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Comprehensive study of the dynamics of a classical Kitaev spin liquid
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We study the spin-S Kitaev model in the classical (S → ∞) limit using Monte Carlo simulations combined
with semiclassical spin dynamics. We discuss differences and similarities in the dynamical structure factors of
the spin-1/2 and the classical Kitaev liquids. The quantum behavior is restricted to low temperatures where
a gap protects visons from decohering the system. Once this quantum gap is breached, at low temperatures
compared to the coupling constant, significant entropic disorder decoheres the Majorana fermions and the system
is described quantitatively by classical dynamics. The low-temperature and low-energy spectrum of the classical
model exhibits a finite-energy peak, which is the precursor of the one produced by the Majorana modes of the
S = 1/2 model. The classical peak is spectrally narrowed compared to the quantum result and can be explained by
magnon excitations within fluctuating one-dimensional manifolds (loops). Hence the difference from the classical
limit to the quantum limit can be understood by the fractionalization of magnons propagating in one-dimensional
manifolds. Moreover, we show that the momentum-space distribution of the low-energy spectral weight of the
S = 1/2 model follows the momentum-space distribution of zero modes of the classical model.
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I. INTRODUCTION

Quantum spin liquids (QSLs) have attracted great inter-
est in both theoretical and experimental condensed-matter
physics due to their remarkable topological properties. Among
many different proposals, the Kitaev model [1] defined on
the honeycomb lattice is a prototypical two-dimensional
(2D) QSL, which can be experimentally studied in iridium
or ruthenium-based materials [2]. However, the lack of a
symmetry-breaking order parameter poses a challenge for the
experimental characterization of QSLs. In the absence of a
smoking-gun experiment, it is important to characterize the
dynamical response of QSLs in order to identify signatures,
which can guide the experimental search of these exotic states
of matter [3]. The computation of dynamical correlators of
interacting quantum spin systems in dimension higher than
one is very challenging for state-of-the-art techniques. For
instance, the study of dynamics in the Kitaev-Heisenberg
model, which is not integrable due to the additional Heisenberg
interaction, was recently initiated by using a matrix-product
state-based T = 0 method [4] and exact diagonalization [5].
These T = 0 techniques can only applied to relatively small
clusters or quasi-one-dimensional lattice geometry. Fortu-
nately, the integrability of the pure Kitaev model allows for
an exact calculation of the magnetic structure factor, S(Q,ω),
at T = 0 [6,7] and for a controlled numerical calculation at
any finite temperature T [8–10]. This remarkable property is
being used to identify proximates to Kitaev liquids [3,11,12].
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However, the actual model Hamiltonians of these materials are
not integrable, so it is more challenging to assess the effect of
the additional Hamiltonian terms on S(Q,ω,T ).

Given the above considerations, it is relevant to ask if a
semiclassical treatment can shed light on the dynamics of
the Kitaev QSLs. Semiclassical treatments are very useful
for describing the low-temperature properties of unfrustrated
magnets, whose low-energy modes are quantized spin waves
or magnons. For instance, semiclassical dynamics simulations
using an appropriate quantum-classical correspondence were
found to produce a good description of the intermediate- and
high-temperature regimes of the 2D S = 5/2 antiferromagnet
Rb2MnF4, over all wave vector and energy scales, with a
crossover temperature ∼θCW/S (θCW is the Curie-Weiss tem-
perature) [13]. It is clear, however, that the semiclassical treat-
ment cannot capture the intrinsically quantum mechanical
nature of the low-energy excitations of quantum liquids. At
first sight, this observation seems to render semiclassical
approaches completely inadequate. Nevertheless, we will
demonstrate that a semiclassical treatment of the Kitaev model
can capture several properties of the dynamical structure factor
of the S = 1/2 model, including a quite remarkable agreement
above the quantum-to-classical (QC) crossover temperature
TQC [14,15].

The spin-S Kitaev model with S > 1/2 was introduced by
Baskaran et al. [16,17] and it was subsequently studied by
different groups [18–22]. This model is not exactly solvable,
but it preserves the Z2 gauge structure of the S = 1/2 model.
The set of commuting operators,

Wp = −σ
y

1 σ z
2 σx

3 σ
y

4 σ z
5 σx

6 , (1)
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FIG. 1. (a) Schematic illustration of the Kitaev-Heisenberg model
consisting of the Heisenberg interaction J and the compasslike
nearest-neighbor Ising interactions, with the associated spin com-
ponent for each bond depending on the bond orientations (xx, yy,
or zz). The site indices around the plaquette p correspond to the
definition of the Z2 flux operator Wp in Eq. (2). (b) The first BZ
(solid line) and the second BZ (dashed line) of the honeycomb lattice.
Here, Q̃ = Qa/2π . The green arrows indicate a path connecting
high-symmetry points in the reciprocal space (i.e., K�MYXK), along
which we evaluate S(Q,ω). (c) Example of a CN ground state formed
by antiferromagnetic dimer coverings.

defined on each hexagonal plaquette of the honeycomb lattice
(see Fig. 1) is generalized to

Wp = eiπ(Sy

1 +Sz
2+Sx

3 +S
y

4 +Sz
5+Sx

6 ) (2)

for arbitrary spin S. An immediate consequence of this local Z2

symmetry is that the two-spin correlator 〈Sν
i Sν

j 〉 is nonzero only
for i = j and for the nearest-neighbor (NN) sites connected
by a νν bond (ν = x,y,z) [16,17]. Consequently, both the
quantum and the classical pure Kitaev models share the
property of having a very short correlation length ξ � a

(a is the lattice space) for arbitrary temperature T .
As expected, the main differences between the quantum

and the classical limits of the model appear in the low-energy
sector. While the S = 1/2 version of the model has a unique
QSL ground state, the ground state is massively degenerate in
the classical limit. The structure of the classical ground-state
manifold corresponds to an exponentially large number of
isolated points in the phase space, known as the Cartesian
(CN) ground states [16], as well as continuous families of
intermediate states connecting one CN ground state to another
[16,20]. The CN ground states have each spin pointing along
one of the three axes (x, y, or z) in such a way that one of the
three bonds that arrives to a common site has the minimum
possible energy, while the other two have zero energy (see
Fig. 1(c) and the animation in the Supplemental Material [23]).
The zero modes associated with the continuous ground-state
degeneracy lead to a singular ω = 0 contribution to S(Q,ω),
which is naturally absent in the S = 1/2 version of the
model. Instead, the S = 1/2 model leads to a structure factor

S(Q,ω,T = 0), which vanishes for ω � 	v , as a consequence
of the finite activation gap 	v of the pair of bound Z2 fluxes
(or “visons”) created by the application of a spin operator to
the ground state.

Despite these qualitative differences between the low-
energy magnetic response function of the quantum and the
classical Kitaev liquids at T = 0, we will show in this paper
that the magnetic structure factors, S(Q,ω,T ), of both models
become very similar for ω and T bigger than a quantum-
to-classical crossover energy scale TQC . Our results then
suggest the possibility of describing the thermally induced
random-flux state at T � 	v in the S = 1/2 Kitaev model
[14,15,24] with the classical liquid of the model obtained in
the S → ∞ limit. This observation can be exploited to identify
proximate quantum Kitaev liquid materials because S(Q,ω,T )
can be computed under control for any arbitrary deformation
of the pure Kitaev Hamiltonian in the classical limit.

II. ZERO-TEMPERATURE LIQUIDS

The dynamics of the classical version of the Kitaev model
is studied by combining Metropolis sampling and Landau-
Lifshitz (LL) dynamics [25],

dSi

dt
= Si × Bi , (3)

where Bi is the effective local field (molecular field) acting
on the spin Si . The temperature of the simulation is fixed
during the Metropolis sampling and the Landau-Lifshitz
dynamics starts from a randomly selected well-thermalized
configuration. To study the effect of relevant perturbations,
which replace the Kitaev liquid by an ordered state at low-
enough temperatures, we will consider the simple case of the
classical Kitaev-Heisenberg (KH) Hamiltonian [18,19] with
only nearest-neighbor (NN) interactions,

H = K
∑

ν=x,y,z

∑
{i,j}ν

Sν
i Sν

j + J
∑
{i,j}

Si · Sj . (4)

The index ν for the variable i,j indicates that the two NN
sites i and j are connected by a νν bond [see Fig. 1(a)]. To
compare the results of this classical model against the spin-S
quantum version of the model, we normalize the classical spins
as |Si | = √

S(S + 1). The quantum version of this Hamiltonian
has been proposed as a model for iridium or ruthenium-based
materials [2,29–31]. The magnetic structure factor S(Q,ω,T )
is obtained by Fourier transforming the real-space correlator
〈S(ri ,t) · S(r0,0)〉 evaluated from the LL dynamics over a finite
period with periodic boundary conditions.

We first focus on the pure Kitaev limit (J = 0). Figure 2
shows the magnetic structure factor S(Q,ω) of the classical
and the quantum models at T = 0 for both antiferromagnetic
(AFM) and ferromagnetic (FM) cases. S(Q,ω) is plotted along
the Brillouin zone (BZ) path (K�MYXK) shown in Fig. 1(b).
The calculations in the classical limit (CL), shown in Figs. 2(a)
and 2(b), are averages over 120 LL simulations on a supercell
of 20×20 unit cells (800 spins). The quantum limit (QL)
calculations, shown in Figs. 2(c) and 2(d), correspond to the
exact result in the thermodynamic limit [6]. Remarkably, both
the classical and the quantum Kitaev liquids are found to have
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FIG. 2. Comparison of the dynamical structure factor, S(Q,ω), in the classical limit (S → ∞) and quantum limit (S = 1/2) of the pure
Kitaev model (J = 0) at T = 0. (a),(b) S(Q,ω) obtained from LL simulations of the classical AFM and FM Kitaev models, respectively.
(c),(d) S(Q,ω) at T = 0 for the S = 1/2 Kitaev model obtained in Ref. [6]. Constant energy cuts of (e) AFM and (f) FM classical Kitaev
liquids obtained by integrating over the energy range ω/|K| = [0.17,0.35], corresponding to the low-frequency mode. Similar plots for the
high-frequency mode are also shown for (g) AFM and (h) FM classical Kitaev liquids with the integration energy range ω/|K| = [1.4,1.6].

two different, almost dispersionless, modes centered at high
and low frequencies (ω) with striking similarities.

The high-energy mode is centered around the � (Y) point
for K > 0 (K < 0) and it is accompanied by a suppression of
the low-energy spectral weight centered around the same wave
vector. This behavior is better illustrated by the contour plots
shown in Figs. 2(e)–2(h). These panels are constant frequency
cuts of S(Q,ω), which show the distribution of spectral weight
over momentum space. Figures 2(e) and 2(f) correspond to the
distribution of low-frequency modes (integral of S(Q,ω) over
the interval ω/|K| = [0.17,0.35]), while Figs. 2(g) and 2(h)
show the distribution of high-frequency modes (integral of
S(Q,ω) over the interval ω/|K| = [1.4,1.6]). As is clear from
these panels, the low-energy spectral weight is suppressed in
the same region in momentum space where the distribution of
high-energy spectral weight has a peak. This is the center of
the first BZ for K > 0 and the center of the second BZ for
K < 0 [see Fig. 1(b)].

To understand the differences and similarities between the
classical and the quantum limits of the Kitaev model, it is
instructive to go back to the real space. Figure 3 shows the real-
space spin-spin correlators for the classical and the quantum
limits of the AFM model. Figures 3(a) and 3(b) include the on-
site correlator for the CL and the QL, respectively. Similarly,
Figs. 3(c) and 3(d) contain the NN correlator for the CL and
the QL, respectively. As we mentioned before, the local gauge
structure shared by the quantum and the classical models leads
to a real-space spin-spin correlator that vanishes beyond NN
sites. This implies that the spin structure factor in the pure
Kitaev model for arbitrary S can be decomposed as

Sνν(Q,ω) = S0(ω) + cos(Q · uν)S1(ω), (5)

where ν = x,y,z and uν is the relative vector between two NN
sites connected by a νν bond; S0(ω) and S1(ω) are the Fourier
transformations into the frequency domain for the on-site and

the NN dynamical spin correlators, respectively. This pecu-
liarity leads to the sinusoidal Q modulation in the high- and
low-energy peak intensities, as illustrated in Figs. 2(e)–2(h).
In other words, the similar wave-vector dependence of the
different modes in the classical and the quantum limits is
a direct consequence of the similar real-space correlations
shown in Fig. 3.

The real-space correlators also exhibit a low- and a high-
frequency peak in both models. The low-frequency peak of the
S = 1/2 model appears right above the small activation gap
	v for the pair of excited Z2 gauge fluxes (visons) created by
the action of a spin operator on the ground state. The extended
linewidths of the low- and the high-energy peaks arise from
the continuum of Majorana fermion excitations, which leads
to a rather narrow low-energy peak and a broad high-energy
peak. In contrast, the low-energy peak of the classical model
extends down to zero frequency because the fluxes become
gapless in this limit. The CN ground states are not eigenstates
of the Wp operators, implying that the classical limit (S → ∞)
corresponds to a flux condensation (the flux number is no
longer a good quantum number). It is interesting to note that
quadratic quantum fluctuations partially restore this quantum
number by selecting the CN ground states, which maximize the
number of hexagonal plaquettes with well-defined flux equal
to zero (eigenvalue of Wp equal to one). These are the 3×2N/3

states with every single loop being an elementary hexagon
[16]. The extensive degeneracy of the classical limit leads to
sharp δ-function singularity in the spectral weight at ω = 0.
The simple analysis that we present below explains the origin
of this singularity and of the high-energy peak centered around
the � point of the AFM model [see Fig. 2(a)].

The main qualitative aspects of the dynamical structure
factor of the classical model at T = 0 can be captured by
the CN ground states. As explained in Ref. [16], the CN
ground states can be mapped into the close-packed dimer
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FIG. 3. Temperature dependences of the dynamical spin structure factor decomposed into the on-site contribution, S0(ω), and the NN
contribution, −S1(ω), for the classical Kitaev model and also for the S = 1/2 Kitaev model: S0(ω) for (a) S = ∞ and (b) S = 1/2, and −S1(ω)
for (c) S = ∞ and (d) S = 1/2. Frequency dependence of S0(ω) and −S1(ω) in the classical model at selected temperatures: (e) T/K = 0,
(f) 0.014, (g) 0.25, (h) 0.6, and (i) 2.7 [indicated by the dashed lines in (a) and (c)]. Similar plots for the S = 1/2 model are shown for
comparison for (j) T/K = 0, (k) 0.015, (l) 0.24, (m) 0.6, and (n) 2.4 [indicated by the dashed lines in (c) and (d)]. Note that the NN dynamical
correlation function is ±S1(ω) for K = ±|K|, while the on-site correlator is the same for both signs of K .

coverings of the honeycomb lattice by assigning one dimer
to each “satisfied” bond (i.e., with its local energy taking
the minimum value) [see Fig. 1(c)]. Within linear spin-wave
theory [16], magnons for CN ground states can only propagate
along the one-dimensional paths of empty bonds because of
the Ising nature of the interactions. These 1D paths become
self-avoiding loops if we adopt closed boundary conditions,
which fully cover the whole lattice (every spin site is visited
by one and only one loop). The spin-wave Hamiltonian for
each loop is invariant under translations by two sites along the
loop [16]. In other words, the unit cell of the loops has two
sites, implying that each loop has two branches of magnetic
modes: a flat branch of zero modes, E0(k) = 0, and second
branch with a dispersion relation

E(k) = 2|K|S cos(k/2), (6)

with k being the momentum associated with the two-unit
translation within a loop.

The top of the single-magnon band is at k = 0, implying that
the density of single-magnon states has a Van Hove singularity
at k = 0 for infinitely long loops. For the AFM model (K > 0),
the k = 0 magnon wave function has the same phase for both
sites in the unit cell. Consequently, the singular density of

states leads to a high-energy peak centered at the � point
[Fig. 2(a)]. On the other hand, the flat band of zero modes
leads to a δ-like contribution at ω = 0. While the real-space
dynamical structure factors are obtained by averaging over
all the CN ground states, this average is dominated by loops
of very long length because of the critical nature of the
close-packed dimer coverings of the honeycomb lattice. (The
fully packed self-avoiding loops on the honeycomb lattice is a
critical system that can host loops of infinite length [32,33].)
Consequently, we can approximate the average over loops
by the result that is obtained for an infinitely long loop (see
Appendix),

S0(ω) � Sπ
ρ̄
(

ω
KS

)
ω

+ πS

2
δ(ω)

∫ π

−π

dk

cos
(

k
2

) , (7)

for the average on-site spin-spin correlator, and

θS1(ω) �
[

πωS

2(KS)2
−πS

ω

]
ρ̄

(
ω

KS

)
−πS

2
δ(ω)

∫ π

−π

dk

cos
(

k
2

) ,

(8)

for the NN spin-spin correlator, where θ = K/|K| is the sign of
K . The function ρ̄(x) = KSρ(x) is the dimensionless density
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of single-magnon states,

ρ̄(x) = 2√
1 − (

x
2

)2
. (9)

The 1/ω singularity that appears in the first term of Eqs. (7)
and (8) arises from the 1D nature of the problem at the linear
spin-wave level. This singularity must then be regularized
by higher-order corrections in the 1/S expansion, which
restore the 2D nature of the problem by connecting different
loops. Nevertheless, we will see that the linear spin-wave
contributions (7) and (8) are already enough to understand
the main features of the numerical results. In particular, the
1/ω tail explains the broad low-energy spectral weight of the
numerical results shown in Figs. 2(a) and 2(b).

The second term of Eqs. (7) and (8) corresponds to the
singular contribution from the flat band of zero modes in
each loop. We note that these singular contributions to the
on-site and the NN correlation functions differ only by a minus
sign. Equation (5) then implies that the singular contribution
from the zero modes vanishes exactly at the � point for
the AFM classical Kitaev model: Sνν(�,ω) = S0(ω) + S1(ω).
This fact remains true for any loop length. In other words,
the distribution of zero modes over the Brillouin zone (BZ)
has a node at the � point for K > 0. Moreover, the singular
contributions from the first terms of Eqs. (7) and (8) (infrared
singularity associated with the 1D nature of the loops) also
cancel exactly at the � point. The numerical result for this
distribution is shown in Fig. 2(e) for K > 0 and in Fig. 2(f)
for K < 0. As expected from our analysis, S(Q,ω → 0) is
suppressed around the � point for K > 0. This “hole” in the
density of zero modes is a signature of the AFM classical
Kitaev liquid. Similarly, the FM Kitaev liquid is characterized
by a suppression of the density of zero modes around the Y
point (center of the second BZ). In this case, the zero-mode
contribution cancels exactly at the Y point only for the
component Sνν(Y,ω) = S0(ω) − S1(ω) where the νν bond is
parallel to Y. Consequently, the singular weight contribution
at ω → 0 is suppressed at the Y point, but it does not vanish. In
both cases, the missing low-energy spectral weight is shifted
to the high-energy peak at ω � |K|, as is shown in Figs. 2(g)
and 2(h).

The high-energy peak of the classical Kitaev model arises
from the 1D Van Hove singularity in the density of states given
in Eq. (9). According to Eqs. (7) and (8), both S0(ω) and S1(ω)
have a contribution proportional to the density of states ρ̄( ω

KS
),

which becomes singular at ω = 2S|K|. Equation (5) implies
that Sνν(Q,ω) also has a contribution proportional to ρ̄( ω

KS
).

For the AFM Kitaev model (K > 0), the proportionality factor
takes its maximum value 2π/K at Q = 0 (� point). In contrast,
this proportionality factor vanishes at the � point for the FM
Kitaev model (in this case, the proportionality factor reaches a
significantly smaller maximum value around the Y point). This
analysis explains the different momentum-space distribution
of the high-energy peak of the AFM and FM classical Kitaev
modes [see Figs. 2(a) and 2(b)]. We note that the quantum
version of the model shows a similar behavior [see Figs. 2(c)
and 2(d)].

As we anticipated, the zero modes are removed in the
quantum limit because the massive ground-state degeneracy

FIG. 4. (a) Frequency dependence of S0(ω) and −S1(ω) associ-
ated with the CN ground states in the classical Kitaev model at T = 0.
(b) Refined evaluations of S0(ω) and −S1(ω) with the inclusion of
an artificial broadening ε = 0.1K , which mimics the effect of the
continuum of the intermediate ground states connecting different CN
ground states through the slide transformations (see the text).

is lifted by quantum fluctuations. The net result is that the
divergent spectral weight at ω = 0 is transferred to a small,
but finite frequency region ω � 	v . The lack of zero modes
at the � point suggests that the “hole” in the low-energy
spectral weight should still be present in the spectral weight
distribution right above the two-vison gap 	v . This expectation
is confirmed by the numerical results shown in Fig. 2(a) for
K > 0 and Fig. 2(b) for K < 0. Consequently, this suppression
of the low-energy spectral weight and the associated shift to
high energy is also a characteristic of the quantum Kitaev
liquid. We note that low-energy spectral weight around the
� point can, in principle, be induced by perturbations that
break the two-flux selection rule (spin operators connecting
subspaces that differ by two gauge fluxes). However, as it was
shown in Ref. [34], the rule is broken to fourth order in the
typical perturbations of the Kitaev Hamiltonian, implying that
the low-frequency spectral should remain very small.

Figure 4(a) shows the on-site, S0(ω), and the NN, S1(ω),
dynamical structure factors given by Eqs. (7) and (8), re-
spectively. These quantities are only an approximation of the
exact S(Q,ω,T = 0) because the average is taken over the
CN ground states. The missing ground states correspond to
the continuous deformations that connect different CN ground
states [16].

Let us consider an intermediate ground state, which is
obtained by continuous “slide” transformations [16] of a
given CN ground state. A slide transformation only involves
spins along either a closed loop or an infinitely long string
corresponding to alternating dimer and empty bonds. For small
transformations, magnons will still propagate mainly along
the loops of the “parent” CN state. However, the correspond-
ing 1D spin-wave Hamiltonian is no longer translationally
invariant. Moreover, magnons can tunnel between different
loops because the spins on the “satisfied bonds” are no longer
parallel to the Ising anisotropy axis of the bond. In other words,
the spin-wave Hamiltonian of the intermediate state can be
regarded as a disordered version of the spin-wave Hamiltonian
of the parent CN state. To zeroth order, the effect of disorder is
to broaden the quasiparticle peaks of the parent CN state.
Figure 4(b) shows S0(ω) and S1(ω) after introducing an
effective broadening ε = 0.1K . These curves reproduce quite
well the numerical results shown in Fig. 3(e). In particular,
the effective disorder introduced by the “intermediate” ground
states broadens the high-frequency peak originated by the Van
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Hove singularity in the density of states. The success of such
a minimal perturbative treatment of intermediate states relies
on the fact that CN ground states maximize the number of
zero modes, i.e., most of the classical ground states are small
deformations of CN ground states [16]. Although this property
does not lead to an order-by-disorder phenomenon at any
temperature, it may renormalize the effective stiffness leading
to a nontrivial T -dependent power law in the short-range decay
of the energy density correlator [35].

Finally, 1D magnons must decay into pairs of spinons upon
inclusion of quantum fluctuations beyond linear spin-wave
theory. The resulting two-spinon continuum can be regarded
as a precursor of the Majorana modes, which appear in the S =
1/2 limit. The main effect of the two-spinon continuum is to
broaden the high-frequency peak, in agreement with the result
obtained for the quantum limit of the model [see Figs. 3(b), 3(d)
and 3(j)].

Thus, to summarize our discussion on the low-T classical
liquid state, the high-energy peak of S( Q,ω) is common to
the quantum (S = 1/2) and the classical (S → ∞) T = 0
liquids. The classical limit of the model provides insight for
understanding the origin of this peak, which has been used as a
fingerprint of the proximity to a Kitaev liquid state [3,11,12].
The classical model also provides insight for understanding
the momentum dependence of the low-energy spectral weight
distribution of the S = 1/2 model. This distribution is very
similar to the distribution of the ω = 0 spectral weight induced
by the zero modes of the classical model. These facts establish
a clear connection between the T = 0 spectra of the classical
and quantum liquids.

III. FINITE-TEMPERATURE LIQUIDS

The S = 1/2 Kitaev model can be mapped into a gas
of free Majorana fermions interacting with static Z2 gauge
fields [1]. Because of the quadratic nature of the action, the
fermionic degrees of freedom can be integrated out to obtain
an effective classical action for the Z2 variables, which can be
simulated by using Monte Carlo simulations [14,15], similar to
other problems of noninteracting fermions coupled to classical
degrees of freedom [36]. To evaluate the dynamical spin
structure factor at finite temperatures, one needs to combine
such Monte Carlo samplings with a quantum Monte Carlo
solver [10]. To compare against the results for S(Q,ω,T ) of
the S = 1/2 Kitaev model [see Fig. 3], extracted from Refs. [8]
and [9], we present the corresponding results for the classical
Kitaev model in Figs. 3 and 5.

As shown in Figs. 5(d) and 5(h), the high-temperature
paramagnetic (PM) state of both the AFM and FM classical
Kitaev models exhibits a characteristic broad diffusive peak
with a small Q dependence. Figures 5(c), 5(g), 5(b), and 5(f),
show that the low-frequency diffusive mode becomes more
structured upon decreasing temperature and an additional
mode emerges at the BZ center for K > 0 and at the center
of the second BZ (Y point) for K < 0. Finally, at very low
temperatures [see Figs. 5(a) and 5(e)], the upper mode goes
up in energy and it separates from the low-frequency spectral
weight.

Figures 5(i) and 5(j) show the temperature dependence of
S(�,ω) for the AFM and the FM cases, respectively. The

FIG. 5. Temperature evolution of S(Q,ω) in the classical Kitaev
model calculated along a BZ path shown in Fig. 1(b) for (a)–(d) the
AFM coupling and (e)–(h) the FM coupling, at (a),(e) T/K = 0.003,
(b),(f) T/K = 0.09, (c),(g) T/K = 0.2, and (d),(h) T/K = 0.6. (i),(j)
The temperature dependence of the intensity at the � point for the
AFM and the FM models, respectively. The dashed line in (i) traces
the peak position of the high-energy mode.

dashed line in Fig. 5(i) indicates the temperature evolution
of the high-frequency peak. This peak merges with the
low-energy peak at a temperature scale TH ∼ 0.3 − 0.4K ,
which roughly coincides with the high-temperature peak of the
specific heat curve of the quantum (S = 1/2) version of the
model [8]. TH is also the temperature at which the high-energy
mode of the S = 1/2 Kitaev model merges with the low-energy
mode [8,9].

The quantum-to-classical crossover occurs at the temper-
ature scale TQC � 	v , which is significantly lower than TH .
Degenerate Hamiltonian eigenstates whose number of fluxes
differs by two only exist for energies bigger than 	v , as is
indicated by the finite value of S0(ω = 0) for the S = 1/2
Kitaev model [see Fig. 3(l)]. Linear combinations of these
degenerate states produce eigenstates with nonzero 〈Sj 〉 (the
total flux is no longer a good quantum number), which can be
regarded as “classical states.”

A large concentration of Z2 fluxes is induced at T >

TQC � 	v . These fluxes act as scattering centers for the
Majorana fermions, which lose their coherence when the
distance between scattering centers becomes comparable to
their wavelength. This condition is fulfilled at T > TQC

because the average distance between thermally activated
fluxes becomes of the order of one lattice space. Figures 3(g)
and 3(l) show that the dynamical structure factors of the
quantum and classical AFM models are very similar for
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FIG. 6. Schematic phase diagram of the classical KH model with
AFM (K > 0) Kitaev interaction. The color gradient denotes the
quantum-classical crossover region. The solid lines represent phase
transitions. We note that the quantum spin-liquid phase is stable over
a finite interval of J/K values around J = 0 in the quantum limit
(S = 1/2).

T/K = 0.25 and ω > 	v . The quantum character of the liquid
is manifested at low temperatures in the low-frequency dip
at ω < 	v visible even up to T/K = 0.6 K [Fig. 3(m)].
The resulting low-frequency peak is then a remnant of the
two-vison gap.

IV. KITAEV-HEISENBERG MODEL

A big advantage of the classical limit of the model is
that we can study the evolution of S(Q,ω) away from the
Kitaev point. In contrast to the quantum case, an arbitrarily
small perturbation is enough to replace the T = 0 liquid
with a magnetically ordered phase that is also stable at finite
temperatures. This ordered phase has three different regimes:
a low-temperature regime, T 	 TN , in which the magnetic
structure factor is dominated by the single-particle excitations
of the ordered state (spin-wave dispersion), an intermediate-
temperature regime, TN < T � K , with liquidlike correla-
tions, and a high-temperature paramagnetic state, T 
 K , that
can be regarded as a “spin gas” because the off-site correlations
are negligibly small in comparison to the on-site correlations.
Price and Perkins [18,19] argued that the ordering occurs via
two consecutive Berezinskii-Kosterlitz-Thouless transitions,
as in the C6 clock model, with a small critical phase in between.

The KH model (4) is one of the simplest Hamiltonians that
can be used to study the three regimes (in what follows, our
discussion excludes details related to critical phenomena at
T ≈ TN ). Given that the intermediate spin-liquid regime only
exists in the proximity of a T = 0 liquid phase (see Fig. 6), this
regime can be used to detect proximate quantum spin-liquid
behavior. If TN > TQC , the liquidlike regime is described by
the classical limit of the model, implying that finite-T classical
spin dynamics can be exploited to identify magnets near a
T = 0 quantum melting point.

As shown in Fig. 6, the ground state of the classical
KH model has zigzag ordering for J/K < 0 and a two-
sublattice AFM ordering for J/K > 0 (K > 0). At T = 0, the

FIG. 7. S(Q,ω) for the KH model with FM Heisenberg exchange
(J < 0) and AFM Kitaev interaction (K > 0) as a function of −J/K .
The green lines correspond to the S(Q,ω) obtained from linear
spin-wave theory (the line thickness indicates the intensity). (a) The
pure Kitaev model (J = 0); (b),(c) J/K = −0.1 and J/K = −0.3,
respectively. (c) shows that the magnon modes are more sharply
defined away from the Kitaev point. (b) clearly shows that the magnon
modes become less defined upon approaching the Kitaev point
because of the increasing importance of nonlinear effects captured
by the LL simulation.

spin-wave dispersion deviates from the linear spin-wave
spectrum (green lines in Fig. 7) upon approaching |J |/K = 0.
These deviations arise from the nonlinear effects associated
with spin fluctuations towards the large manifold of classical
states that become ground states for J = 0. We note that this
nonlinearity may have a different manifestation in the quantum
S = 1/2 model. In particular, the magnon modes of the S =
1/2 model should become weakly bounded pairs of Majorana
fermions upon approaching the transition into the spin-liquid
phase (here we are assuming that the transition is continuous
or quasicontinuous). It is clear that this intrinsically quantum
phenomenon cannot be captured by the classical limit of the
model. However, as we discuss below, the classical model
is still capable of capturing the evolution of the high-energy
features of the magnon spectrum. Moreover, based on the
results discussed in the previous sections, the classical model
can describe the second way of approaching the spin-liquid
regime, which is by increasing temperature at a fixed value
of J/K .

Figure 7 shows the evolution of the low-temperature
S(Q,ω) as a function of J/K , from the pure AFM classical

134408-7



A. M. SAMARAKOON et al. PHYSICAL REVIEW B 96, 134408 (2017)

FIG. 8. S(Q,ω) obtained for the KH model with J/K = −0.1. The different panels show S(Q,ω) along the BZ path K − � − M −
Y − X − K − M for (a) T/K = 0.003 (T 	 TN ), (b) T/K = 0.06 (T � TN ), (c) T/K = 0.15 (T > TN ), and (d) T/K = 1 (T 
 TN ). The
panels on the right-hand side show the distribution of spectral weight over the BZ: the first column shows the low-energy spectral weight
(0.03 < ω < 0.13), while the second column shows the spectral weight in the frequency interval of the high-energy peak (1.2 < ω < 1.6).

Kitaev model [Fig. 7(a)] to −J/K = 0.3 [Fig. 7(c)]. As
expected, S(Q,ω) exhibits a sharply defined spin-wave disper-
sion with a pseudo-Goldstone mode at the M point (ordering
wave vector) well inside the zigzag (ZZ) phase. We note that
there are three inequivalent M points corresponding to the pos-
sible directions of the FM ZZ chains. Upon reducing |J |/K ,
the magnon modes become less defined due to the increasing
relevance of nonlinear effects triggered by the proximity to the
(J = 0) spin-liquid point. In particular, the spectrum obtained
for J/K = −0.1 [Fig. 7(b)] shows an overall softening of the
acoustic magnon modes, except for the region around the �

point where the spectral weight remains around the original
optical mode. The evolution of this “high-energy” feature
should be common to both the classical and quantum limits of
the model. In other words, this unusual behavior can be used to
detect the proximity to a Kitaev quantum spin liquid, as long
as the transition between the ZZ phase and the liquid state
remains continuous (or quasicontinuous) in the S = 1/2 limit.

As shown in Fig. 6, the spin-liquid state can also be accessed
by increasing T at a fixed value of J/K . Figure 8 shows
the temperature evolution of S(Q,ω) for J/K = −0.1. The
corresponding Néel temperature is TN ≈ 0.06K , implying
that there is a temperature window, |J | < T < K , above TN ,
where S(Q,ω,T ) should be very similar to the dynamical
structure factor of the pure Kitaev model (T is high enough to

suppress the magnetic correlations induced by the Heisenberg
interaction). This is true for any other small perturbation that
can be added to the pure Kitaev model. Figure 8(c) confirms
this expectation: S(Q,ω) is very similar to the result shown
in Fig. 5(c) for the pure Kitaev model (J = 0). As shown
in Fig. 8(g), the low-frequency region shows the signature
of a Kitaev liquid, with a rather uniform distribution of
low-energy modes over the BZ, which is suppressed around
the � point. Correspondingly, Fig. 8(k) shows the opposite
behavior for the distribution of high-energy modes over the BZ
(1.2 < ω/K < 1.6). The rest of the panels on the right-hand
side of Fig. 8 show the continuous redistribution of spectral
weight upon moving towards the low- and high-temperature
regimes. Given that quantum corrections are small above
TQC � 	v � 0.06K , the result obtained at ω > 	v with the
classical spin model represents the S(Q,ω,T ) of the QL
(see Fig. 3).

We remark that the Kitaev liquid state that appears in
the intermediate-temperature regime is independent of the
particular model Hamiltonian, as long as the additional terms
can be treated as small perturbations relative to the Kitaev
contribution (separation of energy scales). This observation is
relevant for candidate materials based on 4d and 5d elements
because their microscopic Hamiltonian models include multi-
ple interaction terms, whose values are still uncertain [37–50].
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V. CONCLUSIONS

We have shown that the dynamical spin structure factors of
the classical and the quantum (S = 1/2) limits of the Kitaev
model become very similar above a crossover temperature
TQC � 	v . Moreover, both structure factors exhibit similar
qualitative behavior in their high-frequency response (ω � K)
even at T = 0. This “high-energy” response is characterized
by a broad peak above ω � K , which is centered around the
� point for AFM Kitaev model (K > 0) and around the Y
point for the FM Kitaev model (K < 0). Correspondingly,
the singular spectral weight at ω = 0, produced by the zero
modes of the classical model, is suppressed around the � point
for AFM Kitaev model and around the Y point for the FM
Kitaev model. This dip in the momentum-space dependence
of the low-energy spectral weight is still present in the S = 1/2
model. The main difference is that the low-energy modes of
the quantum S = 1/2 Kitaev model appear right above the
two-vison activation gap 	v .

In the classical limit, the low-energy modes of the
CN ground states correspond to single-magnon states that
propagate in 1D loops [16]. The high-energy peak of the
classical Kitaev model arises from the singular density of
single-magnon states at the top of the dispersive branch of
excitations. This Van Hove singularity is smoothed out by the
deformations of the CN ground states into the non-Cartesian
ground states (valleys) that lead to the flat branch of zero
modes and also by thermal fluctuations. As discussed in
Ref. [16], the 1D magnons of the CN ground states must decay
into fractionalized excitations upon inclusion of quantum
fluctuations. These excitations can be regarded as precursors
of the Majorana modes obtained in the quantum S = 1/2
limit. In particular, this fractionalization leads to an additional
broadening of the high-energy peak of S(Q,ω), which explains
why the peak of the classical model is narrower than the peak
of the S = 1/2 model.

Our results provide a systematic procedure for identifying
proximate quantum spin-liquid behavior of real materials. A
dip in the density of low-energy modes at the � (Y) point must
be accompanied by a high-energy peak around the same wave
vector for K > 0 (K < 0). For materials that exhibit low-
temperature magnetic ordering, the signatures of the Kitaev
liquid should appear over an intermediate-temperature window
above the ordering temperature. As long as T � TQC , the
classical approach can be used in this temperature window to
obtain a good approximation of S(Q,ω) for the S = 1/2 model.

The analysis presented here can have more general im-
plications for other quantum liquids with extensive ground-
state degeneracy in the classical limit. Given the lack of
magnetic ordering, one needs to find an alternative low-energy
characterization of the liquid state. Our results suggest that the
distribution of zero modes over the BZ provides clear signature
of the classical liquid, which is inherited by the distribution of
low-energy modes of the quantum spin liquid. Given that such
a distribution can be measured with inelastic neutron scattering
[11,12,51], this experimental technique can play a crucial role
in the characterization of quantum spin liquids. Moreover, the
quantum-to-classical crossover can be exploited for computing
other dynamical correlation functions and transport properties
of quite general quantum spin models at T > TQC .
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APPENDIX: LINEAR SPIN WAVES
FOR CN GROUND STATES

The ground state of the classical Kitaev model has an
extensive degeneracy. The subset of CN ground states can
be mapped to the the close-packed dimer coverings of the
honeycomb lattice [16]. The empty bonds of each dimer
covering form self-avoiding (SW) paths, which are loops
for closed boundary conditions. Within linear spin-wave
theory, magnons can only propagate along these 1D paths
to lowest order in a 1/S expansion. To compute the spin-wave
Hamiltonian in each loop for a given CN ground state, it is
convenient to use a twisted reference frame for the original
Hamiltonian defined on a given loop, where the local z axis on
a given site is chosen to be parallel to the spin direction,

H1D = K

m∑
i=1

(
S̃x

i1S̃
x
i2 + S̃

y

i2S̃
y

i+1,1

) − KS

m∑
i=1

2∑
α=1

S̃z
iα, (A1)

where m = n/2, with n being the number of sites on the
loop. The local reference frame is chosen in such a way that
two adjacent sites have the same local x (y) axis if they are
connected by a xx (yy) bond. With this construction, the closed
boundary condition can be periodic or antiperiodic depending
on the direction of the last spin [16]. In this reference frame, the
Hamiltonian is invariant under translations by two lattice sites.
Correspondingly, the index α = 1,2 denotes the two sites on
the effective unit cell. The second term of Eq. (A1) represents
an effective perpendicular magnetic field generated by the
adjacent 1D path through the antiferromagnetic interaction
on the dimer.

After a Holstein-Primakoff transformation,

S̃z
iα = S − a

†
iαaiα, (A2)

S̃x
iα = 1√

2
(a†

iα + aiα), S̃
y

iα = 1√
2i

(a†
iα − aiα), (A3)

the spin-wave Hamiltonian (A1) can be rewritten as

Hsw = KS

2

m∑
i=1

2∑
α=1

(a†
iαaiα + aiαa

†
iα)

+ KS

2

m∑
i=1

(a†
i1a

†
i2 + a

†
i1ai2 + H.c.)

− KS

2

m∑
i=1

(a†
i,2a

†
i+1,1 − a

†
i,2ai+1,1 + H.c.). (A4)
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Given the translational symmetry of Hsw, we can diagonalize
it by Fourier transforming the creation and annihilation
operators,

aiα = 1√
m

∑
k

akαeik(i+δα ), (A5)

where δα refers to the displacement within each unit cell. After
Fourier transforming and applying a Bogoliubov transforma-
tion to Hsw, we obtain the diagonal form

Hsw =
∑

k

E(k)β†
kβk + E0

∑
k

γ
†
k γk + KS

∑
k

∣∣∣∣ cos

(
k

2

)∣∣∣∣,
where E0 = 0. The branch of zero modes arises from the
continuum of (non-CN) ground states connecting different CN
ground states. The dispersion relation of the dispersive branch
is [16]

E(k) = 2|K|S cos(k/2). (A6)

1. Dynamical structure factor

To the lowest nontrivial order in the 1/S expansion, the
dynamical structure factor in momentum-frequency space for
a given ground state, |0〉, has only contributions from the
transverse spin components in the local reference frame,

S̃
μν
αβ (k,ω) = 4π2

∑
n=1,2

〈0|S̃μ

k,α|k,n〉〈k,n|S̃ν
−k,β |0〉δ(ω − Eq,n).

(A7)

As we explained in Sec. I, the local gauge structure of the
Kitaev Hamiltonian, [HK,Wp] = 0, implies that the real-space
spin-spin correlators must vanish for distances bigger than
one lattice parameter. Based on that observation, we will only
compute the on-site and the NN spin-spin correlators that arise
from taking the average over all the CN ground states. Note that
a more rigorous calculation of the T = 0 spin-spin correlator
should also include the non-CN ground states. However, a
calculation based on just the CN ground states is enough to
capture the main qualitative features of the dynamical structure
factor obtained from our numerical simulations of the classical
AFM Kitaev model.

Finally, given the critical nature of the dimer coverings
of the honeycomb lattice, the loop length has a power-law
distribution, implying that most of the loops containing a given
site (for the on-site correlator) and a pair of sites (for the
two-site correlator) have a very long length. Consequently, we
will assume that the average over CN states is dominated by
the result for infinitely long loop length.

2. On-site dynamical structure factor

The on-site dynamical structure factor is obtained by
averaging over both sites of the unit cell of the loop,

S̃xx
0 (ω) = 1

2m

∑
k

[
χ̃ xx

11 (k,ω) + χ̃ xx
22 (k,ω)

]
. (A8)

The creation and annihilation operators of Holstein-
Primakoff bosons are replaced with Bogoliubov bosons

through(
ak,1 ± a

†
−k,1

ak,2 ± a
†
−k,2

)
=

(
uk vk

vk −uk

)(∗)
(

γk ± γ
†
−k

βk ± β
†
−k

)
, (A9)

with

uk = i sin
(

k
4

) + cos
(

k
4

)
√

2 cos
(

k
2

) , vk = i sin
(

k
4

) − cos
(

k
4

)
√

2 cos
(

k
2

) ,

(A10)

where the conjugation (∗) of the transformation matrix is taken
for the “−” sign. After this substitution and taking the limit of
m → ∞, the on-site correlator is given by

S̃xx
0 (ω) = πS

ρ̄
(

ω
KS

)
ω

+ πS

2
δ(ω)

∫ π

−π

dk

cos
(

k
2

) , (A11)

where the dimensionless density of states, ρ̄(ω/(KS)) =
KSρ(ω), is defined as follows:

ρ̄(x) = 2√
1 − (

x
2

)2
. (A12)

The divergence at ω = 2KS arises from the Van Hove
singularity in the density of single-magnon states at the top
of the spin-wave band. Going back to the original reference
frame, we have

S0(ω) = 〈
S̃xx

0 (ω)
〉
, (A13)

where we do not need to specify the superscript because
Sxx

0 (ω) = S
yy

0 (ω) = Szz
0 (ω).

3. Nearest-neighbor dynamical structure factor

There are two different contributions to the dynamical spin
correlator between nearest-neighbor sites because of the two-
site unit cell. Let us first consider the xx bond (i,1) − (i,2).
The conservation of the flux operators Wp implies that only the
correlator between the twisted x spin components, 〈S̃x

i,1S̃
x
i,2〉,

is nonzero on this bond. From the spin-wave theory, we have

S̃xx
1 (ω) � 1

m

∑
k

e−ik/2
〈
χ̃ xx

12 (k,ω)
〉
, (A14)

with

〈
χ̃ xx

12 (k,ω)
〉 = π2∣∣cos

(
k
2

)∣∣ [e−i k
2 δ(ω − Ek) − ei k

2 δ(ω)].

In the m → ∞ limit, there is

S̃xx
1 (ω) =

[
πωS

2(KS)2
− πS

ω

]
ρ̄

(
ω

KS

)
− πS

2
δ(ω)

∫ π

−π

dk

cos
(

k
2

) .

Similarly, only the y components of the twisted spins,
S̃

yy

1 (ω) = 〈S̃y

i,2S̃
y

i+1,1〉, contribute to the NN spin correlator
on the other yy bond (i,2) − (i + 1,1). By symmetry, this
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correlator is the same as the xx correlator on the bond
(i,1) − (i,2) calculated above. Consequently, we can ignore the
superscripts xx/yy when referring to the NN spin correlator.

Back to the original spin reference frame, the NN dynamic
structure factor becomes

S1(ω) = S̃xx
1 (ω). (A15)
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