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Interacting many-body systems that are driven far away from equilibrium can exhibit phase transitions between
dynamically emerging quantum phases, which manifest as singularities in the Loschmidt echo. Whether and
under which conditions such dynamical transitions occur in higher-dimensional systems with spontaneously
broken continuous symmetries is largely elusive thus far. Here, we study the dynamics of the Loschmidt echo
in the three-dimensional O(N) model following a quantum quench from a symmetry-breaking initial state.
The O(N) model exhibits a dynamical transition in the asymptotic steady state, separating two phases with a
finite and vanishing order parameter, that is associated with the broken symmetry. We analytically calculate the
rate function of the Loschmidt echo and find that it exhibits periodic kink singularities when this dynamical
steady-state transition is crossed. The singularities arise exactly at the zero crossings of the oscillating order
parameter. As a consequence, the appearance of the kink singularities in the transient dynamics is directly linked
to a dynamical transition in the order parameter. Furthermore, we argue, that our results for dynamical quantum
phase transitions in the O(N) model are general and apply to generic systems with continuous symmetry breaking.
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I. INTRODUCTION

In recent years, synthetic quantum matter such as ultracold
atoms, polar molecules, and trapped ions have demonstrated
their capabilities to experimentally study nonequilibrium
quantum states far beyond the regime of linear response
and thus far beyond a thermodynamic description. Due to
the isolation from the environment and the high level of
control, experiments with synthetic quantum matter have
shown that inherently dynamical phenomena can be realized
and probed, ranging from many-body localization [1-7],
prethermalization [8,9], discrete time crystals [10,11], and
the particle-antiparticle production in the Schwinger model
[12] to emergent Bloch oscillations [13]. In addition, not
only have the dynamical phases themselves become accessible
in experiments, but also the associated dynamical transitions
between the phases [14—-16].

Current experimental platforms for studying dynamics are
often focusing on one- and two-dimensional systems. Yet a
future prospect concerns extensions toward the realization of
nonequilibrium many-body states in three spatial dimensions,
where new physical phenomena become accessible. This
includes, for example, the possibility of spontaneously broken
continuous symmetries at nonzero temperatures, which is
excluded for lower dimensions due to the Mermin-Wagner
theorem in systems with short-range interactions.

In this work, we study the quantum dynamics of an interact-
ing many-body system in three dimensions that exhibits such
a spontaneously broken symmetry. Specifically, we calculate
the unitary real-time evolution of the O(N) vector model
following a quantum quench of the mass, with an initial state
that breaks the continuous symmetry of our system; see Fig. 1.
We approach the problem fully analytically via the large-N
limit, where the dynamics can be solved exactly.
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The O(N) model exhibits a dynamical quantum phase
transition in the asymptotic steady state, separating two
dynamical phases with finite and vanishing order parameter,
respectively [17]. Here, we show that in addition to the
dynamical steady-state transition of the order parameter, the
O(N) model exhibits a critical dynamical phenomenon on
transient time scales. In particular, nonanalyticities appear in
the Loschmidt echo periodically in time when the dynamical
transition is crossed by the quantum quench (Fig. 1). We

@ $#0 , $=0
* >

r g e g
E ®] 1 =1 ©
51 5

g g

&0 : , 1 504, J /
=0 2 50 = 0 25 50

time ¢ . time ¢

FIG. 1. Dynamical criticality in the Loschmidt echo for systems
with spontaneous symmetry breaking. (a) We study dynamical
quantum phase transitions of the O(N) model following quantum
quenches from an initial bare mass 7}’ to a final bare mass r}. The
initial state is chosen to break the continuous symmetry of the O(N)
model and hence is described by a finite order parameter. Our system
exhibits a steady-state dynamical phase transition at r&" which
separates the dynamically ordered phase in which the long-time
average of the order parameter ¢ remains finite from the disordered
phase in which ¢ vanishes. We calculate analytically the Loschmidt
echo, and we find that the associated rate function remains smooth
for quenches within the dynamically ordered phase (b) but exhibits
nonanalytic kink singularities when crossing the dynamical critical
point r&" (c).
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show that in the O(N) model, these singularities contribute
only subextensively to the rate function associated with
the Loschmidt echo. Making use of the analogy between
the Loschmidt echo and the boundary partition function, this
effect is reminiscent of surface phase transitions in equilibrium
systems, which also contribute only subextensively to the free
energy [18]. Furthermore, we find that the dynamical critical
point obtained from the order parameter coincides with the one
obtained from the Loschmidt echo. These different concepts
of dynamical criticality are further linked by the fact that the
nonanalyticities in the Loschmidt echo occur at times when
the order parameter crosses zero. A similar relation has been
found in the long-range transverse-field Ising model [19]. We
argue that our results are not specific to the O(N) model or the
large-N limit, and hence they apply to generic systems with a
spontaneously broken continuous symmetry.

This work is organized as follows. In Sec. II we discuss two
different notions of dynamical quantum phase transitions: one
associated with the time evolution of the order parameter, and
the other one exploiting the similarity between the Loschmidt
echo and a classical partition function. In Sec. III we review
the far from equilibrium dynamics of the O(/N) model in the
large-N approximation to leading order. The time-evolved
state of the O(N) model is calculated in Sec. IV A. In Sec. IVB
we derive the return probability of the time-evolved state
to the ground-state manifold, and in Sec. IVC we analyze
the corresponding rate function and show that it exhibits
nonanalyticities when the model is quenched across the
dynamical critical point. Finally, in Sec. V we conclude our
findings and discuss potential extensions of our work.

II. DYNAMICAL QUANTUM PHASE TRANSITIONS

We investigate two notions of dynamical quantum phase
transitions. The first one is associated with the time evolution of
the order parameter [17,19-28]. The dynamical quantum phase
transition is then characterized by a critical point that separates
regimes where the long-time average of the order parameter ¢
is either finite or zero. Close to this dynamical critical point,
the long-time average ¢ exhibits scaling relations with critical
exponents [17,26]. However, the location of the dynamical
critical point can differ in general from the equilibrium one,
and it might also depend on the initial state due to a dynamical
renormalization of parameters [17,26].

A second approach to study the nonequilibrium dynamical
criticality is to exploit the formal similarity between the equi-
librium partition function Z = tr[e”m ] and the Loschmidt
amplitude (Yole F'|g) [29,30]. The equilibrium partition
function becomes nonanalytic at a conventional phase transi-
tion as a function of the control parameter such as temperature
or pressure. It turns out that the Loschmidt amplitude can
also exhibit nonanalyticities, but as a function of time rather
than a control parameter. Indeed, it has been shown that the
rate function, which is obtained from taking the logarithm
of the Loschmidt amplitude, exhibits nonanalyticities when
the system is quenched across a quantum critical point,
whereas it remains smooth for quenches within the same
dynamical phase [19,27-40]. Recently, it also became possible
to measure Loschmidt amplitudes in various experimental
settings [14,41].
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So far, the Loschmidt amplitude has mostly been studied
for one-dimensional systems with discrete Z, symmetries
(see, however, Refs. [34,36,40]). In this work, we look at a
three-dimensional model with a continuous O(N) symmetry:
the O(N) vector model. This model provides a universal
description for many systems close to their critical point, and
it is well established in the study of (nonequilibrium) quantum
phase transitions [17,26,42-45]. For example, the equilibrium
Mott insulator to superfluid transition in the Bose-Hubbard
model falls into the universality class of the O(2) model, and
the Heisenberg antiferromagnet can be described by an O(3)
model.

We propose the following generalization of the Loschmidt
echo to systems with a continuously broken symmetry:

L(r) = / dV x| (x e @), ey
{Ix1=o}

Here, |W(¢)) = U(r)|y) is the time-evolved state after the
quench, and the integral is taken over the full set of symmetry-
broken ground states |x), which can be pictured as a sphere
within an N-dimensional space. The radius ¢y is set by the or-
der parameter in the initial state. Below, we will analyze the dy-
namics of the rate function associated with the Loschmidt echo,

1
R(1) = AN log L(1), 2

which shows nonanalytic behavior for quantum quenches
from the dynamically ordered to the disordered phase.

III. THE O(N) MODEL FAR FROM EQUILIBRIUM

The quantum O(N) model consists of N real scalar fields
&,,a=1,...,N, and conjugate momenta I, in d spatial
dimensions. The corresponding Hamiltonian is

~ 1 ) 1 PN 70 290 A Y

H = /X [2Ha + 2(V¢a) +5 P, + 4!N(<1>a¢a) ] (3
where r is the square of the bare mass and A is the interaction
strength. The fields obey the canonical commutation relation
[D,(x),TT,(x")] = i8,8(x —x’). We assume that repeated
indices are summed over.

In the following, we consider the limit of infinitely many
scalar fields, N — oo. In that limit, the interaction of strength
A solely renormalizes the bare mass ry as follows:

_ A g2
r=ro+ 6N(c1>a). )

The large-N approximation relies on the factorization of
the expectation value (%Cﬁb) = (%)(ﬁ)b) + O(1/N) to
leading order in 1/N [42]. Therefore, there are no interactions
between excitations, and the model possesses an infinite
number of conserved quantities and is nonergodic [43].
As a consequence, it does not thermalize. Only next-to-
leading-order terms introduce scattering between quasiparticle
excitations and may ultimately enable thermalization [46—48].
In the present work, we are not interested in the late-time
thermalization physics, but rather in the transient prethermal
regime after the quench; accordingly, a leading-order analysis
is sufficient.

134313-2



DYNAMICAL QUANTUM PHASE TRANSITIONS IN ...

---- effective mass r¢
1.5+ order parameter ¢
1.0 e

’

’
7
,
7
7
,
0.5 e
7
’
7
,
7
7

0L+— : . : :
-8 —4 0 4 8

final bare mass (1 — rdm)/rdyn

FIG. 2. Dynamical phase diagram of the O(N) model in three
spatial dimensions. The system is prepared in the equilibrium
symmetry-broken phase at zero temperature. For quenches to a point
inside of the dynamically symmetry-broken phase, r? < r&", the
order parameter relaxes to a finite value ¢ (red line) and the effective
mass r¢ remains zero, indicating the presence of gapless excitations
in the steady state. For quenches into the symmetric phase, r{ > r&m
the long-time average of the order parameter is zero, ¢ = 0, and
the effective mass ry becomes finite (blue dashed line). Close to the
critical point r&" the long-time average ¢ vanishes as (r>" — r0)'/*

and the effective mass vanishes as r¢ ~ (r0 — r&™) [17].

In equilibrium, the O(N) model hosts two different phases:
a disordered phase with finite effective mass r > 0, and an
ordered phase in which the system spontaneously breaks
the continuous O(N) symmetry by developing a finite order
parameter (®) # 0. In the ordered phase, the mass gap
vanishes, r = 0 The equilibrium critical point is given by
rd = — )‘ pl K which is finite for d > 1. In d > 2, the
ordered phase extends to finite temperatures. In the rest of
the paper, we will focus on three spatial dimensions, d = 3.

Let us assume in the following that the system has been
prepared in the symmetry- -broken ground state |Wy) at r, with
the order parameter (®,) = §; ,¢o pointing along the a = 1
direction. The value of ¢y is given by

0

(¢0)* = — — 1)(Dy D), S

A

which follows directly from the initial mass being zero. Here,
we also used the fact that there is a remaining O(N — 1)
symmetry forthe a > 2 components. We then suddenly change
the mass to the final value ry = r? and let the system evolve
in time. If the final value r? is smaller than the dynamical

critical value rcd " the system reaches an ordered steady state
characterized by r; =0 and ¢ = limTﬁoo } fooo dtg(t) > 0
[17]. On the other hand, if rf > rc , the order is melted.
Therefore, the effective mass r¢ > 0 and the order parameter

¢ = 0, as illustrated in the dynamical phase diagram for d = 3
in Fig. 2.
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To obtain the equations of motion at N — oo, we treat
the a =1 component of the field as a classical variable,
o () = ¢(t) € R, and we expand the a > 2 components into
creation and annihilation operators that diagonalize the initial
Hamiltonian [26],

Suza(pt) = fo(0BY + 1B 6)

where ®,(x,r) = V1/2 >, &, (p,t)e'P*. Note that due to
the O(N — 1) symmetry of the remaining a > 2 components,
the time dependence is identical for all of them and hence the
mode functions f,(¢) in Eq. (6) do not carry a field component
index.

Using the Heisenberg equations of motions, we obtain

Fo®) +1[p* +r@®1f,(1) =0,
o) + r(t)p(t) =0, 7

with the time-dependent effective mass

r() =r{ + @(d) () + (N — 1)/ lfp(t>|2)- ®)

It is important to notice that ¢(z) ~ ~/N. Therefore, both
terms in the parentheses in Eq. (8) scale linearly with N and
contribute to the effective mass.

The initial conditions of Egs. (7) are f,(0) = 1//2[p|
and fp(O) —i+/]pl/2, which follow from requiring that 13

and b diagonalize the initial Hamiltonian and r(t = 0) =
Furthermore we have ¢(0) = ¢, and $(0) = 0, with ¢y glven
by Eq. (5). To regularize the infrared divergence of f,(0),
we introduce a cutoff py = 27/L, with L being the linear
extension of the system. This amounts to placing the field
theory in a finite box with volume L¢. Eventual uv divergencies
are regularized with a finite cutoff A in momentum space.

IV. RESULTS
A. Time-evolved state

To calculate the return probability to the ground-state
manifold, we need to know the time-evolved state |W(¢)) =
U@)|¥). In the N — oo limit, the state |W(¢)) factorizes
in the field components due to the effectively quadratic
Hamiltonian at leading order [26]. In the a > 2 components
there is a squeezed state |4(?)), and in the “classical” a = 1
component there is a coherent state |¢(?)),

W(1) =19(1) & [¥sq(2)),

(1)) —e_§y2¢2(z)eyq>(t)b,,0 10),

B s
[Wrsq(1)) = H W {Mm( )}|0> ©)
where (1) = f,(1) ‘P+zjg%, Br() = fp(0)

fp(t)
v2l [
gives rise to a finite order parameter (\IJ(t)ld>1 |W(t)) = o).

and y = L5 ([”) The coherent state contribution
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FIG. 3. Definition of the angle 6 and surface of element of the
N-dimensional sphere. The ground-state manifold of the O(N) model
can be pictured as a sphere with radius ¢ in an N-dimensional space.
The return probability £(¢) to the ground-state manifold is obtained
from the integral of the overlap | (x | ¥ (¢))|* over this sphere. Defining
0 as the angle between the vector x and the initial order parameter
(0,0, . ..,0) and making use of the rotational symmetry around the
(a = 1) axis, one can write the integration element d" x (| x| — &)
as the product of the arc length ¢yd6 and the surface area of the
sphere in N — 1 dimensions S ~D(¢, sin ) generated by rotating x
around the a = 1 axis with 0 fixed. To obtain a probability measure,
we finally divide the integration element by the total available surface
area SV ().

B. Return probability to the ground-state manifold

An arbitrary state in the ground-state manifold of (3) in the
symmetry-broken phase can be written as

) = e e o), (10)

where x = (x1.....xn) x> = ¢3.and b, = BV, ... .HM).
The expectation of the field operator in this state is given by
(x19alx) = xa.The overlap (x | W(¢)) factorizes into a product
over the field components. For a = 1 we get a scalar product
of two coherent states, and for a > 2 we have scalar products
of a coherent and a squeezed state, which we calculate by
expanding the exponentials. For the return probability to a
specific initial state, we obtain

[ W (@)
= exp —Ldelog lot,y ()] —Ld—‘@
» 2
X ¢2(t)+¢2(0)—2xl¢(t)+2x§ . (D
a=2

In deriving this formula, we also made use of the fact that
for large systems, L > 1, i.e., small py = 2x/L, the ratio
Bpy(t)/ o, (t) approaches 1.

The overlap |(x|W(z))|? is rotational invariant around the
a =1 axis. Hence, we use spherical coordinates (see Fig. 3)
to calculate the integral over the ground-state manifold as
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required in Eq. (1). Defining 6 € [0,7] as the angle between
the vector x and the a = 1 axis, i.e., cos @ = x1/¢g, we can
write

(x| w @)
= Nq(t)exp {—Ld_' @452(0)
2
3 [ (29 s -2 29) “ 12

Here, we introduced the abbreviation N (1) =
exp[—LIN fp log |, (#)]]. The integration element can

be written as dV x8(| x| — ¢o) = S¥ (¢ sin 0)pod6 /SN (y),
where §"(r) =2m20(n/2)"'r"~! is the surface of the
n-sphere (see Fig. 3 for a graphical interpretation).
Exponentiating the sin 6 term, we obtain the return probability
to the ground-state manifold,

L(t) = ANy(t) /On dp e LTI NFO.00) 13)
with
Fo.p) = [28 [1 + (f)2 - 2<£) cos 0 + sin20:|
2 N oo bo
- NT_zL‘d“ log sin6 (14)

and a constant A = n’l/zl"(%)/ F(%). We will refer to L(¢)
also as the Loschmidt echo. Equation (13) can be interpreted
as a classical partition function of the angular variable 6
moving in an order-parameter landscape F(0,¢(¢)), with
LY~'N playing the role of inverse temperature. The energy
landscape, Eq. (14), has the shape of a double-well potential,
where the order parameter ¢ is acting as an external field tilting
the two wells against each other; see Fig. 4. The two wells
are energetically equivalent when the external field vanishes
[¢(t) = 0]. For increasing L, the two minima shift toward
0 =0 and 6 = &, respectively. It appears as if the log sin 6
term becomes irrelevant for L — oo, but it is still important
as it confines the angle 6 to the interval [0,7].

In the thermodynamic limit L >> 1, we can evaluate the
integral in Eq. (13) using a saddle point approximation. Taking
this limit corresponds to very low temperatures in the classical
partition function, and the variable 6 will pick the minimum
energy well,

L) = Nig()exp [—Ld_lNeg[l&g] F@O.00)]. (15

For L — oo, the last term in Eq. (14) vanishes and the
minimum is at O, = 0 (O = ) for ¢(¢) > 0 [¢(2) < 0],
meaning that y is parallel (antiparallel) to the order pa-
rameter of the initial state. Therefore, only two states
from the continuous ground-state manifold contribute sig-
nificantly to the Loschmidt echo: L£(1) ~ [|(+¢o|W(1))|> +
[{(—¢o|W(2))|*]. This can be interpreted as follows: the order-
parameter oscillates only along a fixed axis due to the
symmetry of the Hamiltonian, and it cannot explore the whole
ground-state manifold.
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FIG. 4. Order-parameter landscape for the angle 6: The return probability, Eq. (13), can be interpreted as a classical partition function for
the variable 6 € [0, ] moving in an effective free-energy landscape F(6,¢). The landscape has the form of a double-well potential, where the
order parameter ¢(¢) is acting as an external field, shifting the two wells against each other. For (a) ¢(#) > 0, the left minimum is energetically
more favorable, while for (c) ¢(¢) < 0, the situation is reversed. As the system size L is increased (L = 1,5,00, darker lines correspond to
larger L), the left (right) potential well is shifted toward 8 = 0 (6 = m), as indicated by the arrows in panel (b). The angles 8 =0 (§ = m)
correspond to the states having an order parameter parallel (antiparallel) to the initial state. (b) When ¢(¢) changes sign, the most relevant value
of 6 jumps from one well to the other, which gives rise to the kinks in the Loschmidt rate function R(¢). All plots are for N = 10.

Our result for the coherent state contribution to the
Loschmidt rate function scales subextensively with system
size as ~L9!; see the prefactor of F(6,¢(t)) in Eq. (15). This
is a consequence of the infrared divergence of the initial mode
function f,(0) due to the spontaneously broken symmetry,
which leads to the scaling of y ~ L¥=D/2 in the coherent state,
Eq. (9). From that, the wave-function overlap (x|W(#)) of the
time-evolved state and an arbitrary state in the ground-state
manifold contains terms that scale subextensively ~L7~1.
We emphasize that the subextensive scaling shows up only
in the wave-function overlap but not in expectation values
of observables. Examples include the order parameter and
the work performed in a quench. The latter shows a normal
extensive scaling ~L? with system size. The average work
(H r) is given by the expectation value of the postquench

Hamiltonian in the initial state, (H;) = L¢ r}’;r? (N[ » ﬁ +
#3). All higher cumulants of the work distribution function
vanish in our leading-order approximation. Generally, the
logarithm of the Loschmidt amplitude acts as the generating
function for cumulants of the work distribution [49-51]. We
also find in our model that to leading order in N, the Loschmidt
echo reproduces exactly the cumulants of the work.

C. Rate function

Calculating the rate function R(t) = —L~¢N~'log L(t)
from Eq. (15), we find that

1
R(t) = qu(t) + ZRcoh(I)v
qu(t) = / loglap(t)|,
P

2

The contribution from the squeezed state Ryq is obtained
from J\/;q, and the coherent state contribution is obtained

by explicitly calculating the minimum in Eq. (15). The rate
function Ryq is a smooth function of time, since |a,(¢)]| is
smooth and bounded from below by 1. R, on the other hand,
exhibits kinks at zero crossings of ¢(¢) due to the absolute
value in the last term of Eq. (16). As discussed above, the
coherent state contribution is suppressed by a factor of L™
However, the squeezed-state part of the rate function Rq(t)
relaxes to a constant value on a much shorter time scale than
the order parameter ¢(¢) because of an integral over momenta.
Therefore, the nonanalyticities in R¢on(f) can be identified for
instance in the second derivative R(¢) of the rate function.
For the squeezed state, Rq(¢) ~ 0, whereas the coherent state
retains prominent § peaks Ron(f) ~ ZTkink 8(t — Txink), as
illustrated in Fig. 5.

The coherent state contribution to the Loschmidt rate
function Ron(¢) exhibits kinks at the zero crossings of the
order parameter, ¢(Txink) = 0; see Fig. 6. From the numerical
solution of the equations of motion (7), we also find that the
order parameter relaxes to a nonzero value for quenches inside
the dynamical symmetry-broken phase (r0 < r&®™). In this
case, there are no zero crossings of ¢(¢) and hence we do not
find any nonanalyticities in R.on. By contrast, for quenches to
the symmetric phase (r? > rCd "), the order parameter oscillates
around zero and approaches ¢ = 0, and R exhibits kinks.
As a consequence, there is an intimate relation between the
dynamical phase transition of the order parameter and the
kinks in the Loschmidt rate function of the return probability
to the ground-state manifold.

Following a quench to the symmetric phase, the effective
mass r(t), Eq. (8), attains a finite average value, ry, which
feeds back into the equations of motion, Eq. (7), as frequency
squared of ¢(#). Accordingly, the kinks in R ., appear at
equidistantly spaced times Ty, and the time ATk between
two kinks is uniquely determined by r¢. The effective mass
after a quench to the symmetric phase scales linearly with the

distance of the final bare mass r? from the dynamical critical

point r&™, rp~rd— r&" as depicted in Fig. 2. We therefore
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FIG. 5. Loschmidt rate function. The Loschmidt rate function R(¢) of the return probability to the ground-state manifold contains a squeezed
state contribution R (t) that scales extensively with system size, and a coherent state contribution R.(?) that scales subextensively. Whereas
Rsq(t) is a smooth function of time, Rqn(t) shows kinks when the system is quenched across the dynamical quantum phase transition. Due
to the subextensive scaling of the coherent state contribution Roh, the nonanalytic behavior is not visible in the full rate-function R(¢) of the
return probability, (a). Nevertheless the nonanalytic behavior is clearly observable in the second derivative 7(r) as 8 peaks, since the squeezed
state contribution relaxes on a much shorter time scale than the one of the coherent state, (b). The system parameters are L = 2.5 x 10%,

A =1.0, riO = —1.0, and r? =0.0.
find

a7

Therefore, the time between the kinks diverges with the same
critical exponent upon approaching the dynamical critical
point as the correlation length in equilibrium, which is a
manifestation of the O(N) model being a relativistic field
theory in which time and space scale in the same way.

V. CONCLUSION AND OUTLOOK

We have studied the rate function of the return probability
to the ground-state manifold in the O(N) model following

1.5

0 2 4 6 8 10 12 14
time ¢

FIG. 6. Coherent state contribution to the rate function and
order-parameter dynamics. The coherent state contribution Ren to
the rate function exhibits kinks at the zero crossings of the order
parameter ¢(¢). The kinks appear periodically, and the time between
them, ATy, is determined by final effective mass r¢: ATk ~
(r? — rf y")*%. The data are evaluated for the same parameters as
in Fig. 5

a quantum quench from a symmetry-breaking initial state
to the symmetric phase. The rate function exhibits kinks,
which are located at the zero crossings of the order parameter
¢(t) and are equally spaced with a period ATy determined
by the final effective mass. In our model, the nonanalytic
contribution to the return probability scales subextensively
with system size. Such a subextensive contribution can also
appear in equilibrium whenever a system undergoes a surface
or impurity phase transition.

For quenches from the symmetric to the symmetry-broken
phase, kinks are absent since the closing of the gap leads to a
divergent time scale between kinks. Also, due to the absence
of explicit symmetry-breaking terms in the Hamiltonian, no
finite order parameter can ever be generated.

Our results for the nonequilibrium dynamics are obtained
fully analytically to leading order in the number of components
N of the field theory. We point out that the saddlepoint
approximation, which we employ in the calculation of the
return probability, only relies on the thermodynamic limit
L — oo and not on N being large. Furthermore, the presence
of kinks in the rate function R(¢) hinges on the presence of
the coherent state, i.e., a finite order parameter ¢(¢). Next-to-
leading-order corrections would modify the time evolution of
the order parameter and the quantum fluctuations in the time-
evolved state, but they would not destroy the symmetry-broken
phase, i.e., the coherent contribution to the time-evolved state.
Therefore, we argue that our results remain valid beyond a
leading-order approximation in 1/N. Moreover, due to the
universality of the O(N) model, we expect our results to be
generic for dynamical critical points in models with continuous
symmetries. In particular, the return probability should be
dominated by the states parallel and antiparallel to the initial
state, leading to nonanalytic behavior of the rate function
for quenches from the symmetry-broken to the symmetric
phase. Moreover, the zero crossings of the order parameter
should determine the times at which nonanalyticities appear
in the Loschmidt echo. It would be intriguing to explore
these findings in other models with continuous symmetry
breaking.
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