean-field approximation of the proposed effective
theory [23–25] predicts a continuous second-order transition
as a function of temperature, suggesting that the first-order
character is induced by fluctuations.

In the present work, we performed neutron diffraction
experiments on Ba2CuGe2O7 using both a triple-axis spec-
trometer (TAS) and a small-angle neutron scattering (SANS)
instrument. Whereas the former is ideally suited to investigate
incommensurate AFM order around the finite Néel wave vector
in reciprocal space, the latter experiment allows us to study FM
components of the magnetic order close to the � point, i.e.,
zero wave vector. It was pointed out in the theoretical works of
Refs. [23,24] that there exists a Dzyaloshinskii vector pointing
along the c axis whose sign alternates from bond to bond giving
rise to weak ferromagnetism (FM); see also the discussion
in Ref. [17]. As a consequence, the formation of the AFM
cycloid is expected to be accompanied by the emergence of
weak incommensurate FM order with the same wave vector.
Our SANS experiment confirms this theoretical prediction.

The main focus of this work are, however, the critical
magnetic fluctuations in Ba2CuGe2O7. We demonstrate that
close to the critical temperature TN , magnetic intensity indeed
accumulates on a manifold in momentum space. With the
employed scattering geometry, we were limited to wave
vectors within the crystallographic (a,b) plane where this
manifold corresponds to a ring with radius kcycl. This suggests
that magnetocrystalline anisotropies, which eventually pin the
cycloidal propagation direction below TN , are comparatively
small. These observations fulfill in principle the preconditions
for a fluctuation-induced first-order transition of Brazovskii
type. However, the temperature dependence of the inverse
correlation length, κ(T ), of the critical paramagnons is not in
agreement with the predictions of Brazovskii theory. Instead,
we find that κ(T ) does not change its curvature, but it is always
convex, ∂2

T κ > 0, in an extended temperature range above
TN . We attribute the convexity of κ(T ) to the effective low
dimensionality of fluctuations due to the weak coupling J⊥
between the layers.

The structure of the paper is as follows. In Sec. II
we first review the theory of cycloidal antiferromagnetic
order in Ba2CuGe2O7 and discuss its predictions for the
differential cross section for neutron diffraction. In Sec. III we
describe the details of the employed experimental methods.
The experimental results and their analysis are presented in
Sec. IV. Finally, in Sec. V we close with a summary and a
discussion.

II. THEORY

A. Effective theory for cycloidal AFM order

We first review the theoretical description of the AFM order
in Ba2CuGe2O7 following Chovan et al. [24]. At zero magnetic
field, the orientation of the staggered magnetization specified
by the unit vector n̂ is governed by the theory L = L0 + Lm.a.,
where the first term reads

L0 = 1

2

[
(∂xn̂)2 + (∂yn̂)2 + Kzn̂

2
z

− 2Q(êy × n̂)∂xn̂ − 2Q(êx × n̂)∂yn̂
]
. (1)

Here, Q > 0 is derived from the DMI and favors a modulated
AFM texture with a finite wave vector. We treat the uniaxial
anisotropy Kz as a free parameter. However, it was pointed out
by Kaplan [27] and Shekhtman, Aharony, and Entin-Wohlman
[28] that Kz might be related to the DMI, and in this so-called
KSEA limit the uniaxial anisotropy can be identified with
Kz = Q2. The derivatives only act within the (x,y) plane,
i.e., the crystallographic (a,b) plane. A dispersion along the
crystallographic c axis is neglected here. On the level of
Eq. (1), the theory possesses a U(1) symmetry representing the
combined rotation of real and order parameter space around
the z axis.

This symmetry gets explicitly broken by in-plane magne-
tocrystalline anisotropies contained in Lm.a.. There are various
contributions to Lm.a., but we just confine ourselves to one
representative term

Lm.a. = λ

2
n̂

(
∂4
x + ∂4

y − 1

2

(
∂2
x + ∂2

y

)2
)

n̂ (2)

that fixes the orientation of the wave vector of the magnetic
texture within the ordered phase. The last term in Eq. (2),
which is isotropic, has been introduced for later convenience.

Below the critical temperature TN , a flat spiral is realized
along a certain direction ê1 within the (x,y) plane, i.e., the
crystallographic (a,b) plane,

n̂(r1) = ê1 sin φ(r1) + ê3 cos φ(r1), (3)

where r1 = 	rê1 with the orthonormal vectors êi êj = δij , i,j =
1,2,3. The third component coincides with the crystallographic
c axis, ê3 = ẑ. The field φ satisfies at λ = 0 a sine-Gordon
equation so that the spiral is not harmonic even at zero
magnetic field. Due to the U(1) rotation symmetry of L0,
the direction of ê1 remains undetermined on the level of
Eq. (1). This degeneracy is explicitly broken by the weak
in-plane anisotropies of Eq. (2). A finite in-plane anisotropy
λ > 0 favors an orientation ê1 along crystallographic [±1, ±
1,0] or [±1, ∓ 1,0] directions consistent with experimental
observations.

B. Critical fluctuations of AFM order

Above the critical temperature TN , fluctuations of the
AFM order parameter are governed by the staggered
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susceptibility matrix that is derived from Eqs. (1) and (2),

χ−1
AFM(q) =

⎛
⎝r + q2 + λ

(
q4

x + q4
y − 1

2q4
)

0 i2Qqx

0 r + q2 + λ
(
q4

x + q4
y − 1

2q4
) −i2Qqy

−i2Qqx i2Qqy r + Kz + q2 + λ
(
q4

x + q4
y − 1

2q4
)
⎞
⎠, (4)

where q2 = q2. The wave vector q = (qx,qy) is measured here with respect to one of the Néel vectors, i.e., (2π/a,0,0) or
(0,2π/a,0). In the following, we concentrate on the domain with the Néel vector G = (2π/a,0,0). The parameter r tunes the
distance to the phase transition. The lowest eigenvalue of Eq. (4) reads

ε(q) = r + Kz

2
− 1

2

√
K2

z + 16q2Q2 + q2 + λ

(
q4

x + q4
y − 1

2
q4

)
. (5)

Without in-plane magnetocrystalline anisotropies λ = 0, it attains its minimum on a ring within the (x,y) plane of momentum
space. As we neglected the dispersion along the z axis, this ring extends along the third axis forming a cylinder. A finite in-plane
anisotropy with λ > 0 results in modulations of intensity on the ring with minima along directions [110], [1̄10], [11̄0], and [1̄1̄0].
The radius of the ring is given by

kcycl =
√

Q2 − K2
z

16Q2
. (6)

The minimum value of the eigenvalue ε(q) reads

κ2 ≡ r −
(

Q − Kz

4Q

)2

, (7)

which can be identified with the square of the inverse correlation length κ of cycloidal AFM order.
For neutron diffraction with respect to the Néel vector probing AFM order, the differential cross section is proportional to the

trace tr{(1 − ĜĜT )χAFM} with Ĝ = (1,0,0). It reads explicitly

dσ (q)

d

∣∣∣
AFM

= AkBT
(r + q2)[2(r + q2) + Kz] − 4q2Q2 cos2 φ

(r + q2)
(
r + q2 + Kz

2 + 1
2

√
K2

z + 16q2Q2
)(

r + q2 + Kz

2 − 1
2

√
K2

z + 16q2Q2 + λq4

4 (1 + cos(4φ))
) ,

(8)

where A is a constant proportionality factor, kB is the Boltzmann constant, and T is the temperature. The reduced momentum
transfer q = q(cos φ, sin φ) is located within the (a,b) plane. In the above expression, we anticipated that the in-plane anisotropies
are effectively small, and we kept λ only for the lowest eigenvalue appearing in the denominator. Whereas the dependence on the
angle φ in the denominator is induced by the anisotropy λ, the dependence in the numerator derives from the dipolar interactions
that effectively project the magnetic moments onto a subspace perpendicular to the Néel vector Ĝ.

C. Critical fluctuations of FM order

According to Refs. [23,24], the AFM order in Ba2CuGe2O7 will induce weak ferromagnetism due to the presence of a
bond-alternating Dzyaloshinskii vector pointing along the z axis. The induced ferromagnetic component reads

δ 	m = d n̂ × ẑ (9)

with a small proportionality constant d. The AFM cycloid of Eq. (3), therefore, gives rise to an incommensurate FM density
wave with the same wave vector where the FM order parameter δ 	m vanishes whenever n̂ is aligned along ẑ. Chovan et al. [24]
found that there exists an additional contribution δ 	m ∝ ∂xn̂ with the FM polarization being proportional to the derivative of n̂

along the x direction, i.e., the direction of the Néel vector. As our experimental data do not allow us to discriminate between the
two contributions, we will limit ourselves here to Eq. (9). According to the relation Eq. (9), the critical fluctuations of the FM
and AFM order parameter are related by (χFM)ij ∝ εinzεjmz(χAFM)nm.

The differential cross section for elastic neutron scattering with momentum transfer q = q(cos φ, sin φ) but with respect to
zero wave vector is then proportional to tr{(1 − q̂q̂T )χFM(q)}, where q̂ = q/q. It reads

dσ (q)

d

∣∣∣∣
FM

= BkBT
(r + q2)(r + q2 + Kz) − 4q2Q2 sin2(2φ)

(r + q2)
(
r + q2 + Kz

2 + 1
2

√
K2

z + 16q2Q2
)(

r + q2 + Kz

2 − 1
2

√
K2

z + 16q2Q2 + λq4

4 (1 + cos(4φ))
) , (10)

where B is another constant proportionality factor, and
we employed the same approximation concerning λ as
in Eq. (8).

We will use Eqs. (8) and (10) for fitting our neutron
diffraction data of the AFM and FM fluctuations assuming
that the temperature dependence of A, B, Q, Kz, and λ is
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(a) (b) (c)

(d) (e)

FIG. 1. Incommensurate AFM order and critical fluctuations in Ba2CuGe2O7 as measured with the triple-axis spectrometer (TAS). (a) Map
of the reciprocal space around the (1,0,0) position. Four incommensurate satellite reflections associated with the cycloidal AFM order arise at
(1 ± ξ, ± ξ,0) and (1 ± ξ, ∓ ξ,0). The contours around (1 + ξ, − ξ,0) indicate the experimental resolution ellipsoid of the TAS instrument in
the (a,b) plane. The dotted lines denoted with 1©, 2©, and 3© indicate the orientation of the different scans with respect to the incommensurate
satellites and the ring of intensity. (b)–(e) Typical data obtained on scans 1© and 3© for a temperature of 2 K [below the transition temperature
TN , (b) and (c)] and 3.2 K [above TN , (d) and (e)]. Open data points indicate spurious intensity observed (i) due to higher-order intensity at
the commensurate (1,0,0) position, and (ii) due to broad wings of the resolution ellipsoid. The green line represents the global fit of the data to

Eq. (8) with a particular set of parameters Kz = 0.0008/Å
2

and λ = 1 Å
2
.

negligible close to TN . The strong temperature dependence
of the scattering data is only accounted for by the tuning
parameter r = r(T ) or, alternatively, by the inverse correlation
length κ(T ); see Eq. (7).

III. EXPERIMENTAL METHODS

For our neutron diffraction measurements, a single crystal
of Ba2CuGe2O7 with a diameter of ∼5 mm and a length of
∼19 mm has been used. This crystal has already been utilized
in several neutron diffraction experiments before [17,22,29].
A detailed description of the growth recipe and annealing
process of the sample is given in Ref. [17]. The experiments
have been performed on the triple-axis spectrometer TASP at
PSI, Villigen [30,31] and the small-angle neutron scattering
instrument SANS-1 at MLZ, Garching [32,33].

On TASP, the sample has been mounted inside a standard
orange type cryostat with its [0,0,1] crystalline direction
vertically aligned. A base temperature of 1.55 K with a stability
of ±0.01 K is reached. The alignment of the sample was
performed using the (1,1,0) and (2,0,0) nuclear reflections.
TASP was configured in “two-axis mode” with no energy
analysis of the scattered neutrons. The scattered intensity
hence represents an integration over all neutron energies.
(In fact, the analyzer was not removed but rotated such that
the neutrons transmitted the analyzer crystals under an angle
of 90◦, leading to a reduced transmission of 85%.) A tight
collimation of 20′ was used in front of the monochromator
and sample, but no collimator was placed between sample
and detector. The incident neutron energy was adjusted to
Ei = 3.5 meV.

For the experiment on SANS-1, the sample was aligned
with the c axis parallel to the incident neutron beam and a
[1,0,0] axis vertical. The sample was cooled with a three-stage
dry closed cycle cryostat to a base temperature of 1.5 K with a

temperature stability of ±0.003 K. Neutrons with a wavelength
of 5 Å were collimated over a distance of 16 m. A sample-
detector distance of 12 m has been used. The background
signal was determined for a temperature well above TN and
subtracted from the data.

IV. NEUTRON DIFFRACTION CLOSE TO THE
MAGNETIC TRANSITION IN Ba2CuGe2O7

In the following, we present neutron diffraction data close
to the magnetic phase transition in Ba2CuGe2O7 at zero
field. We first discuss the results obtained with the help of
a triple-axis spectrometer (TAS), where we focused on the
AFM fluctuations close to the Néel wave vector. Afterwards,
we present our SANS data, which are sensitive to the FM
fluctuations close to zero wave vector. The latter experiment
in particular confirms that the formation of cycloidal AFM
order also induces weak incommensurate FM order with the
same wave vector.

A. AFM order probed with TAS

On the TAS instrument, the incommensurate order arising
around the forbidden nuclear reflection at (1,0,0) has been
investigated with the help of three scans denoted by 1©, 2©,
and 3©. Figure 1(a) shows a map of the reciprocal space and
illustrates the direction of the three different scans. The instru-
mental resolution has been determined with a dense mesh of
points covering the incommensurate satellite at (1 + ξ,−ξ,0)
at the lowest temperature available, as indicated by the
contour lines in panel (a), which was fitted to a 2D Gaussian
function. Each scan was performed as a function of increasing
temperature between 1.55 and 4 K with a minimum spacing
of 0.02 K. Scans denoted with 1© are oriented along the [0,1,0]
direction. Scans denoted with 2© cross the ring of intensity
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observed at temperatures above TN such that the short axis
of the resolution ellipsoid is oriented perpendicular to the
ring. Scans denoted with 3© point along the diagonal direction
towards (1 + ξ, − ξ,0). As the scans only cover a small portion
of reciprocal space, the resolution of the TAS was assumed to
be constant within this region.

Typical experimental data of scans along 1© and 3© are
shown in Figs. 1(b)–1(e). The open data points indicate
spurious intensity: (i) The intensity observed at the forbidden,
commensurate position at (1,0,0) is due to multiple nuclear
scattering and has been found to be temperature-independent.
(ii) There is a shallow spurious peak at (1,−0.03,0) [panel
(d)], which is attributed to wings of the resolution ellipsoid.
We attribute the blue-filled data points to magnetic scattering.
Scans in the upper row, panels (b) and (c), are recorded below
the transition temperature TN ≈ 3.05 K. In the scan 3© at
T = 2 K, a resolution-limited Gaussian peak at (1 + ξ, −
ξ,0) associated with the cycloidal AFM structure is clearly
observed. In contrast, there is no magnetic intensity observed
at the same temperature in the scan 1© apart from the shallow
spurious peak at (1,−0.03,0). Scans taken for temperatures
slightly above TN are shown in the lower row of Fig. 1,
panels (d) and (e). Here, a clearly broadened peak with a
Lorentzian-like line shape emerges at (1,−√

2ξ,0) in the scan
1© at T = 3.2 K. In the scan 3©, the sharp incommensurate

Bragg peak is now replaced by a largely broadened peak. Both
broad peaks are consistent with a ring of intensity centered at
(1,0,0) with radius kcycl = √

2ξ r.l.u.
The TAS data have been analyzed using a model that

includes the following ingredients: For temperatures below
TN : sharp resolution-limited peaks at the positions of the
incommensurate satellite reflections (1 ± ξ, ± ξ,0) and (1 ±
ξ, ∓ ξ,0). For all temperatures: (i) spurious intensity at the
forbidden nuclear position at (1,0,0) and at (1, − 0.03,0), and
(ii) a ring of intensity around (1,0,0), described by Eq. (8),
where the angle φ = 0◦ corresponds to the [1,0,0] direction.
Additionally, (iii) a temperature-independent constant back-
ground has been subtracted.

As a first step in the analysis, the shallow spurious peaks
found in scans 1© and 2© below the transition temperature TN

are fitted for the lowest temperature measured (T = 1.5 K).
The spurious intensity in each case is found at (h,k,0) with k ≈
−0.03 and |k| <

√
2ξ . Most likely, it is caused by the shallow

wings of the incommensurate peak at (1 + ξ, − ξ,0) that are
not captured by the 2D Gaussian fit of the resolution ellipsoid.
The spurious peaks are subtracted from the data assuming the
same temperature dependence as found for the main satellite
peaks. In the next step, the data of both scans 1© and 2© are fitted
to Eq. (8) with the angle φ fixed to the corresponding values of
both scans. After accounting for the instrumental resolution,
the fits were first performed with a free scaling factor A for each
temperature independently. Note that Eq. (8) is only valid for
T > TN but is used here phenomenologically also for T < TN

to describe the remaining magnetic intensity on the ring away
from the Bragg peaks. The results of these fits are used to
fit the intensity of the incommensurate satellite peak for each
temperature from the scan 3©. The fit is finally refined with a
common value of A for all temperatures. For the fits, we have
fixed the value of kcycl = 0.028/Å, which leaves us with three
fitting parameters, Kz, λ, and κ , apart from the scaling factor

FIG. 2. Fit quality of the TAS data: map of 1/
∑

all fits χ 2 as a
function of Kz and λ. The marks indicate combinations of (Kz,λ)
plotted in Fig. 4.

A. The KSEA limit Kz = Q2 then corresponds to the value

Kz|KSEA ≈ 0.0008/Å
2
. The fitting procedure is systematically

repeated for different combinations of the parameters Kz and

λ ranging from 0 to 0.002/Å
2

for Kz and from 0 to 20 Å
2

for λ.
To quantify the quality of the fits, 1/

∑
all fits χ2 is plotted

as a figure of merit (FOM) as a function of the parameters Kz

and λ in Fig. 2. A shallow ridge is observed for combinations

of λ and Kz along a line from (Kz = 0,λ = 5 Å
2
) to (Kz =

0.001/Å
2
,λ = 0). Close to the ridge observed for the FOM,

an excellent agreement is observed. A typical global fit to
all TAS data is included in all panels of Figs. 1(b)–1(e).
Here, one particular set of parameters has been chosen (Kz =
0.0008/Å

2
,λ = 1 Å

2
) (solid green line), which is consistent

with the KSEA limit. It shows an excellent overall agreement
with the measurement data.

B. FM order probed with SANS

We now turn to a discussion of the SANS data for
Ba2CuGe2O7 that probe the FM fluctuations close to zero
wave vector. Figure 3(a) shows typical scattering data for
T < TN . Four diffraction peaks indicative of two domains
of incommensurate FM order are observed. The complete
diffraction pattern is obtained by a sum over a rocking
scan with respect to the vertical axis. Below TN , the widths
of the peaks are limited by the instrumental resolution.
The background is measured well above TN and subtracted
accordingly. The periodicity of the incommensurate wave
vector coincides with the one observed for the AFM cycloid.

Figure 3(b) illustrates that above TN the sharp diffraction
spots give way to a weak ring feature. At the same time, the
intensity drops dramatically. For the analysis, the diffraction
patterns have been radially integrated; panel (c) shows typical
data corresponding to the diffraction pattern of panel (b). A

134409-5
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(a) (b) (c)

FIG. 3. Incommensurate FM order and critical fluctuations in Ba2CuGe2O7 as measured with small-angle neutron scattering (SANS).
(a) Typical SANS diffraction pattern for T < TN revealing incommensurate FM order. The diffraction pattern is obtained by a sum over a
rocking scan with respect to the vertical axis. Pixels around the direct beam are masked electronically. The background has been recorded for
temperatures well above TN and is subtracted. Panel (b) shows corresponding data at temperatures closely above TN where a weak ring feature
is observed. Panel (c) shows radially integrated data of the scattering pattern of panel (b), including the instrumental resolution and the fit to
theory; see the text.

weak, ringlike feature is observed. The ring is fitted to Eq. (10)
after accounting for the instrumental resolution, which is
determined with the help of a fit to the resolution-limited peak

below TN . We have chosen the parameters Kz = 0.0008/Å
2

and λ = 1 Å
2
, which were obtained from the description of

the TAS data.

C. Results of neutron diffraction experiments

From the fit of the TAS data to Eq. (8) we obtained the
temperature dependence of the intensity of the incommensu-
rate peaks associated with the cycloidal AFM structure, the
intensity of the ring found around the Néel point (1,0,0) with
radius

√
2ξ , and the inverse correlation length κ .

Our fit, therefore, allows for a quantitative comparison of
the intensity of the sum of both cycloidal AF domains versus
the total intensity contained in the ring. The results are shown
in Figs. 4(a)–4(c) for three different combinations of Kz and
λ as indicated by the marks in the map of the FOM in Fig. 2.
[Note that for panels (b) and (c), data points with different
combinations of Kz and λ are essentially almost overlapping.]
The fit of the SANS data to Eq. (10), which contains
information about the FM fluctuations, yields in addition the
intensity of the Bragg peaks of the incommensurate FM order.
Due to the weak intensity of the ring in the SANS data, only a
few points could be fitted reliably, resulting in a single value
of κ for the critical FM fluctuations close to TN .

Figure 4(a) depicts the temperature dependence of the in-
tensity associated with the incommensurate satellite reflection
(sum of both domains, green symbols) obtained from a fit

with (Kz = 0.0008/Å
2
,λ = 1 Å

2
) together with the integrated

intensity of the ring (blue symbols) and, for the TAS data,
their sum (gray points). Note that Fig. 2 only represents cuts.
The integrated intensity of the Bragg peaks from the SANS
data was scaled to the corresponding intensity of the TAS
experiment, yielding consistent results for the T dependence.

The same scaling factor suggests that the intensity asso-
ciated with the ring as observed in SANS [blue diamonds

in Fig. 4(a)] is, however, substantially lower than that of
the TAS data. We attribute this apparent discrepancy to the
different integration range of the two experiments along the
tetragonal axis perpendicular to the ring. While the TAS
instrument accepts a vertical divergence of 4◦–5◦ due to the
focusing monochromator, the SANS instrument only accepts
an extremely good divergence of 0.3◦. The integrated intensity
observed by SANS is about 10 times weaker than seen by TAS,
which relates well to the different divergence.

Upon approaching the transition at TN ≈ 3.05 K from
below, the intensity of the magnetic Bragg peaks decreases by a
factor of 4 with respect to the coldest temperatures. Moreover,
at the critical temperature TN a sharp drop of the intensity is ob-
served, which is consistent with the notion of a first-order tran-
sition. For the ring of intensity, a sharp increase of intensity for
temperatures below the transition temperature and an exponen-
tial decay for temperatures above the transition are observed as
a function of increasing T so that the ring reaches its maximum
intensity at TN . The sum of TAS intensity associated with
Bragg peaks and the ring (gray points) only shows a small, up-
ward kink at TN , most likely caused by resolution effects. The
intensity of the incommensurate AFM ring obtained from TAS
is again depicted in Fig. 4(b) for three different combinations
of the parameters (Kz,λ) yielding basically equivalent results.
The points for different (Kz,λ) are essentially overlapping.

The temperature dependence of the inverse correlation
length κ , see Eq. (7), is displayed in Fig. 4(c). Similar to
the intensity, the result for κ is shown for three different
combinations of the parameters (Kz,λ), marked by crosses
in the FOM (Fig. 2). Again, the points for different (Kz,λ)
are essentially overlapping. As a function of increasing
temperature, the inverse correlation length κ decreases rapidly
from 0.016/Å at 2.2 K to 0.0025/Å at TN where an upward
kink is observed. Above TN , an exponential growth of κ is
observed as a function of increasing T . At the transition,
we find the value κ = 0.0027/Å, which is still well above
the instrumental TAS resolution of 0.0015/Å. The value
0.0027 ± 0.0015/Å obtained with SANS at TN is in good
agreement with the TAS data.
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(a)

(b)

(c)

FIG. 4. Temperature dependence of the intensity and the inverse
correlation length κ from the TAS and SANS experiments. Panel (a)
depicts the integrated intensity of the incommensurate Bragg peaks,
including both domains, as a function of temperature below TN (green
symbols) for the TAS (dots) and the SANS (diamonds) experiment.
Blue symbols indicate the integrated intensity over the complete

the ring for (Kz = 0.0008/Å, λ = 1 Å
2
) for both TAS (dots) and

SANS (diamonds) data. Gray symbols indicate the sum of both ring
and peaks. Panel (b) shows the intensity of the ring as a function
of temperature as obtained from the TAS experiment for different
combinations of Kz and λ. Panel (c) shows the temperature evolution
of κ for different combinations of Kz and λ for both SANS and
TAS data. The green line is a fit to the exponential function of
Eq. (11). The data points in (b) and (c) for the given values of
Kz and λ are essentially equivalent, illustrating their equal FOM;
see Fig. 2.

V. SUMMARY AND DISCUSSION

In the following, we summarize and discuss the main results
of our neutron diffraction experiments on Ba2CuGe2O7.

A. Weak incommensurate FM order

The AFM cycloid that forms below the transition tempera-
ture TN ≈ 3.05 K was theoretically predicted [23,24] to induce
according to Eq. (9) an incommensurate FM density wave. Our
combined TAS and SANS experiments have established that
incommensurate Bragg peaks are indeed present close to zero
wave vector in addition to the ones close to the Néel point.
In both experiments, the Bragg peaks are resolution-limited,
indicative of long-range magnetic order. As a result, rocking
scans are able to capture the complete integrated intensity
of the diffraction peaks. Comparing the intensity of the
incommensurate AFM and the FM Bragg peaks, we found that
they are characterized by the same temperature dependence;
see Fig. 4(a). Moreover, measurements at different neutron
wavelengths show that the Bragg peaks in the SANS data are
not caused by double scattering. All in all, this provides strong
evidence that the AFM cycloid also induces incommensurate
FM long-range order. Above the critical temperature TN ,
incommensurate short-range FM order is also observed with
the same correlation length as in the AFM sector; see Fig. 4(c).

B. Quantitative description of critical AFM and FM
fluctuations above TN

Above the critical temperature TN , our neutron diffraction
data are consistent with magnetic intensity that accumulates
on an incommensurate ring in momentum space both around
the Néel point and around the � point. The ring is located
within the plane perpendicular to the tetragonal c axis. The
intensity distribution is quantitatively described by the theory
of Refs. [16,23,24] complemented by a term representing
magnetocrystalline anisotropies of strength λ. The data were
fitted with two parameters: λ and the AFM anisotropy Kz. We
found a range of value for (Kz,λ) that describes equally well
our data, see Fig. 2, including the specific value for Kz that
corresponds to the KSEA limit [27,28]. Our neutron diffraction
data are thus consistent with the KSEA scenario. The observed
ring of intensity implies that the magnetocrystalline anisotropy
λ is effectively weak.

Our scattering geometry was limited to the crystallographic
(a,b) plane. So far, it is therefore not known whether and how
the ring of magnetic intensity extends along the c direction
in momentum space. As the interplane exchange coupling in
Ba2CuGe2O7 (J⊥ ≈ −0.026 meV) is one order of magnitude
smaller than the intraplane coupling (J‖ ≈ 0.96 meV per
bond), one expects that the fluctuations above TN are quasi-
two-dimensional for an extended range of momenta. This
suggests that the ring of intensity extends as a cylinder
along the tetragonal c axis. However, due to the small
incommensurability and the wide vertical divergence of the
TAS experiment of 4◦–5◦ FWHM, an integration regime of

almost ≈0.07 Å
−1

FWHM essentially covers also fluctuations
on a cylinder. The exact extension of fluctuations along the
tetragonal axis has to be confirmed experimentally in a future
study in different scattering geometry. This argument is in line
with the weak intensity observed by SANS.

Moreover, also the energy range integrated by a TAS and
SANS is different, leading to stronger intensity observed by
TAS. Whereas a cold TAS typically integrates over an energy
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region of ≈0.1 meV with energy analysis, only the scattering
triangle has to be closed for a TAS in two-axis mode and
for SANS. However, with a few restrictions on reasonable
momentum transfers, an energy window of ≈ ± 0.5 meV for
TAS is expected. For diffraction in SANS geometry, the energy
window is reduced by a factor of 2 due to the better momentum
resolution.

C. Weak first-order transition and T dependence of the
correlation length

Our detailed quantitative fit to the experimental diffraction
data allows us to determine the temperature dependence of the
inverse correlation length κ of the short-range incommensurate
magnetic order above the critical temperature TN ; see Fig. 4(c).
As TN is approached from above, the correlation length 1/κ

increases and assumes a finite value 1/κcr = (1/0.0027) Å at
the transition corresponding to 1/(κcra) ≈ 44 lattice units or
kcycl/(2πκcr) ≈ 1.6 wavelengths of incommensurate magnetic
order. The finite value of κcr together with the sudden rise of
intensity associated with the magnetic Bragg peak below TN ,
see Fig. 4(a), confirms the weak first-order character of the
magnetic phase transition.

It is suggestive that this weak first-order transition in
Ba2CuGe2O7 is explained by the Brazovskii scenario, i.e.,
that it is induced by the critical fluctuations becoming soft on
a ring in momentum space. The question then arises whether
Brazovskii theory [3] can also account for the temperature
dependence of κ . In the cubic helimagnet MnSi, the inverse
correlation length was found to exhibit a crossover from a
concave, mean-field-like behavior, ∂2

T κ < 0, at higher T to a
convex behavior, ∂2

T κ > 0, close to the critical temperature
[11]. This crossover in MnSi is well described by Brazovskii
theory.

In Ba2CuGe2O7, we find a T dependence of κ that is
convex, ∂2

T κ > 0, within the investigated temperature range
above TN ; see Fig. 4(c). This excludes, in particular, the
mean-field behavior κ ∼ √

T − TN . It is quite possible that the
crossover temperature T ∗, beyond which mean-field behavior
is recovered, is larger than the accessible temperatures of
Fig. 4(c). We tried to fit the T dependence of κ with Brazovskii
theory for T � T ∗, but we found that it does not provide
a satisfactory description. Instead, we find that it is better
described by an exponential dependence

κ = κ0 e−�/kBT (11)

with the fitting parameters κ0 = 29.1/Å and �/kB = 28.6 K
corresponding to �/J‖ ≈ 2.6. This fit is shown as a solid green
line in Fig. 4(c).

While the Brazovskii scenario might account for the
first-order character of the transition in Ba2CuGe2O7, the
approximation involved in the Brazovskii theory might just
not be applicable. Brazovskii theory is a nonperturbative
description of the fluctuation-induced first-order transition
that is controlled in the limit of a small amplitude for
the self-interaction of the fluctuations. It accounts for the
nonperturbative renormalization from interacting critical fluc-
tuations with a wavelength larger than the wavelength of
the cycloid, 2π/kcycl, provided that the impact from fluctu-
ations with smaller wavelength is perturbative. However, if
the magnetism possesses a two-dimensional character as in
tetragonal Ba2CuGe2O7, the latter assumption could break
down; the interaction amplitude already gets enhanced by
exactly those fluctuations with a wavelength smaller than the
wavelength of the cycloid, 2π/kcycl. This might invalidate the
applicability of the Brazovskii approximation. In fact, for such
small wavelengths the theory of Eq. (1) effectively reduces
to the low-energy description of the two-dimensional AFM
Heisenberg model, whose correlation length possesses a T de-
pendence of the form given in Eq. (11) [34]. Before long-range
order develops, the Dzyaloshinskii-Moriya interaction drives
a crossover from a regime at higher T to a strongly correlated
chiral paramagnet. Whereas in MnSi the regime at higher T

is captured by mean-field behavior, our findings suggest that
in Ba2CuGe2O7 the regime at higher T is instead governed
by the nonperturbative physics of the two-dimensional AFM
Heisenberg model. Whereas the physics above the critical
temperature is dominated by two-dimensional fluctuations,
the magnetic order that eventually develops below TN is
three-dimensional due to the weak interlayer coupling J⊥.
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