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Roles of nonlocal conductivity on spin Hall angle measurement
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Spin Hall angle characterizes the rate of spin-charge current conversion and it has become one of the most
important material parameters for spintronics physics and device application. A long-standing controversy is
that the spin Hall angles for a given material measured by spin pumping and by spin Hall torque experiments
are inconsistent and they could differ by as much as an order of magnitude. By using the linear response spin
transport theory, we explicitly formulate the relation between the spin Hall angle and measured variables in
different experiments. We find that the nonlocal conductivity inherited in the layered structure plays a key role to
resolve conflicting values of the spin Hall angle. We provide a generalized scheme for extracting spin transport
coefficients from experimental data.
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I. INTRODUCTION

Spin Hall (SH) and inverse spin Hall (ISH) effects provide
an efficient way to convert charge-to-spin and spin-to-charge
currents [1,2]. Spin Hall angle θH quantitatively characterizes
the conversion rate: SH yields a spin current js = θH (h̄/2e)je

from the applied electric current density je, and ISH generates
an electric current je = θH (2e/h̄)js from the injected spin
current js . Since there are no “spin current meters” to directly
measure the spin current, one obtains the spin Hall angle by
indirectly measuring the spin current. The first measurement
was achieved via optical Kerr effect where spin accumulation
at the edge of the sample is detected [3], but no quantitative
values of θH were obtained. The electric measurements based
on spin transfer torque (STT) [4–12] and ISH voltage [13–19]
from spin pumping (SP) or spin Seebeck (SS) are currently
used to quantitatively determine the spin Hall angle. Both
methods utilize a bilayer structure made of a ferromagnetic
(FM) layer and a nonmagnetic (NM) layer. Typically, the
nonmagnetic layer is a heavy metal of which the spin Hall
angle is measured. In STT, an applied in-plane charge current
in the heavy metal converts to the spin current flowing perpen-
dicularly to the layers, and subsequent spin current absorption
creates a spin torque on the ferromagnetic layer. Thus, the
spin Hall angles are determined through the measurement of
the current-induced spin torque. In ISH voltage measurement,
a spin current is generated by either the spin pumping from
the precessing ferromagnetic layer or a thermal gradient in
the magnetic layer. The spin current injected to the heavy
metal by SP or SS subsequently converts to an electric charge
current in the plane of the layer, yielding a measurable voltage.
While both methods have been widely studied for different
materials, the experimentally deduced values of θH have
consistently differed by a large margin, from several tens to a
few hundred percentage (see Fig. 1 for the experimental data
from literature). Up until now, there has been no consensus
on the proper value of the spin Hall angle for well-studied
materials such as Pt, W, and Ta, due to apparently conflicting
results among experimental groups. Without firmly established
experimental values, it would be difficult to compare the results
with first-principle calculations [20,21].

Similar to the uncertainty of the spin Hall angle, the values
of the spin-diffusion length are widely spread as well. Since

spin diffusion and spin Hall effect come from the same physical
origin in spin-orbit coupling, a large spin Hall angle would
be likely associated with a smaller spin-diffusion length.
Indeed, the correlation between these two parameters has been
approximately obtained by using the same fitting procedure
[22]. The spin-diffusion length is also shown to correlate with
resistivity [23]. Thus, the quantitative determination of the
spin Hall angle would be critical to reveal connections among
these spin transport coefficients. In this paper, we theoretically
formulate the relation between the spin Hall angle and the
measured variables of the above experimental measurements.
As the layer thicknesses of the experimental bilayers are often
of the order of the electron mean free path, we find that the
nonlocal conductivity in these experiments plays crucial roles,
and thereby significant corrections to the previously claimed
spin Hall angles in different experiments are required.

The paper is organized as follows. In Sec. II, we first
demonstrate that the measured spin Hall angles via both ISH
and STT deviate from the true value due to the effects of
nonlocal conductivity. Then, we outline the method of how we
calculate the conductivity in thin films. In Sec. III, we apply
our methods to heavy metal bilayers. The influence of nonlocal
conductivity is evaluated numerically at various parameters.
Some discussion about the conductivity contribution from
interface states is included in the Appendix.

II. THEORETICAL DERIVATION

A. Spin Hall angle measurement

We start with the ISH method (spin pumping or spin
Seebeck) in which a spin current js is injected from the
ferromagnetic layer to the heavy metal. By considering the
process of the spin diffusion and spin current backflow,
the spin current in the heavy metal decays as js(z) =
js(0) sinh [(dN − z)/λs]/ sinh (dN/λs) where js(0) is the spin
current density at the interface and λs is the spin-diffusion
length and dN is the thickness of the NM layer [24]. The spin
current yields an in-plane electric field ESH(z) = θHρNjs(z)
where ρN is the resistivity of the bulk heavy metal; for
simplicity we take h̄ = e = 1 so that the unit of spin current
is the same as that of the charge current. The use of the bulk
value of the resistivity indicates that θH is defined as the spin
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FIG. 1. Spin Hall angle of a heavy metal obtained by two experimental measurements. (a) A precessing magnetic layer pumps the spin
current into the heavy metal. An electric field (or a charge voltage) from the ISH effect is measured. (b) An applied in-plane electric current
accompanies a spin current flowing perpendicular to the layer due to SH effect. The spin current exerts a torque on the ferromagnetic layer which
is being measured. The table of the spin Hall angles shows a wide range of values for these two classes of measurement. The spin-diffusion
length varies with a similar wide spread (not shown) [22].

Hall angle of the bulk. This electric field serves as an electric
motive force of the inverse spin Hall effect that generates
an electric current in the plane of the layers (CIP). In the
open boundary condition, a charge accumulation at the sample
boundary or, equivalently, the measured electric field Em must
be established to oppose the spin Hall induced electric motive
force ESH such that the total electric current is zero, i.e.,
∫ dN

−dF

je(z)dz =
∫ dN

−dF

dz

∫ dN

−dF

dz′σ||(z,z′)[Em + ESH(z′)] = 0

(1)

where σ||(z,z′) is the in-plane two-point conductivity tensor of
the bilayer. Solving for the measured electric field from the
above equation, we have

Em = G−1
t ρNθSH

∫ dN

0
dzσ||(z)js(z) (2)

where σ||(z) = ∫
dz′σ||(z,z′) is the position-dependent con-

ductivity, Gt = ∫
σ||(z)dz is the total conductance, and we

assume the ISH current only exists in the heavy metal. While
the total conductance of the bilayer Gt can be experimentally
measured and the spin current js(z) has been indirectly
measured via the enhanced damping parameter [24], the
position-dependent conductivity σ||(z) is needed in order to
determine θH from the measured electric field Em.

At present, the experimental data were fitted by the formula
which is equivalent to taking the conductivity by its bulk value,
σ||(z) = ρ−1

N in Eq. (2), i.e., the spin Hall angle was determined
by θ ISH

H = EmGt/(dN j̄s), where j̄s = λsd
−1
N js(0) tanh ( tN

2λs
) is

the average current density in the heavy metal. Thus, the ratio
of the true spin Hall angle θH from Eq. (2) and θ ISH

H of the

value previously determined from ISH experiment is

RISH ≡ θH

θ ISH
H

=
∫ dN

0 sinh[(dN − z)/λs]dz

ρN

∫ dN

0 σ||(z) sinh[(dN − x)/λs]dz
. (3)

Clearly, σ||(z) from the two-point conductivity tensor in the
bilayer includes the scattering from the interfaces and it could
be much smaller than that of the conductivity of the bulk
materials ρ−1

N when the thickness of the layer is comparable
to or smaller than the mean free path. Thus, the spin Hall
angle determined previously by the SP or SS was significantly
underestimated, particular for those structures with a thin layer
thickness.

Next we consider whether a similar correction is needed for
the measurement of the spin Hall angle by the STT. When an
external electric field E0 is applied in the plane of the layer,
a nonuniform charge current je(z) = ∫

dzσ||(z,z′)E0dz′ ≡
σ||(z)E0 generates a spin Hall electric field Es(z) = θHρNje(z)
that drives a spin current perpendicular to the plane of
the layers (CPP). The spin current then generates a spin
accumulation μs(z) so that the effective spin electric field
Eeff

s (z) is

Eeff
s (z) = θHρNje(z) − dμs

dz
. (4)

The linear response relation, js(z) = ∫
σ⊥(z,z′)Eeff

s (z′)dz′,
where σ⊥(z,z′) is the two-point conductivity for the CPP,
should be used to self-consistently solve for Eeff

s (z′). In a
previous study of the CPP spin transport, an approximate
solution could be obtained when the spin-diffusion length is
much longer than the mean free path [25]: briefly, we invert
the response function by writing Eeff

s (z) = ∫
ρs(z,z′)js(z′) and

note that js(z) varies with the length scale of spin-diffusion
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length while the resistivity tensor ρs(z,z′) varies within the
mean free path. We integrate over ρs , which yields a local
resistivity ρN , i.e., the local Ohm’s law Eeff

s (z) = ρNjs(z) is
valid [25], or

js(z) = θH je(z) − ρ−1
N

dμs

dz
. (5)

By placing it to the rate equation of the spin current, ∇ · js =
−μsge/τSF where τSF is the spin-flip time and ge is the electron
density of states, we have

d2μs

dz2
− μs

λ2
s

= ρNθH

dje(z)

dz
(6)

where λs is the diffusion length. Note that the above diffusion
equation has a source term in the right-hand side of the equation
when the in-plane current density varies spatially. To solve
Eqs. (5) and (6), we use the boundary condition at the outer
boundary, js(dN ) = 0, and at the interface, js(0) = −gmixμs

where gmix is the mixing conductance. We further use the fact
that the source term varies with the mean free path while μs is
with λsd , and thus we replace j (z) by its average and find

js(0) = θH

gmix
(
1 − sech dN

λs

)
gN tanh dN

λs
+ gmix

1

dN

∫ dN

0
je(z)dz (7)

where we have introduced gN = 1/(ρNλs). The STT measures
the current induced spin torque which is equivalent to the trans-
verse component of spin current relative to the magnetization
direction of the magnetic layer. Clearly, the spin Hall angle
measurement based on the STT does not contain the factor
ρNσ||(z). However, the determination of the current in the
heavy metal IN = ∫ dN

0 je(z)dz in Eq. (7) could be nontrivial.
In the conventional treatment of the current distribution, the
current density in the nonmagnetic layer is estimated via the
resistance-in-parallel model for the two layers, i.e., taking
IN = ItσN tN/(σNtN + σF tF ) where It is the total applied
current, and σi and ti (i = N,F ) are conductivities of the
isolated layers and the thickness of the layer, respectively.
We will show later that this rough approximation is usually
smaller than the actual IN for the coupled bilayers. Thus, for
a given experimental spin torque, Eq. (7) would produce an
overestimation of the spin Hall angle.

It is interesting to compare Eqs. (2) and (7) with the
giant magnetoresistance (GMR) of magnetic multilayers in
the CIP and CPP geometries [26,27]. For CIP, the electric
field is independent of position, and thus the spin and electric
current densities are given by the two-point conductivity
which has a length scale of the mean free path. If two
magnetic layers are separated more than the mean free path
by the nonmagnetic layer, the resistivity in one magnetic layer
would be independent of the other magnetic layers and the
magnetoresistance vanishes [28–30]. For the CPP case, the
spin current densities are constant within the spin-diffusion
length, while the total electric field (the applied plus the
induced ones) depends on position. If one similarly introduces
a two-point resistivity tensor, ρ⊥(z,z′) = [σ⊥(z,z′)]−1, one
finds that a local Ohm’s law remains valid, i.e., Eeff

s (z) =
ρ(z)js ; this is the model of resistance in series and the current
density will be determined by the resistance in series in
all the layers. The CPP magnetoresistance does not decay

exponentially with the mean free path; instead, the much longer
spin-diffusion length is the relevant length scale for the CPP
GMR [25,31]. Equations (2) and (7) involve essentially the
same mathematical features for the CIP and CPP spin transport.

B. Calculation of nonlocal conductivity

We now proceed to evaluate the position dependence of the
current density. For the SP or SS, we need to find ρNσ||(z),
while for STT we determine the average current density in
the nonmagnetic layer compared to the total applied current.
We outline our model and calculation below. When there
are no interface states, the simplest way to calculate σ||(z)
is by using the semiclassical Boltzmann equation in which
the position-dependent distribution function is obtained via
boundary conditions [32,33]. Another approach is to utilize
the linear response theory or the Kubo formula to evaluate
the two-point conductivity, which can be expressed in terms
of real-space Green’s functions [29,34,35]. The position-
dependent conductivity, with varying impurity distribution,
layer thickness, and interface roughness, has been calculated
across the magnetic multilayers. All of these approaches
assume that the role of the interface is to scatter conduction
electrons, i.e., the interface is treated as a boundary condition
for the distribution function. We should extend the approach
of Refs. [29,34,35] by explicitly including the cases when the
differences in the electronic states for the interface and for the
bulk are present.

A simple model Hamiltonian of the bilayer is chosen:

H = H0 + H ′ (8)

where H0 = HL + HR + Hint is the sum of the Hamiltonians
for the left layer, the right layer, and the interface monolayer,
and H ′ describes the coupling between the interfacial mono-
layer and the left/right layers. More explicitly,

HL = −t
∑

〈i,j〉∈L,k‖

(
c+
ik‖cjk‖ + H.c.

) +
∑
i∈L

c+
ik‖ε

L
k‖cik‖ (9)

for the left layer and similarly for the right layer (replacing L

by R in the above equation), where t is the hopping strength
between the two nearest neighbors, and c+

ik‖ = (c+
ik‖↑,c+

ik‖↓) is
the conduction electron creation operator at site i, expressed
in the spinor form. Note that we have written the Hamiltonian
in the mixed space momentum representation: the translation
invariance in the plane of the layer allows us to use the in-
plane momentum k|| as a quantum number while we retain the
layered index i to represent the growth direction.

The Hamiltonian of the interface is

Hint =
∑

k‖

c+
0k‖ε0k||c0k‖ (10)

where the subindex “0” indicates the interface layer, and ε0k|| is
the interface energy dispersion which could be spin dependent.

The interaction between the interface and left/right layers
is modeled by

H ′ = −tL
∑

k‖

c+
0k‖c−1k‖ − tR

∑
k‖

c+
0k‖c1k‖ + H.c. (11)

where tL/R is the hopping parameter between the interface and
the left/right layer. Note that the left (right) layer is indexed
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FIG. 2. (a), (b) Spatial dependence of the electric conductivity across a FM (z < 0)/NM (z > 0) bilayer for different film thickness. The
magnitude of the conductivity is normalized by the bulk value of the NM layer. (c), (d) The enhancement factor RISH as a function of NM layer
thickness. The electron diffusive scattering probability at the interface is parameterized by 1 − p where p is the probability of the electron
passing through the interface without being scattered. The reflection of the electron at the interface is ignored and we assume the density of
states of FM and NM layers are the same. The parameters in (a)–(c) are the mean free paths λN = 10 nm and λF = 5 nm, and the spin-diffusion
length λs = 10 nm. In (d), λF = 20,10, and 5 nm are shown.

with a negative (positive) integer i representing the atomic
position at z = ia; thus i = −1 and 1 are two atomic layers in
contact with the interface layer i = 0.

The two-point conductivity for the layered structure can be
obtained by the Kubo formula [29,35]

σ||(i,j ) = h̄e2

πa3

∑
k‖

vk‖(i)A(i,j ; EF ,k‖)vk‖(j )A(j,i; EF ,k‖)

(12)

where i,j are atom sites along direction normal to interfaces,
A(i,j ; EF ,k‖) = i

2 [Ga(i,j ; EF ,k‖) − [Gr (i,j ; EF ,k‖)] is the
spectral density function, Ga/r is the advanced/retarded
Green’s function, and vk‖ = ∂εk‖/h̄∂k‖ is the velocity operator
of the local bands for left, interface, or right layers. Note
that the Green’s function and the velocity are spinors if the
Hamiltonian is spin dependent.

III. RESULTS AND DISCUSSION

We now apply the above two-point conductivity to a
particular bilayer consisting of NiFe and Pt layers. We first
assume there is no interface state and define a parameter p char-
acterizing the degree of the smoothness of the interface (p = 0

for a completely rough interface and p = 1 for a completely
smooth interface, and we take p = 0 at the outer boundaries),
as introduced by Fuchs [32]. The room-temperature resistivity
values of NiFe and Pt are taken as ρNiFe = 40 μ
 cm and
ρPt = 25 μ
 cm [16]. In Figs. 2(a) and 2(b), we show the
position dependence of the reduced conductivity σr ≡ ρNσ||(z)
for two different thicknesses. The σr is always smaller than 1
in the nonmagnetic layer due to additional scattering from
the interface. The reduction of σr is more profound for smaller
thickness; the enhancement contribution of the resistivity from
the surface/interface scattering has been well known.

Using these numerical values, we can readily show the
correction of the spin Hall angle to the previous measured
θ ISH
H , as plotted in Fig. 2(c). For example, for dN = 7 nm and

a rough interface p = 0, we find RISH = 2, or the spin Hall
angle was underestimated by a factor of 2. The ferromagnetic
conductivity can affect the enhancement factor as well. In
Fig. 2(d), we show RISH as a function of NM layer thickness
for three different FM conductivities with a smooth interface
(p = 1). Clearly, the influence of the ferromagnetic layer is
diminished when the interface is rough (p = 0).

Next, we evaluate the correction of the spin Hall angle
in the STT experiment. Conventionally, the current in NM
layer IN is estimated from the parallel conductance of the
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FIG. 3. (a), (b) The calculated RSTT as a function of NM layer thickness. In the above calculation, we set the mean free path of the NM
layer to be 10 nm and that of the FM layer is varied as 5, 10, and 20 nm. The thickness of the FM layer is fixed to be 5 nm while that of the
NM layer changes from 0.5 to 7 nm.

two layers. For the interface with p = 0, this approximation
is valid since the conductivity at one layer is independent of
the other and thus the STT experiment measures the correct
spin Hall angle. For the case of p �= 0, the adjacent FM layer
enhances the conductivity of the NM layer which leads to
a higher IN compared to that of simple estimation when
the NM layer thickness is small. We show in Fig. 3 the
enhancement factor RSTT ≡ θH/θSTT

H due to the correction
of the current distribution. Since most of the experimental
analysis [8,9] was carried out with the Pt thickness less
than 5 nm, RSTT is significantly smaller, i.e., the spin Hall
angle previously deduced from the STT experiment had been
overestimated.

Recently, there is growing evidence that the spin-charge
conversion also takes place at the interface [6,36–43]. In the
presence of large spin-orbit coupling known as the Rashba
interaction, a spin helix state exists at the transition-metal
interface, but not in the bulk. In this case, the current density
distribution at the interface could significantly differ from the
bulk and thus the proper determination of the spin and charge
currents in the layer and at the surface becomes a challenging
issue (see the Appendix). Aside from the complication of
the current density distribution, other effects enter. In the
SP, the interface leads to the spin memory loss [44–46]; in
the meanwhile, it creates an interface inverse Edelstein effect
[47]. For the STT, there are complications on the relative
contributions of the spin torque from the interface and bulk.
In general, the quantitative determination of the interface
versus bulk from the present experiments of SP and STT is
difficult, but we nevertheless propose that, if the spin Hall and
inverse spin Hall effects have independent contribution from
the interface and from the bulk, a simple additive formula
for the measured electric field by the spin pumping or spin
Seebeck is

Em = G−1
t js(0)

[
ρNθH

∫ dN

0
dzσ||(z) sinh

dN − z

λs

+ λIEE

]

(13)

where λIEE characterizes the interface spin-to-charge conver-
sion rate (in the unit of length); λIEE had been measured for
α-Tin/Ag and Bi/Ag interfaces [42,48]. Similarly, for the STT

experiment, one includes the interface contribution:

js(0) = θH

gmix
(
1 − sech dN

λs

)
gN tanh dN

λs
+ gmix

1

dN

∫ dN

0
je(z)dz + qEEa0j

i
e

(14)

where j i
e is the electrical current at the interface, a0 is

the interface lattice constant, and qEE is the charge-to-spin
conversion rate at the interface (in the unit of the inverse length)
which has been measured for the α-Tin/Ag interface [49].

In summary, we have developed a quantitative model to
address the determination of the spin Hall angle by different
experimental methods. We find that by including the nonlocal
conductivity we are able to resolve a long-standing controversy
of inconsistent spin Hall angles derived from experiments of
spin pumping and spin transfer torque.
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APPENDIX: CONDUCTIVITY CONTRIBUTION
OF INTERFACE STATES

In this Appendix, we discuss the current density in thin
films with interface states that take a variety of forms. In
semiconductor heterostructure, the band mismatch of two
layers could generate an interface band structure hosting a
two-dimensional (2D) electron gas and the electron conduction
is strictly limited at the interface region. In the presence of
large spin-orbit coupling known as the Rashba interaction,
a spin helix state exists at the transition-metal interface, but
not in the bulk. Let us first consider generic two-dimensional
states formed at the interface, and the coupling between the
2D states and nearest-neighbor atoms is modeled by Eq. (11).
The conductivity at the interface can be written as

σ (0) = σ (0,0) +
∑

j

σ (0,j ), (A1)

which contains both the local and nonlocal contributions.
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The Green’s function at the isolated interface is

gint(n0,n0; E,k‖) = − 1

2t cos ka
= 1

E − εint
k‖ ± i�im

(A2)

where �im is the impurity induced self-energy. With finite
interlayer hopping, one can show that the Green’s function has
a similar form:

G0
a/r (0,0; EF ,k‖) = 1

EF − ε0k‖ ± i(�im + �T )
(A3)

where

�T ≡ t2
Lim[G0(−1,−1; EF ,k‖)] + t2

Rim[G0(1,1; EF ,k‖)]

(A4)

is the self-energy introduced by hopping. So when considering
the interface conductivity, the hopping has two roles: on one
hand it increases the self-energy at the interface and increases
the nonlocal conductivity.

When the hopping parameters between 2D and three-
dimensional (3D) states are turned off, the interface and bulk
current densities are independent. In terms of the Green’s
function, we have GR/A(0,i) = 0. In Fig. 4(a), we show
the interface conductance σ (0) when tL = tR turns on. The
contribution from the σL = σ (0,0) decreases as the hopping
increases, due to the enhanced relaxation from 2D states to 3D
states, Eqs. (A3) and (A4). In contrast, the nonlocal contribu-
tion σNL(0) = ∑

j �=0 σ (0,j ) begins to show up. Interestingly,
the total interface conductance σ (0) = σL(0) + σNL(0) has
a local minimum at around tL = tR � 0.6t . If we take a
fixed value of tL = tR , the position-dependent conductance
is shown in Fig. 4(b). We notice that the current density shows
a nonmonotonic variation, which results from the opposite
dependence of the local and nonlocal contribution on the
interlayer hopping. For small interlayer hopping, the conduc-
tivity at the interface is dominated by the local contribution;
increasing tL/R increases the self-energy in Eq. (A4), which in
turn reduces the conductivity. For larger hopping, tL/R > 0.7t ,

the self-energy in Eq. (A4) is so large that the conductivity σ (0)
mainly comes from the nonlocal contribution. As tL/R keeps
rising up, the Green’s function G(0,i) increases and so does the
conductivity.

For another example, we consider the thickness dependence
of the conductivity when interface states are present. We model
the interface dispersion by

ε0k = ε0 + h̄2k2

2m
+ h̄αF (k × σ ) · ẑ, (A5)

and we find that the current has a higher density at the interface
than in the bulk. The average conductivity for a thin film is
shown in Fig. 5 for the plausible parameters.
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FIG. 5. The conductivity of a thin film with and without surface
states as a function of layer thickness; λ is the electron mean free
path in the bulk. When there is no surface state, the semiclassical
continuous model (black square line) and our tight-binding approach
(red circle line) are approximately the same. In the presence of the
surface state (c), the conductivity increases at the small thickness.
The parameters used here are as follows: Rashba split 0.2EF , mean
free path 5 nm, and interfacial hopping tL/t = 0.4.
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