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Fluctuations in a model ferromagnetic film driven by a slowly oscillating field with a constant bias
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We present a numerical and theoretical study that supports and explains recent experimental results on
anomalous magnetization fluctuations of a uniaxial ferromagnetic film in its low-temperature phase, which
is forced by an oscillating field above the critical period of the associated dynamic phase transition (DPT)
[P. Riego, P. Vavassori, and A. Berger, Phys. Rev. Lett. 118, 117202 (2017)]. For this purpose, we perform kinetic
Monte Carlo simulations of a two-dimensional Ising model with nearest-neighbor ferromagnetic interactions
in the presence of a sinusoidally oscillating field, to which is added a constant bias field. We study a large
range of system sizes and supercritical periods and analyze the data using a droplet-theoretical description of
magnetization switching. We find that the period-averaged magnetization, which plays the role of the order
parameter for the DPT, presents large fluctuations that give rise to well-defined peaks in its scaled variance and its
susceptibility with respect to the bias field. The peaks are symmetric with respect to zero bias and located at values
of the bias field that increase toward the field amplitude as an inverse logarithm of the field oscillation period.
Our results indicate that this effect is independent of the system size for large systems, ruling out critical behavior
associated with a phase transition. Rather, it is a stochastic-resonance phenomenon that has no counterpart in
the corresponding thermodynamic phase transition, providing a reminder that the equivalence of the DPT to an
equilibrium phase transition is limited to the critical region near the critical period and zero bias.
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I. INTRODUCTION

The hysteretic response when a uniaxial spin system with
long-range order (i.e., below its critical temperature) is subject
to a symmetrically oscillating field of amplitude H0 and period
P depends crucially on P . If P is much longer than the
response time of the system (which depends on the temperature
and H0), a symmetric hysteresis loop centered on zero results.
If P is much shorter than the response time, asymmetric
hysteresis loops centered around the values of the system’s
static order parameter are observed. Numerical studies in the
1990s showed that the transition between these two regimes
is not smooth. Rather, there is a critical period Pc, where the
period-averaged order parameter 〈Q〉 (see formal definition
in Sec. II) vanishes in a singular fashion. This phenomenon
was first observed by Tomé and de Oliveira [1] in a kinetic
mean-field study of an Ising model, followed by kinetic Monte
Carlo (MC) simulations by Rao, Krishnamurthy, and Pandit
[2] and Lo and Pelcovitz [3]. Early work in the field was
reviewed by Chakrabarti and Acharyya in Ref. [4]. Kinetic
MC combined with finite-size scaling analysis [5–10], as
well as further mean-field studies of Ising and Ginzburg-
Landau models [11–14], confirmed not only that this is a
true, dynamic phase transition (DPT), but also that it is in
the same universality class as the corresponding equilibrium
Ising model. The DPT has been confirmed experimentally
in [Co/Pt]3 magnetic multilayers [15] and uniaxial Co
films [16].

With all the attention that has been given to the DPT and
its universality class, one might lose sight of the fact that the
equivalence between the critical properties of the equilibrium
Ising model and the DPT of the same model in an oscillating
field does not necessarily amount to equivalence outside the
critical region. A warning was provided very recently by
Riego, Vavassori, and Berger [17]. These authors fabricated

Co films with (1010) crystallographic surface structure with a
single, in-plane magnetic easy axis, which they subjected to a
sinusoidally oscillating, in-plane magnetic field plus a constant
bias field Hb. Such a constant bias field has previously been
shown by MC simulations and finite-size scaling to be (at least
a significant component of) the field conjugate to 〈Q〉 in the
critical region near Pc [8], and this has later been confirmed
for mean-field models [12–14] and in experiments [16]. It
therefore seemed surprising that, in the experiments reported
in Ref. [17], both the fluctuations in the order parameter
and its derivative with respect to Hb, for P � Pc, behaved
quite differently from the dependence of the equilibrium
susceptibility on the applied static field at temperatures above
critical. Instead of the wide, smooth, unimodal maximum
of the supercritical equilibrium susceptibility of the Ising
model, two distinct peaks were observed at nonzero values
of Hb, symmetrical about zero [17]. In their article the authors
also presented kinetic mean-field results that corroborate the
presence of these peaks, which they dubbed “sidebands.”

The purpose of the present paper is to investigate the long-
period parameter regime with kinetic MC simulations of a two-
dimensional Ising model with nearest-neighbor ferromagnetic
interactions. To match the experimental conditions of Ref. [17]
as closely as possible, we choose the oscillating field to have
a sinusoidal wave form. We are not aware that systematic
simulations in this regime have been performed previously.
Our study reveals “sidebands” analogous to the experimental
results. We thus conclusively confirm that the experimentally
observed phenomenon is not caused by residual magnetostatic
long-range interactions. Using simulations for a range of field
periods and system sizes together with knowledge of the ki-
netics of magnetization switching by homogeneous nucleation
and growth of antiphase droplets [18], we demonstrate that the
“sidebands” result from noncritical fluctuations during the half
cycles when the sign of the oscillating field is opposite to that
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of the bias field. This is essentially a stochastic resonance
phenomenon [19–21].

The rest of this paper is organized as follows. In Sec. II
we describe the model and details of the simulation method,
and we define the appropriate observables to be measured.
Our numerical results are presented in Sec. III. In Sec. III A
we present numerical observation of sidebands for a single,
supercritical value of the field period. In Sec. III B we present
short time series of the system magnetization for several
values of bias and period, which enable us to propose a simple
approximation for 〈Q〉 in the limits of weak bias and long
period. In Sec. III C we present numerical results for 〈Q〉 vs
Hb for a wide range of supercritical periods, as well as the
sideband positions H

peak
b as functions of period and system

size. The latter are analyzed using results from the droplet
theory of magnetization reversal. Our conclusions are given in
Sec. IV. A short summary of pertinent results from the droplet
theory of magnetization reversal is given in Appendix A, and
the case of extremely long periods is discussed in Appendix B.
A brief discussion of the mathematically simpler case of a
square-wave oscillating field is presented in Appendix C.

II. MODEL AND MONTE CARLO SIMULATION

We consider a kinetic S = 1/2 Ising model with a time-
dependent external field and ferromagnetic nearest-neighbor
interactions. Its Hamiltonian is

H = −J
∑
〈ij〉

sisj − [H (t) + Hb]
∑

i

si , (1)

where J > 0, si = ±1, the first sum runs over all nearest-
neighbor pairs, and the second one over all sites. Hb is a
constant “bias field,” and H (t) is a symmetrically oscillating
external field of period P . Here we choose

H (t) = H0 cos

(
2π

P
t

)
. (2)

The system is simulated on a square lattice of N = L × L

sites with periodic boundary conditions. We perform Glauber
single-spin-flip dynamics in a heat bath at temperature T . A
spin at a randomly chosen site i is allowed to flip from si to
−si with probability

W (si → −si) = 1

1 + exp(β�Ei)
, (3)

where �Ei is the change in the system energy associated with
flipping the spin i, and β = 1/kBT where kB is Boltzmann’s
constant. The time unit is one MC step per site (MCSS), during
which, on average, each site is visited once. Hereafter, H0,Hb,
and T are all given in units of the interaction constant J (i.e.,
J = kB = 1), and P is given in units of MCSS.

The Glauber dynamic can be derived as the weak-coupling
limit of the quantum-mechanical Hamiltonian of a collection
of quasifree Fermi fields in thermal equilibrium with a heat
bath [22]. However, the DPT with Hb = 0 has been shown
to be universal with respect to dynamics that obey detailed
balance in equilibrium, including Metropolis [23] and “soft
Glauber” [9], as well as different forms of H (t) including
square wave [7,9] and sawtooth [15].

We calculate the time-dependent, normalized magnetiza-
tion per site,

m(t) = 1

L2

∑
i

si(t), (4)

and by integrating it over each cycle of the magnetic field, we
obtain the average magnetization during the kth cycle of the
field,

Qk = 1

P

∫ kP

(k−1)P
m(t)dt. (5)

The dynamic order parameter of the model is the period-
averaged magnetization, 〈Q〉, defined as the average of Qk

over many cycles. Its fluctuations are measured by the scaled
variance,

χ
Q
L = L2(〈Q2〉 − 〈Q〉2), (6)

and its dependence on the bias field is measured by the
susceptibility with respect to Hb,

χb
L = d〈Q〉/dHb. (7)

In order to take advantage of temperature and field-
dependent parameters measured with high precision in previ-
ous MC simulations [6], our calculations are performed with
H0 = 0.3 at T = 0.8Tc, where Tc = 2/ln(1 + √

2) ≈ 2.269 is
the critical temperature of the standard, square-lattice Ising
model in zero field. In the absence of a bias field, at this
temperature, and for sufficiently large L, switching between
the equilibrium values of m, following field reversal from −H0

to +H0, occurs via a nearly deterministic and L-independent
multidroplet mechanism [18]. In Ref. [6], the characteristic
switching time scale (the time from the field reversal until the
system magnetization reaches zero) under Glauber dynamics
with the same parameters as we use here was measured by
MC simulations as τ0 ≈ 74.6. In the same work, the critical
period in a sinusoidal field of amplitude H0 with zero bias was
measured as Pc ≈ 258.

The cycle-averaged magnetization 〈Q〉 vanishes for P �
Pc and Hb = 0. Near criticality, the constant bias field Hb

is the field conjugate to 〈Q〉, and the period P mimics the
temperature in the equilibrium phase transition. Simulations
were performed for periods between P = 258 and 28 000
and system sizes between L = 32 and 1024. Except for the
smallest values of P , the measurements were obtained by
averaging over 800 field cycles, after discarding 200 cycles.
This means that at least 800 × P MCSS were performed for
each measurement.

III. NUMERICAL RESULTS AND ANALYSIS

A. Observation of “sidebands”

Results of simulations with P = 1000 ≈ 3.9Pc for several
values of L are displayed in Fig. 1. “Sidebands” are observed,
consistent with the experiments reported in Ref. [17]. The
dependence of the order parameter 〈Q〉 on the bias Hb is
shown in Fig. 1(a). For weak Hb, 〈Q〉 increases almost linearly
with Hb, but the slope of the curve increases considerably
around |Hb| ≈ 0.09, followed by saturation of 〈Q〉 for |Hb| �
0.15. This behavior is reflected in the bimodal shape of

134306-2



FLUCTUATIONS IN A MODEL FERROMAGNETIC FILM . . . PHYSICAL REVIEW B 96, 134306 (2017)

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
Hb

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
<Q

>

L=64
L=128
L=256
L=512

(a)

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
Hb

0

20

40

60

80

100

XQ
64

Xb
64

XQ
128

Xb
128

XQ
256

Xb
256

XQ
512

Xb
512

(b)

FIG. 1. Results with P = 1000 ≈ 3.9Pc for system sizes L = 64, 128, 256, and 512. With this period length and range of system sizes,
finite-size effects are negligible, and the curves for different system sizes practically coincide. (a) The order parameter 〈Q〉 vs Hb. Error bars
are smaller than the symbol size. (b) The scaled variance χ

Q

L and susceptibility χb
L. See discussion of this figure in Sec. III A.

the susceptibility χb
L, shown by the lower set of curves in

Fig. 1(b). Between the two peaks lies a flat-bottomed valley
corresponding to the linear regime in part (a), and a rapid
approach to zero for large |Hb| mirrors the saturation of
〈Q〉 also seen in (a). The scaled variance χ

Q
L also displays

peaks, whose positions coincide with those of χb
L. However,

the ratio χ
Q
L /χb

L for fixed P depends quite strongly on Hb

with maximum values near the peaks. This variable ratio
precludes a straightforward interpretation in terms of an
effective, nonequilibrium fluctuation-dissipation relation with
P playing the role of “temperature.” For these values of L and
P , finite-size effects are seen to be negligible, ruling out critical
behavior associated with a phase transition. The relationships
between system size, field period, and finite-size effects will
be discussed in further detail below.

B. Magnetization time series

To gain a more detailed understanding of the relationships
between bias, period, system size, and the order-parameter
fluctuations, we present in Fig. 2 short time series of the
normalized magnetization, m(t). The total applied field,
H (t) + Hb, is shown as an orange curve. In this figure we set
Hb > 0, so that the up-spin phase is favored and the down-spin
phase is disfavored.

Figure 2(a) shows data for P = 1000 and Hb = +0.10,
just on the strong-bias side of the fluctuation peak for this
period length. For the smaller system sizes (L = 32 and 64),
the switching from the favored (up-spin) to the disfavored
(down-spin) magnetization is stochastic and abrupt (mediated
by a single or a few droplets of the down-spin phase [18]) and
occurs only in narrow time windows near the negative extrema
of the total applied field. For the larger systems, the switching
becomes more deterministic and gradual (multidroplet [18]).
However, the growing down-spin phase does not have time
to completely fill the system before the field again becomes
positive. For the largest system studied, L = 1024, the extreme
negative magnetizations during a period are close to −0.2.

Figure 2(b) shows data for P = 1000 and Hb = +0.0915,
at the maximum of the fluctuation peak. The switching

behavior for L = 32 remains stochastic. However, the larger
systems appear more deterministic, and their extreme negative
magnetizations during a period are close to −0.4.

Figure 2(c) shows data for P = 1000 and Hb = +0.08, just
on the weak-bias side of the fluctuation peak. The switching for
L = 32 remains stochastic. The larger systems behave more
deterministically, and the extreme negative magnetizations
during a period approach −0.8.

These results illustrate how the switching behavior in the
peak region crosses over from a stochastic single-droplet
mechanism for small L to a nearly deterministic multidroplet
mechanism for larger L, in agreement with known results
for field-driven magnetization switching by homogeneous
nucleation and growth of droplets of the stable phase [18].

Figure 2(d) shows data for L = 128 with a weak bias,
Hb = +0.04, and two different period lengths, P = 1000 and
14 000. In both cases, the switching is nearly deterministic
and complete, so that the period-averaged magnetization 〈Q〉
depends mostly on the relative amounts of time the system
spends in the two phases. As P increases, the switching occurs
earlier in the half-period.

The differences between the single-droplet and multidroplet
switching modes are further illustrated in Fig. 3. In Fig. 3(a),
time series for m(t) over five cycles with P = 1000 at the
corresponding peak position, H

peak
b = +0.0915, show data

for L = 32 and 1024. All the parameters are the same as in
Fig. 2(b), except the seed for the random number generator.
When the total applied field, H (t) + Hb, is negative, the down-
spin phase, which is disfavored by the positive bias, is the
equilibrium phase. Nucleation and growth of this phase may
only occur during the time intervals of negative total applied
field. Snapshots captured at m(t) = +0.1 during these growth
periods, corresponding to a down-spin fraction of 0.45, are
shown in Fig. 3(b) for L = 32 and in Fig. 3(c) for L = 1024.

For L = 32 we see a single down-spin droplet which, as
seen from the time series in Fig. 3(a), nucleated during the
third period shown, near the time when the field had its largest
negative value. It barely reached the capture threshold of m =
+0.1 before the field again became positive and caused it to
decay. The stochastic nature of this single-droplet switching
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FIG. 2. The time-dependent magnetization m(t) over a few cycles following a 200P stabilization run, using systems with L between 32
and 1024. In all four parts, the bias is positive, and the total applied field, H (t) + Hb, is shown as an orange cosine curve. A detailed discussion
of this figure is given in Sec. III B. (a) P = 1000 and Hb = +0.10, just on the strong-bias side of the fluctuation peak for this period length.
(b) P = 1000 and Hb = +0.0915, at the maximum of the fluctuation peak. (c) P = 1000 and Hb = +0.08, just on the weak-bias side of
the fluctuation peak. (d) L = 128 and a weak bias Hb = +0.04 with two different period lengths, P = 1000 and 14 000. The switching is
nearly deterministic and complete, and as P increases, it occurs earlier in the half-period. This observation suggests the asymptotic weak-bias,
long-period approximation for 〈Q(Hb/H0)〉, given in Eq. (9) and included in Fig. 4(a).

mode is also clearly reflected by the time series. During the five
periods shown, the capture threshold was only reached twice.
And only once, during the fifth period, do we see full saturation
of the down-spin phase before the field again becomes positive.

For L = 1024 the picture is quite different. In the snapshot
we see a large number of growing clusters that have nucleated
at different times during the negative-field time interval. Some
of these have already coalesced by the time the snapshot was
captured, while others are still growing independently. From
the time series it is seen that this multidroplet switching mode
leads to a nearly deterministic evolution of the total magnetiza-
tion, with the underlying stochasticity only evident in the slight
variations of the minimum magnetization values from period
to period. This switching process is well described by the
Kolmogorov-Johnson-Mehl-Avrami (KJMA) approximation
[18,24–28].

Magnetization reversal from the favored to the disfavored
direction is only possible while the total applied field, H (t) +
Hb, has the opposite sign of the bias, Hb. This implies that

−1 < Hb/H (t) � 0. Switching from the favored phase to the
disfavored one on average takes longer time than switching in
the opposite direction. Thus, the time the system can spend in
the disfavored phase during each period must be less than or
equal to the time that the field has the disfavored direction,

tDmax = P

2

[
1 − 2

π
sin−1

( |Hb|
H0

)]
. (8)

In this limit of long period and weak bias, 〈Q〉 is simply
determined by the sign of Hb and the difference between the
fractions of the period that the total field has the same and the
opposite sign as Hb, respectively. This yields

〈Q〉 ≈ 2m0

π
sin−1

(
Hb

H0

)
, (9)

which is symmetric under simultaneous reversal of Hb and
〈Q〉. Here, m0 is the magnitude of the magnetization in the
favored phase. This approximation represents a lower bound
on the magnitudes of 〈Q〉 and χb [29]. The former is included
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FIG. 3. A short time series and snapshots showing growing
disfavored-phase clusters for P = 1000 at the corresponding peak
position, H

peak
b = +0.0915. (a) Time series m(t) over five cycles

following a 200P stabilization run, showing data for L = 32 (green)
and 1024 (maroon). The total applied field, H (t) + Hb, is shown as an
orange cosine curve. The snapshots were captured the first time past
200P that m(t) fell below +0.1 (red horizontal line in the figure),
corresponding to a disfavored-phase (down-spin) fraction of 0.45.
The times of capture are marked by black circles. In the following
snapshots, regions of the up-spin phase are green, and down-spin
are red. (b) L = 32. A single droplet of the down-spin phase has
nucleated near the time when the total applied field has its largest
negative value. The highly stochastic nature of the single-droplet
switching mode is also evident from the time series in part (a).
(c) L = 1024. Many droplets of the down-spin phase have nucleated
at different times and then grown almost independently. At the
moment of capture, some clusters have coalesced while others are
still growing independently. From the time series in part (a) it is seen
that this multidroplet switching mode leads to a nearly deterministic
evolution of the total magnetization. This figure is further discussed
in Sec. III B.

as a dashed curve in Fig. 4(a). However, the bounds depend
on the wave form of the oscillating field, and as we show in
Appendix C, they vanish in the case of a square-wave field.

The corrections to this approximation are of
O(tFD(Hb,H0)/P ), where tFD(Hb,H0) is the average
time it takes the magnetization to switch to the disfavored
direction, after the total applied field has changed sign.
For |Hb| � H0, the correction vanishes as 1/P , as seen in
Fig. 4(a). However, for larger |Hb|, tFD(Hb,H0) ∼ P , and the
“correction” becomes the dominant part of 〈Q〉, determining
the sideband peak positions, H

peak
b . The details are discussed

below in Sec. III C.

C. Dependence on Hb, P , and L

Results for L = 128 and a range of periods between
Pc = 258 and P = 28,000 are shown in Fig. 4. In the critical
region, Hb is the field conjugate to 〈Q〉 [8,12–14,16]. At
P = Pc, 〈Q〉 therefore vanishes in a singular fashion as Hb

approaches zero. On the scale of Fig. 4(a), this singularity
appears as a jump in 〈Q〉 at Hb = 0 for P = Pc, resulting
in very narrow central peaks in both χb

L and χ
Q
L . We also

found broad central peaks in both quantities for P = 400,
which are due to finite-size broadening of the critical region
for this relatively modest system size. For clarity, these central
peaks are not included in Fig. 4(b). Beyond P = 500, 〈Q〉
becomes linear for small Hb, with a slope that approaches that
of the asymptotic approximation in Eq. (9) as P increases.
Simultaneously, the peaks in χb

L and χ
Q
L increase in height,

and their positions H
peak
b move in the directions of ±H0, as

seen in Fig. 4(b). [For clarity, some of the values of P included
in Fig. 4(a) are excluded from Fig. 4(b).]

The magnitudes of the peak positions, |H peak
b |, are plotted

vs P for different values of L in Fig. 5(a). We note two
main features. First, |H peak

b | increases quite rapidly with P

for relatively short periods, and much more slowly for longer
periods. This behavior is consistent with the experimental data
shown in Fig. 2 of Ref. [17]. Second, finite-size effects are
essentially negligible for P � 2000, as already shown in Fig. 1
for P = 1000. For longer periods, |H peak

b | increases with L for
smaller sizes, and then becomes size independent for larger L.

In order to explain this behavior quantitatively, we first
recall from the time series shown in Fig. 2 that for bias near
|H peak

b |, the time it takes m(t) to change significantly toward
the disfavored sign is on the order of a finite fraction of P .
For stronger bias, the total field driving the magnetization
toward the disfavored sign is too weak and consequently the
time required for switching is much longer than P , so that
reliable magnetization reversal does not occur. For weaker
bias, the field in the disfavored direction is relatively strong,
and complete and reliable magnetization reversal takes place
on a time scale significantly shorter than P . In other words,
the peak positions correspond to bias values that produce
magnetization reversal on a time scale of P . Equations for
magnetization switching rates by the stochastic single-droplet
mechanism that dominates for small systems [Eq. (A1)] and the
nearly deterministic multidroplet mechanism that dominates
for large systems [Eq. (A2)] are found in Appendix A. The
nucleation rate for droplets of the disfavored phase varies
very strongly with the oscillating field, having appreciable
values only in a narrow window near the maximum field in the
disfavored direction, |H | = H0 − |H peak

b |. Using this value of
|H | and ignoring less important prefactors, we can use these
equations to write the following requirement for |H peak

b |:

L−a exp

(
1

b

�0

H0 − ∣∣H peak
b

∣∣
)

∼ P, (10)

with a = 2 and b = 1 for single-droplet switching, and a = 0
and b = 3 for multidroplet switching. The meaning of the
constant �0 ≈ 0.506 is explained in Appendix A. In either
case, this equation is equivalent to a statement that |H peak

b |
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FIG. 4. Results for L = 128 and a range of periods between Pc = 258 and P = 28,000. (a) The order parameter 〈Q〉 vs Hb. Error bars are
on the order of the line thickness. The dashed curve is the weak-bias, long-period approximation of Eq. (9). (b) The scaled variance χ

Q

L and the
susceptibility χb

L vs Hb. The sideband peaks occur at values of Hb that increase with P . For clarity, data for some values of P are omitted in
(b), including a narrow critical peak for P = Pc = 258 at Hb = 0 and a broad central peak for P = 400.

should approach H0 asymptotically as 1/ log P for long peri-
ods. (A caveat to this statement for the case of extremely long
periods is discussed in Appendix B.) Plotting 1/(H0 − |H peak

b |)
vs log P therefore should produce straight lines for large values
of P . The ratio between the slopes of the lines representing
multidroplet switching for large L and those representing
single-droplet switching for small L should be 3/1. Such a plot
is presented in Fig. 5(b). The slope ratio between the curves
representing L = 256 and L = 32 in the long-P regime is ap-
proximately 2.867, consistent with the theoretical prediction.
This conclusion is confirmed by the short time series of m(t) for
P = 20 000 for these two system sizes, shown in Fig. 6. In the
switching regions, the smaller system displays the stochastic,
square wave form characteristic of single-droplet switching
[20], while the larger system shows the continuous wave form
characteristic of multidroplet switching [6].

To further support our conclusions, we calculated the tran-
sition times and the order parameter in the multidroplet regime
for the mathematically simpler case, in which the sinusoidally
oscillating field has been replaced by a square-wave field.
The details of the calculations are given in Appendix C. In
Fig. 7 we show that there is very good agreement between the
theoretically calculated 〈Q〉 and the simulations, particularly
when |Hb| � |H peak

b |.

IV. SUMMARY AND CONCLUSION

Riego et al. [17] recently presented experimental data on
Co films with a single, in-plane magnetic easy axis, which
were subjected to a slowly oscillating magnetic field with an
added constant bias. In the present paper we have presented
kinetic MC simulations and theoretical analysis of a two-
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FIG. 5. Peak positions |H peak
b | as defined by the maxima of the scaled variance χ

Q

L , shown vs period length P � Pc. (a) |H peak
b | vs P ,

plotted on linear scales. (b) The peak positions plotted as 1/(H0 − |H peak
b |) vs log P , as suggested by Eq. (10). The blue and green dashed

lines represent the slopes of the curves between P = 14 000 and 28 000 for L = 256 and L = 32, respectively. The ratio of the slopes is
approximately 2.867, close to the 3/1 ratio expected from droplet theory. This figure is analogous to Fig. 2 of Ref. [18].
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FIG. 6. Time series of m(t) over five periods with P = 20 000,
following a 200P stabilization run. Data are shown at their respective
values of H

peak
b for L = 32 (green) and 256 (blue). The corresponding

values of the total applied field, H (t) + H
peak
b , are also shown

in orange and magenta, respectively. The wave forms of m(t),
characteristic of single-droplet and multidroplet switching, are seen
for L = 32 and 256, respectively.

dimensional Ising ferromagnet with only nearest-neighbor
interactions, designed to closely mimic the experimental setup.
At zero bias, such systems exhibit a dynamic phase transition
(DPT) at a critical period Pc, where the period-averaged
magnetization 〈Q〉 vanishes in a singular fashion. It has
previously been shown that the DPT belongs to the equilibrium
Ising universality class, with P playing the role of temperature
and the bias Hb being the field conjugate to 〈Q〉. Following
Riego et al. [17], we studied the dynamics of the system at
values of P abovePc, and in agreement with the experiments
we found that 〈Q〉 exhibits a strong bias dependence and
fluctuation peaks at nonzero values of Hb, symmetrically
located around zero bias.

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
Hb
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-0.2

0

0.2
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1

<Q
>

P = 550 = 4.0 Pc
P = 5500
P = 55000

FIG. 7. Simulated results (solid) and approximate theoretical
results from Eqs. (C1)–(C3) (dashed) for 〈Q〉 with a square-wave
field of amplitude H0 = 0.3. System size L = 128 and three different
field periods P . In a square-wave field, Pc ≈ 137 [7].

Since the simulated system has only nearest-neighbor
interactions, our results show that the experimental results
are not due to any residual magnetostatic interactions. The
simulational approach also enables studies of the effects of
finite system size. We found that, at fixed P , finite-size effects
saturate beyond a P -dependent size limit. Using the droplet
theory of magnetization switching, we conclude that this satu-
ration occurs at the crossover between two different dynamic
regimes. For small systems, the magnetization switching from
the favored to the disfavored direction occurs by a stochastic
single-droplet mechanism. For large systems, the switching
occurs by the size-independent and nearly deterministic KJMA
mechanism, which involves a large number of simultaneously
nucleating and growing droplets. We therefore conclude that
this “sideband” phenomenon for supercritical values of P is
not a critical phenomenon, but rather a stochastic-resonance
phenomenon. We believe these insights will be important for
the design and analysis of devices that involve magnetization
reversal by time-varying fields, such as memory elements,
switches, and actuators.
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APPENDIX A: MECHANISMS OF MAGNETIZATION
REVERSAL

When a d-dimensional Ising ferromagnet below its critical
temperature is subjected to the reversal of an applied field
of magnitude |H |, the homogeneous nucleation rate per unit
system volume for droplets of the new equilibrium phase is
given by [6,18,20,28,30–32]

I (H ) ≈ B(T )|H |K exp

[
− �0(T )

|H |d−1

]
, (A1)

where B(T ) is a nonuniversal function of T . For d = 2,K = 3,
and �0(0.8Tc) ≈ 0.506 (which includes a factor of 1/T ) [6].
The argument of the exponential function is the negative of
the free energy of a critical droplet of the equilibrium phase,
divided by T . The inverse of LdI (H ) is the average time
between random nucleation events for a system of size L.

Single-droplet reversal mechanism. Under conditions of
small system and/or moderately weak field, the time it takes
for the first nucleated droplet to grow to fill the system is
much shorter than the average nucleation time. As a result, the
magnetization reversal is completed by this single, first droplet
[see Fig. 3(b)].

Multidroplet reversal mechanism. Under conditions of
large system and/or moderately strong field, the average time
between nucleation events is less than the time it would
take the first nucleated droplet to grow to fill the system.
Therefore, many droplets nucleate and grow independently in
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different parts of the system until they coalesce and collectively
fill the system [see Fig. 3(c)]. The result is a gradual and
nearly deterministic growth of the new phase through a mul-
tidroplet process, well described by the KJMA approximation
[18,24–28]. The characteristic reversal time is independent of
the system size and given by

〈τ (H )〉 ∝ [vdI (H )]−1/(d+1), (A2)

where the propagation velocity of the droplet surface, v, is
proportional to |H | in this parameter range [33] as expected
from the Lifshitz-Allen-Cahn approximation [34–36].

APPENDIX B: EXTREMELY LONG PERIODS

If the radius of the critical droplet reaches a size of about
L/2, it will not fit in the L × L system, and a new regime,
called the coexistence regime, is entered [18]. In this regime,
the droplet is replaced by a slab of the equilibrium phase, and
the nucleation time no longer depends on |H |, but increases
exponentially with Ld−1. The critical droplet radius in d

dimensions is given by [18],

Rc ≈
(

(d − 1)T �0

2m0�d

)1/d 1

|H | , (B1)

where �d is the volume of the critical droplet, divided by
Rd

c . Numerical values for the constants with d = 2 at T =
0.8 Tc ≈ 1.815 are found in Table I of Ref. [6]: �0 ≈ 0.506
and �2 ≈ 3.152. (The factor T is included in the numerator to
cancel the factor 1/T in �0.) Thus we have

Rc ≈ 0.388

|H | ≈ L

2
. (B2)

Replacing |H | by H0 − |Hb| and setting L = 32, we thus
find 1/(H0 − |Hb|) ≈ 41.3. Finally, linearly extrapolating the
large-P data for L = 32 in Fig. 5(b), we find that the single-
droplet result from Eq. (10) should remain valid for periods
up to approximately 1019±2. [The uncertainty in the exponent
is the result of assuming a 10% uncertainty in the estimate of
1/(H0 − |Hb|).] Beyond this limit, H0 − |Hb| should remain
independent of P , at a value of O(1/L). For larger L, the
single-droplet result should be valid up to even longer periods.
We do not expect that these extremely long periods should
be of great experimental relevance for macroscopic systems.
However, for nanoscopic systems the coexistence regime may
be observable with experimentally accessible periods.

APPENDIX C: SQUARE-WAVE OSCILLATING FIELD

Now, instead of a sinusoidally oscillating field, consider
a square-wave field, such that H (t) = +H0 during one

half-period, and −H0 during the other. Since the times that
the total field is parallel and antiparallel to Hb now each
equal P/2, the equivalent of the long-period, weak-bias
approximation of Eq. (9) becomes 〈Q〉 ≈ 0. Therefore, the
value of 〈Q〉 for finite P and weak Hb is determined by the
difference between the average magnetization reversal times
following a change of the total field from the favored to the
disfavored direction, and the opposite. Since the total field now
has its full favored or disfavored strength during the whole
half-period, these average switching times will be shorter than
the corresponding times in the sinusoidally oscillating field
case. With a square-wave field of amplitude H0 = 0.3 at 0.8Tc

under Glauber dynamics, the critical period has been measured
by MC simulations as Pc ≈ 137 [7]. To calculate the transition
times for a two-dimensional system in the multidroplet regime,
we will again assume Hb � 0 for concreteness.

From Eqs. (A1) and (A2) with |H | = H0 − Hb, we obtain
the characteristic time scale for transitions from the favored
(parallel to the bias field) to the disfavored magnetization
direction, after the total applied field has changed sign as

tFD(Hb,H0) = τ0

(
1

1 − Hb/H0

)5/3

× exp

(
�0

3H0

Hb/H0

1 − Hb/H0

)
� τ0, (C1)

where τ0 is the magnetization reversal time for Hb = 0.
Analogously, the switching time from the disfavored to the
favored magnetization direction is

tDF(Hb,H0) = τ0

(
1

1 + Hb/H0

)5/3

× exp

(
− �0

3H0

Hb/H0

1 + Hb/H0

)
� τ0. (C2)

Both tFD and tDF reduce to τ0 ≈ 74.6 [6] for Hb = 0.
The order parameter 〈Q〉 is determined by P and the

difference between tFD and tDF as

〈Q〉 ≈
{

2m0
tFD−tDF

P
for tFD � P

2 ,

m0 for tFD > P
2 .

(C3)

This approximation is shown together with simulation results
in Fig. 7. The agreement is very good for |Hb| � |H peak

b |.
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