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Observation of topological valley modes in an elastic hexagonal lattice
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We report on the experimental observation of topologically protected edge waves in a two-dimensional elastic
hexagonal lattice. The lattice is designed to feature K-point Dirac cones that are well separated from the
other numerous elastic wave modes characterizing this continuous structure. We exploit the arrangement of
localized masses at the nodes to break mirror symmetry at the unit-cell level, which opens a frequency band gap.
This produces a nontrivial band structure that supports topologically protected edge states along the interface
between two realizations of the lattice obtained through mirror symmetry. Detailed numerical models support the
investigations of the occurrence of the edge states, while their existence is verified through full-field experimental
measurements. The test results show the confinement of the topologically protected edge states along predefined
interfaces and illustrate the lack of significant backscattering at sharp corners. Experiments conducted on a trivial
waveguide in an otherwise uniformly periodic lattice reveal the inability of a perturbation to propagate and its
sensitivity to backscattering, which suggests the superior waveguiding performance of the class of nontrivial
interfaces investigated herein.
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I. INTRODUCTION

Wave propagation in periodic media has been an active field
of research for the past few decades. Energy transport by waves
arises in multiple areas of physics as it relates to acoustic, elas-
tic, electromagnetic, and electronic media. Unique phenomena
like negative refraction, directional propagation, focusing, and
cloaking have been pursued through careful engineering of
the band structure, which is a unifying theme for exploration
in this diverse set of physical domains. Recently, the ad-
vent of topological mechanics [1] has provided an effective
framework for the pursuit of robust wave propagation which
is protected against perturbations and defects. Topologically
protected edge wave propagation was originally envisioned in
quantum systems and has quickly evolved to other classical
areas of physics, such as acoustics [2], photonics [3,4], and
mechanics [5,6], as well as to coupled-wave domains such as
optomechanics [7]. In all of these different domains, properties
such as lossless propagation, existence of waves confined
to a boundary or interface, immunity to backscattering, and
localization in the presence of defects and imperfections
are the result of band topology. This makes them classical
analogs of topological insulators that support the propagation
of topologically protected edge waves (TPEWs).

There are two broad ways to realize topologically protected
wave propagation in elastic media. The first one uses active
components, thereby mimicking the quantum Hall effect.
Changing the parity of active devices or modulating the
physical properties in time, for example, has been shown to
alter the direction and nature of edge waves [8,9]. Examples
include magnetic fields in biological systems [10], rotating
disks [11], and acoustic circulators operating on the basis of
a flow-induced bias [12]. A second way uses solely passive
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components and relies on establishing analogs of the quantum
spin Hall effect. These media feature both forward- and
backward-propagating edge modes, which can be induced
by an external excitation of appropriate polarization. The
concept is illustrated in several studies by way of both
numerical [5,13,14] and experimental [15,16] investigations,
which involve coupled pendulums [15], plates with two-scale
holes [5], and resonators [13], as well as electric circuits
[16]. Numerous studies have also been conducted on localized
nonpropagating deformation modes at the interface of two
structural lattices [6,17,18]. These modes depend on the
topological properties of the bands, which in one-dimensional
lattices are characterized by the Zak phase as a topological
invariant [19]. In two- and three-dimensional lattices, several
researchers have investigated the presence of floppy modes of
motion due to nontrivial topological polarization and exploited
these modes to achieve localized buckling and directional
response [20–23]. In spite of the intense level of activity in this
area, to the best of our knowledge, studies reporting on the ex-
perimental observation of TPEWs in continuous elastic media
have so far been limited. Unique challenges in elastic systems
exist due to their high modal densities, which complicate the
analysis and design of the band structure and the effective
achievement of nontrivial topologies. These also often lead to
complex arrangements of materials and intricate connectivities
that may be hard to realize in practice. A promising avenue in
this regard is the use of valley degrees of freedom as originally
envisioned in quantum systems like graphene bilayers [24–26].
The concept has also been adopted in classical areas such as
photonics [4,27], acoustics [28–30], and phononics [2,6].

The objective of this study is to exploit valley degrees of
freedom to obtain and demonstrate experimentally TPEWs
in continuous elastic media. The considered configuration
consists of an elastic hexagonal lattice on which concentrated
masses are attached at the sublattice sites. This provides
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FIG. 1. (a) Hexagonal discrete lattice emulating the QVHE. (b) Dispersion surfaces and contours of the first surface for γ = 0, highlighting
the presence of Dirac cones, the first irreducible Brillouin zone (solid red line), and the location of the K and K ′ points. (c) Band diagrams
reporting the values of the valley Chern numbers at the K and K ′ points for γ = 0 (dashed black line) and γ = +0.2 (solid red and blue lines).
(d) Inversion of the bounding frequencies of the band gap as a function of the parameter γ .

a simple assembly that is characterized by the symmetry
conditions sufficient to open a topologically nontrivial band
gap. The addition of masses at selected locations within a
unit cell breaks the C3v symmetry inherent in the hexagonal
geometry while preserving the C3 symmetry. Exploiting the
arrangement of masses conveniently leads to lattices that
exhibit different topological properties of the bands. When
two such lattices with different topological properties are
joined together, TPEWs propagate along the shared interface.

The outline of this paper is as follows: Sec. II explains the
concept of valley modes, while Sec. III presents the description
of the continuous hexagonal lattice, along with its dispersion
analysis and the dispersion analysis of a finite strip containing
an interface. Section IV describes the experimental setup, the
estimation of the dispersion diagrams for the lattices, and
results showing TPEWs for two different interfaces. Finally,
Sec. V summarizes the main results of this study and presents
potential future research directions.

II. HEXAGONAL SPRING-MASS LATTICES AND VALLEY
HALL EFFECT ANALOGY

We briefly illustrate the quantum valley Hall effect (QVHE)
analogy for discrete hexagonal lattices, which provide the
basic configuration for the design and subsequent study of
the continuous lattices investigated herein. While detailed
descriptions of the concept can be found in [6], we briefly
review how changes in topological properties can be achieved
by considering unit cells that are inverted copies of each
other, leading to band inversion in the dispersion diagram,
and opposite topological properties at the valley points K

and K ′. In this context, two sufficient conditions guarantee
the existence of TPEWs in a periodic system: the unit cell
should satisfy C3 symmetry and violate mirror symmetry
[24,27,30,31]. For example, the discrete hexagonal lattice
in Fig. 1(a) comprises point masses at the sublattice sites
connected by linear springs of stiffness k joining nearest
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neighbors. The masses move only in the out-of-plane direction,
which is perpendicular to the plane of the page. Accordingly,
the springs provide a force which is proportional to the
relative out-of-plane displacements of neighboring masses.
Each unit cell has two sites a,b where the masses are ma =
m(1 + γ ) and mb = m(1 − γ ), respectively. Thus, the lattice
satisfies C3 symmetry but violates mirror symmetry about the
lattice vectors C3v . Two lattice types can be conveniently
obtained by considering values of γ > 0 or γ < 0, which
corresponds to switching the position of the masses through a
mirror-symmetry operation. The band structure of the lattice
with equal masses (γ = 0) shown in Fig. 1(b) reveals the
presence of Dirac cones at the high-symmetry points. The
symmetry is also highlighted by the isofrequency contours
of the first dispersion surface, on which the path along the
boundaries of the first irreducible Brillouin zone and its
symmetric counterpart are represented (red solid line), along
with the location of the K and K ′ points. The band diagrams
obtained for the wave vector tracing these boundaries are
shown in Fig. 1(c) in terms of the dimensionless frequency
� = ω/ω0, with ω0 = √

k/m. Comparisons are obtained for
the symmetric case with equal masses (γ = 0, dashed curves)
and when mirror symmetry is broken (γ �= 0, in this case
γ = +0.2, solid curves), which results in the opening of the
Dirac cones to form a band gap. The bounding frequencies of
the gap vary as a function of γ , and a band inversion occurs
when γ changes in sign, which corresponds to the case of two
mirror-symmetric unit cells [see Fig. 1(d)].

Expressing the Hamiltonian of this lattice in the basis of an
extended vector combining the eigenvectors at the K and K′
valley points illustrates the analogy with the quantum valley
Hall effect [2,6]. Alternatively, the topological properties of the
vector bundle associated with the eigenvectors u0(κ) can be
used to infer the presence of interface modes [32]. The valley
Chern number, which is the integral of the Berry curvature
over half the Brillouin zone, characterizes the topology of this
vector bundle (see [24,26]). In hexagonal lattices with broken
mirror symmetry, the valley Chern number takes values ±1/2
at the opposite valleys, i.e., the K and K ′ points in reciprocal
space, indicating opposite polarization of the corresponding
eigenmodes [31] [Fig. 1(c)]. In the described discrete lattice
[see Fig. 1(a)] the valley Chern number of the first mode is
(−1/2) 1/2 at (K) K ′ points for γ > 0 and vice versa for
γ < 0 [6]. To realize TPEWs, it suffices to build a structure
in which two lattices with opposite valley Chern numbers
share an interface. These two lattices may have the same
band structure, but their eigenmodes at the valley points have
opposite polarization. When these two lattices share a common
interface, topologically protected localized modes exist at
frequencies within the band gap [6], and TPEWs can propagate
confined to that interface.

III. CONTINUOUS HEXAGONAL LATTICE

A. Configuration and material properties

The characteristics of the conceptual lattice summarized
above guide the design of the continuous hexagonal elastic
lattice of Fig. 2. The lattice is fabricated out of a square acrylic
panel with a side of 308.4 mm and a thickness of 1.59 mm. The

FIG. 2. Experimental lattice with added masses at the sublattice
sites. Insets show the FE discretization of the unit cell for numerical
study for configurations defined by γ = 0 and γ = 1, as well as the
first and irreducible Brillouin zone (red solid line) for the lattice.

side of each hexagon measures L = 10.7 mm, while the width
of the beams is w = 3.2 mm. The masses consist of cylindrical
nickel-plated neodymium magnets (ρc = 7400 kg/m3, Ec =
41 GPa, and νc = 0.28) of height 1.5 mm and diameter 3.2 mm.
The material properties of acrylic are density ρ = 1190 kg/m3,
Young’s modulus E = 3.2 GPa, and Poisson’s ratio ν = 0.35.
The lattice is generated by a set of lattice vectors a1 =√

3L [
√

3/2, −1/2] and a2 = √
3L [

√
3/2, 1/2]. Unit-cell

mirror symmetry is broken by adding cylindrical masses at
selected sublattice sites a,b, in analogy with the discrete
lattice in Fig. 1(a). The mass added by the cylinders is defined
as ma = (|γ | + γ )mc,mb = (|γ | − γ )mc, respectively, where
mc denotes the mass of one cylinder and γ is the parameter
chosen to define both the magnitude and location of the added
mass at each site. Of note is the fact that the lattice is a
continuous structure that is characterized by inherent mass
properties defined by the density of the material. Therefore,
the terms ma,mb denote the added mass at the sublattice sites.
An even number of cylinders is added at each location in
order to preserve symmetry in the thickness direction and for
practical purposes in the experimental implementation of the
concept, whereby attracting magnetic cylinders are clamped at
the desired location. Hence, values γ > 0 describe the addition
of masses at site a, while γ < 0 corresponds to an added mass
in b. In addition, the case γ = +1 (−1) describes the addition
of two cylinders in a (b), and finally, the case when γ = 0
corresponds to the case of no additional masses.

B. Dispersion analysis

1. Unit cell

The dispersion properties of the lattice are estimated based
on the finite-element (FE) discretization of the lattice modeled
as a three-dimensional continuous solid. In the model, the
motion of each material point within the domain at the generic
location x,y,z is governed by the standard equations of linear
elasticity for an isotropic medium [33],

ρ ü − [(λ + μ)∇(∇ · u) + μ∇2u] = 0, (1)

where u(x,y,z) = ux i + uz j + uzk is the displacement vector
and i, j , k denote the unit vectors along the x,y,z directions.
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FIG. 3. Dispersion diagrams: (a) lattice without masses, γ = 0; (b) lattice with masses, γ = 1 (thin dashed black line: location of the Dirac
point, thick blue lines: out-of-plane wave mode, thin red lines: shear polarized modes). (c) Variation of band gap bounding frequencies ω+

(red line) and ω− (blue line) at K as a function of γ showing band inversion and (d) phase of corresponding eigenfunctions of the first two
out-of-plane modes at K for γ = −1 and γ = 1.

Also, λ and μ are the Lamé constants of the solid. For
reference, here and in the remainder of the paper, the x,y

directions define the plane of the lattice, while the z direction is
the thickness, or out-of-plane, direction. The solid is patterned
according to the hexagonal topology considered herein and
is discretized for analysis within the COMSOL MULTIPHYSICS

environment. Each unit cell is discretized using around 20 000
second-order tetrahedral elements which produce the mesh
shown in the insets of Fig. 2. Upon discretization, imposing
a plane-wave solution along with the enforcement of Floquet-
Bloch conditions to the unit-cell degrees of freedom leads to a
linear eigenvalue problem that is solved in terms of frequency
for a wave vector varying along the edge of the first irreducible
Brillouin zone for the lattice under consideration. Results
for lattices characterized by γ = 0 and γ = 1 are shown in
Figs. 3(a) and 3(b).

The dispersion analysis predicts multiple wave modes
that correspond to the numerous degrees of freedom in
the considered FE unit-cell model. Each node has three
degrees of freedom, which is reflected by the three branches
emanating from the � point at zero frequency. In the long-
wavelength limit, the lattice approaches the behavior of a
thin plate and is characterized by a flexural, or out-of-plane,
mode and two in-plane modes which can be described as
“shear” and “longitudinal-like.” Consistent with its flexural

nature, the out-of-plane mode is characterized by a parabolic
dispersion branch at long wavelengths, and it is loosely
coupled with the in-plane modes. This makes its identification
based on the eigenvector components relatively simple (see
thick blue line in Fig. 3). In contrast, the modes that are mostly
in-plane polarized, i.e., that are associated with eigenvectors
where ux,uy � uz (red lines in Fig. 3), are significantly more
difficult to differentiate from one another. However, their
distinct representation goes beyond the scope of the work,
which focuses on the out-of-plane mode.

In analogy with the discrete lattice, the hexagonal lattice
with no masses attached (γ = 0) has C3v symmetry. In addi-
tion, a Dirac point at the frequency identified by the horizontal
dashed line is observed for the out-of-plane branches at the
K point of the reciprocal lattice space [Fig. 3(a)]. Adding
two cylindrical masses at the a site (γ = 1) breaks mirror
symmetry and produces a band gap [see Fig. 3(b)]. The
bounding frequencies of the gap, denoted ω+ and ω−, are
tracked as a function of γ , which produces the plot of Fig. 3(c),
where a band inversion is observed. The eigenfunctions U
associated with these eigenvalues for γ = −1 and γ = 1 are
depicted in Fig. 3(d), which also illustrate the predominantly
out-of-plane polarization of these modes (see Supplemental
Material [34] for animations of the first two out-of-plane
modes at K for γ = 1 ). We observe that, while the eigenvalues
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(a) (b) (c)

FIG. 4. (a) Finite strip and close-up of the topological interface. (b) Dispersion diagram: edge mode (black line with dots), out-of-plane
modes (thick blue lines), and in-plane polarized modes (thin red lines). (c) Eigenvector corresponding to the edge mode evaluated for wave
number κx = 0.7π at f � 3 kHz.

are preserved under the transformation γ → −γ due to
time-reversal symmetry, the eigenfunctions feature different
polarizations that reflect the mirror-symmetry relations of the
corresponding unit cells. The transformation γ → −γ may be
achieved by simply reversing the direction of the lattice basis
vectors, so the positions of the sublattice sites a and b are
switched. Due to the broken C3v mirror symmetry, a reflection
changes the eigenfunctions and thereby the band topology [2].
Let us examine in detail the phase of the eigenfunctions U
at the K point. Note that for γ < 0 the eigenfunction of the
first mode has clockwise polarization, and the eigenfunction
of the second one has counterclockwise polarization, whereas
the opposite is observed for γ > 0. Figure 3(c) shows that
the bands are inverted when γ changes sign (at γ = 0).
Furthermore, the K ′ points have polarizations opposite those
of the K points due to time-reversal symmetry. The change
in polarization across γ = 0 suggests that lattices with γ > 0
and γ < 0 have opposite valley Chern numbers [6,35] and
that TPEWs are expected to exist along an interface between
a lattice with γ > 0 and a lattice with γ < 0 at frequencies
within the common band gap.

2. Finite strip

The dispersion analysis of a strip including a finite number
of cells and an interface is conducted to evaluate the existence
of edge and interface modes. The study is based on the FE
model previously considered for the unit cell, extended to
include the finite strip assembly in Fig. 4(a). The strip consists
of ten unit cells of the type γ = 1 and ten unit cells with
γ = −1, which, as discussed in the previous section, are
characterized by different topologies. The top and bottom
boundaries of the strip are considered free, which is a choice
that does not affect the existence of the interface mode. The
corresponding dispersion diagram is presented in Fig. 4(b),
where, again, the out-of-plane modes are easily distinguished
from the in-plane polarized ones through the evaluation of
the displacement components of the eigenvectors and are

denoted by the thick blue lines. In addition to these bulk
modes, two modes appear in the band gap, one of which is
a mode localized at the interface (black dotted line), while the
second mode is localized at the boundaries of the strip (black
line). One eigenvector corresponding to the interface mode is
displayed in Fig. 4(c), which shows the displacement field of
the edge mode for κx = 0.7π and frequency f = 3 kHz. The
dispersion study shows that in spite of the large number of
modes present and of the fact that the band gap is associated
with only the out-of-plane modes and is therefore only partial,
the topological differences between the two lattices still lead
to topologically protected interface modes.

IV. EXPERIMENTAL RESULTS

A. Experimental setup

The numerical simulations described in the previous section
guide the design and experimental characterization of the
considered hexagonal lattice. The lattice is cut out of an acrylic
panel according to the dimensions described in Sec. III. In
the experiments, the lattice is held in a vertical position by a
vice that clamps its lower left corner. In addition, commer-
cially adhesive putty tape is added along the boundaries for
absorption of incoming waves and to minimize reflections
which may affect the visualization of the propagation of
the interface modes. Wave motion in the lattice is induced
by lead zirconate titanate (PZT) disks bonded at selected
locations and driven by a voltage signal generated by a signal
generator upon amplification. The PZT disks are bonded to
the top surface of the lattice. When the voltage is applied, they
induce a distribution of shear stresses at the bonded interface,
which generates both the in-plane and out-of-plane motion
of the lattice. Full-field response of the lattice is recorded
through a scanning laser Doppler vibrometer (SLDV), which
measures the out-of-plane velocity of points belonging to a
predefined measurement grid. Given the SLDV limitation to
measurements of only the out-of-plane motion, no contribution
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FIG. 5. Experimental 3D-FTs. (a) Lattice with γ = 0: cross section |ŵ(κx,κy,ω0)| at frequency f0 ≈ 3.75 kHz close to the numerically
predicted Dirac cone. Frequency/wave-number representation |ŵ(κ|C,ω)| along the path C : �-K-� and comparison with COMSOL predictions
(solid red line): lattice with (b) γ = 0 and (c) γ = 1.

from in-plane modes is observed in the measured responses.
While the equipment records one point at a time, repeating
the excitation to record the response at every measurement
location and the tracking of the phase between subsequent
measurements allows the recording of the full-field wave
motion of the lattice. The measurements include seven points
along the side L of the hexagon, so that a total of 3670
points are recorded over the entire lattice. After recording, the
wave-field data are interpolated on a regular rectangular grid
that includes 100 points along the horizontal (x) and vertical
(y) extent of the measurement domain. The excitation consists
of broadband frequency pulses that cover the frequency range
of interest, which is up to 12 kHz. This is achieved through
modulated sinusoidal pulses and their superposition or half-
cycle pulses whose duration defines the frequency bandwidth
of the excitation.

B. Estimation of the dispersion properties

The measurements and their subsequent interpolation pro-
duce a data set in the form of a matrix w(x,y,t) that describes
the evolution of the deflection of the lattice in time. The
matrix of the experimental results is analyzed in Fourier space
by performing a three-dimensional Fourier transformation
(3D-FT), which gives [36]

ŵ(κx,κy,ω) = F3D[w(x,y,t)].

The resulting quantity describes the spectral content, in
terms of both frequency and reciprocal space, of the recorded
wave field. Cross sections along defined wave paths C,
i.e., ŵ(κ|C,ω), illustrate the spectral content as a function
of frequency for the wave vector varying along specific
lattice directions, while evaluation at one frequency ω0,
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FIG. 6. (a) Line interface (red dots indicate two masses attached at the sublattice sites, and cyan dots denote locations where no masses are
added) with γ = 1 (−1) on the left (right). (b) and (c) Snapshots of measured wave motion at two instants of time. Excitation is an 11-cycle
tone burst at 3 kHz (contours are normalized by the displacement amplitude of 3 × 10−8 m).

i.e., ŵ(κx,κy,ω0), illustrates the distribution of energy in
the reciprocal wave-number space at that frequency. These
maps provide direct visualization of the dispersion charac-
teristics of the domain of interest and are therefore used
to validate the numerical predictions for the lattice under
consideration.

We first verify experimentally the dispersion diagrams of
the acrylic hexagonal lattice with the γ = 0 configuration
(no masses attached). The elastic lattice is excited at its
center using a PZT disk that applies a pulse of 40 μs to
excite frequencies up to 12.5 kHz. Figure 5(a) displays the
magnitude |ŵ(κx,κy,ω0)| of the 3D-FT at a frequency of
f0 = ω0/(2π ) ≈ 3.75 kHz, which is close to the Dirac cone
frequency identified by the numerical study of dispersion [see
Fig. 3(a)]. The contours correspond to the magnitude |ŵ|,
which is not of particular interest here. Most relevant is their
location: they are localized at the high-symmetry points and
effectively illustrate a condition that defines a Dirac point. For
reference, the boundaries of the first irreducible Brillouin zone
are shown along with the points defining its boundary. The size
of the zone is defined by a lattice vector a = √

3L ≈ 18.4 mm,

which corresponds to the magnitude of the wave vector at
the K point of κ ≈ 226 rad/m. Next, results are presented
in terms of frequency/wave-number content by considering
a cross section of the 3D-FT along the path C : �-K-� for
γ = 0 (no masses added). Figure 5(b) illustrates the dispersion
branches detected during the experiments, which compare very
well with the COMSOL predictions (solid red line). The case
of γ = 1 is then tested, and Fig. 5(c) displays the results
in the frequency/wave-number domain. An opening of the
band gap at the K point is observed as predicted by the
COMSOL simulations, again represented by the solid red line
superimposed on the contours.

C. Experimental observation of topologically
protected interface waves

The dispersion studies and the experimental setup devel-
oped allow the investigation of the existence of topologically
protected modes at the interface of lattices consisting of unit
cells that are inverted copies of each other (γ = −1 and
γ = 1). This is easily achieved by placing magnetic cylinders
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FIG. 7. (a) A nontrivial N-shaped interface (red dots indicate two masses attached at the sublattice sites, and cyan dots denote locations
where no masses are added) with γ = 1 (−1) on the left (right). (b) and (c) Snapshots of measured wave motion at two instants of time.
Excitation is an 11-cycle tone burst at 3 kHz (contours are normalized by the displacement amplitude of 1.5 × 10−8 m).

as added masses at the selected locations, so that a variety of
interfaces can be introduced and tested.

We first investigate the straight-line interface shown in
Fig. 6(a). The cylindrical masses are placed so that the unit
cells to the left of the interface have γ = 1 and those to the
right have γ = −1. Note that this interface has zero width, and
the green lines in the figure indicate only the path that TPEWs
are expected to follow. The structure is excited at the location
shown with a tone-burst signal of 11 cycles at a frequency
of 3 kHz. The considered signal has a bandwidth of approxi-
mately 1 kHz and therefore excites a relatively broad frequency
range which falls entirely within the band gap. Figures 6(b)
and 6(c) display time snapshots of the measured out-of-plane
displacement by plotting the contours of the interpolated
wave field (see Supplemental Material [34] for an animation
of the measured out-of-plane displacement). As indicated
above, the displacement field shown is an interpolation over a

rectangular grid of the measured response in points belonging
to the lattice. This produces a continuous representation which
facilitates visualization of the results along with the overlay
of the geometry of the lattice represented as thin black lines.
The contours are normalized by the maximum displacement
amplitude of 3 × 10−8 m. Figures 6(b) and 6(c) illustrate how
the induced out-of-plane wave travels along the interface and
has limited penetration into the bulk. The results also show
that the amplitude decays below 10% of the original value in
approximately four unit cells, which is a number consistent
with observations from similar investigations presented in the
literature [28]. The number of unit cells in our lattice (18 × 16)
and their size was set according to convenience of fabrication
and testing and are quite limited. Future designs may be scaled
in order to include a larger number of units that may lead to
a reduction in the lateral spreading of the interface modes.
The rate of spatial decay may affect the results in Fig. 6(a)
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FIG. 8. (a) N-shaped trivial interface (red dots indicate two masses attached at the sublattice sites, and cyan dots denote locations where no
masses are added) with γ = 1 everywhere. (b) and (c) Snapshots of measured wave motion at two instants of time. Excitation is an 11-cycle
tone burst at 3 kHz (contours are normalized by the displacement amplitude of 1.5 × 10−8 m).

due to the proximity of the source from the boundary. Videos
showing the time evolution of the displacement field based on
measurements are provided in the Supplemental Material [34].

The excited in-plane waves, not measured in the experi-
ment, do not exhibit a band gap at the targeted frequencies and
therefore are allowed to travel on both sides of the interface.
Of interest is the fact that the interface mode (for out-of-plane
waves) is still observable after it reaches the boundary opposite
the excitation location, although the amplitude is reduced by
material dissipation that is particularly noticeable in the acrylic
substrate utilized for the tests. The choice of acrylic as the
material for the experiments is driven by considerations of
convenience of fabrication and cost. In further studies, the
use of metallic lattices, such as aluminum, will be considered
for investigations of effects such as the extent of propagation
and attenuation along the interface and interactions with
boundaries and defects. These interactions are not studied

as part of this work but are important aspects of follow-on
investigations for the characterization of the robustness of this
class of modes.

A second example considers an N-shaped zero-width inter-
face with segments parallel to the lattice vectors [Fig. 7(a)].
The objective is to observe the behavior of the wave in the
presence of 120 ◦ corners along the interface. The cylindrical
masses are attached so that the unit cells to the top left
of the interface have γ = 1 and those to the bottom right
have γ = −1. The results in Figs. 7(b) and 7(c) show the
propagation of the wave along the N-shaped topological
interface and a limited propagation into the bulk. Furthermore,
the wave manages the 120◦ turn, illustrating the ability to
change direction with limited backscattering. The contours
are normalized by the displacement amplitude 1.5 × 10−8 m.
(See the Supplemental Material [34] for an animation showing
the measured out-of-plane displacement).
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We compare the results above to the case of a waveguide
obtained by removing a unit cell from an otherwise periodic
domain, which leads to a trivial (nontopological) interface. To
this end, masses are attached so that all unit cells have γ = 1.
The N-shaped interface within one lattice type is thus obtained
by simply removing a line of masses, as illustrated in Fig. 8(a),
which corresponds to a nonzero-width interface. The resulting
lattice response in Figs. 8(b) and 8(c) illustrates the limited
ability of the wave to enter and propagate along the interface.
(See the Supplemental Material [34] for an animation of the
measured out-of-plane displacement). The induced motion of
the lattice appears to remain localized in the vicinity of the
excitation point and eventually decays as a result of material
dissipation. Comparing the amplitude of transmitted waves,
we conclude that the amount of energy traveling through the
interface is much lower in this case, in spite of the nonzero
width of the interface. This test is here based on the fact that
for this nonzero-width interface, the dispersion properties are
those of a lattice without added masses for which the flexural
band gap does not exist. Thus, the goal here is to illustrate
that removal of a single row from a periodic assembly is not
sufficient to guarantee propagation.

V. CONCLUSIONS

Control of mechanical waves is applicable in many
technological fields of interest, including detection, energy

harvesting, and telecommunications. This study demonstrated
the existence of interface modes within the band gap of a
two-dimensional elastic hexagonal lattice and the propagation
of TPEWs exploiting a mechanical analog of the quantum
valley Hall effect. This phenomenon allows creating a simple
and robust waveguide for elastic waves in a wide range of fre-
quencies. Guided by studies on conceptual lattices and numer-
ical simulations, experiments were conducted to predict the
dispersion properties of the considered hexagonal lattices and
to explore the existence of TPEWs along predefined interfaces.
The difference in propagation along nontrivial interfaces is also
illustrated through an experiment that reveals the difference of
modes of propagation endowed with topological protection
from those that are obtained by introducing a line defect in an
otherwise periodic assembly. The experimental configurations
illustrated herein are suitable for potential implementation of
the concept to phononic systems and structural components
and could be further utilized to investigate the sensitivity
of these configurations to a variety of defect and interface
configurations.

ACKNOWLEDGMENTS

The authors acknowledge the support of the US Air Force
Office of Scientific Research (Grants No. FA9550-13-1-0122
and No. FA9550-15-1-0397) and of the National Science
Foundation (Grant No. 1332862).

[1] S. Huber, Nat. Phys. 12, 621 (2016).
[2] C. Brendel, V. Peano, O. Painter, and F. Marquardt,

arXiv:1701.06330.
[3] A. B. Khanikaev, S. H. Mousavi, W.-K. Tse, M. Kargar-

ian, A. H. MacDonald, and G. Shvets, Nat. Mater. 12, 233
(2013).

[4] L. Lu, J. D. Joannopoulos, and M. Soljačić, Nat. Photonics 8,
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