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Quantum tunneling is ubiquitous across different fields, from quantum chemical reactions and magnetic
materials to quantum simulators and quantum computers. While simulating the real-time quantum dynamics of
tunneling is infeasible for high-dimensional systems, quantum tunneling also shows up in quantum Monte Carlo
(QMC) simulations, which aim to simulate quantum statistics with resources growing only polynomially with the
system size. Here we extend the recent results obtained for quantum spin models [Phys. Rev. Lett. 117, 180402
(2016)], and we study continuous-variable models for proton transfer reactions. We demonstrate that QMC
simulations efficiently recover the scaling of ground-state tunneling rates due to the existence of an instanton
path, which always connects the reactant state with the product. We discuss the implications of our results in
the context of quantum chemical reactions and quantum annealing, where quantum tunneling is expected to be a
valuable resource for solving combinatorial optimization problems.

DOI: 10.1103/PhysRevB.96.134305

I. INTRODUCTION

Quantum-mechanical tunneling (QMT) plays a fundamen-
tal role in a broad range of disciplines, from chemistry and
physics to quantum computing. QMT can be observed in
chemical reactions [1–4], and it affects the description of water
and related aqueous system at room temperature [5,6]. It is
essential for understanding—even at the qualitative level—
the phase diagrams of correlated materials, such as dense
hydrogen, which is the simplest condensed-matter system
[7–10].

QMT can also be engineered in quantum annealers [11,12]
to solve optimization problems using quantum effects [13–17].
Here, quantum tunneling could provide a large advantage [18],
particularly when the energy landscapes display tall but thin
barriers, which are easier to tunnel through quantum mechani-
cally rather than to climb over by means of thermally activated
rare events, whose frequency is exponentially suppressed as
the height of the barrier increases.

In general, simulating real-time quantum dynamics requires
the direct integration of the time-dependent Schrödinger
equation. This is a formidable task as the Hilbert space of the
systems grows exponentially with the number of constituents,
which makes the unitary evolution of a quantum system only
possible for fairly small problem sizes, on the order of 40–50
spins. The characterization of quantum dynamics simplifies
when it is dominated by tunneling events. In this case, the
useful quantities we want to predict are the transition rate
between the initial and final state (e.g., reactants and product
in chemical reactions) and the pathway of the transition.

For simplicity, let us first consider tunneling in a deep
double-well system, well described by the lowest two eigen-
states of the unperturbed tunneling system, |ψ0〉 and |ψ1〉,
which can be expressed as linear combinations of the de-
generate states |ψL〉 and |ψR〉, localized, respectively, in the
left and right well (see Fig. 1). The isolated system exhibits
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characteristic oscillatory behavior between the unperturbed
states, |ψL〉 and |ψR〉, under the action of the Hamiltonian H ,
with frequency proportional to the tunneling matrix element
〈ψL|H |ψR〉 = �/2.

Coherence is easily destroyed by the presence of external
noise, as is the case in the proton transfer reactions and in
quantum annealing (QA). Coupling to an environment can then
stop the oscillatory behavior, and the transition rate is given
by the incoherent tunneling rate, proportional to �2 [19]. This
is also the relevant tunneling rate in the adiabatic evolution of
quantum annealing, where the annealing time must scale as
�−2 in order to avoid Landau-Zener diabatic transitions from
the ground state to the first excited state [13,14].

QMT also appears in quantum Monte Carlo (QMC)
simulations, which can be efficient for quantum many-body
problems without a sign problem (i.e., that the system should
obey bosonic statistics or distinguishable particles). In this
case (in the absence of exponentially large equilibration times,
which can sometimes be present near phase transitions and at
very low temperatures), the computational effort to describe
equilibrium statistics scales polynomially with the system
size. Path integral Monte Carlo (PIMC) has been successfully
applied to a broad range of continuum and lattice models. In
particular, PIMC simulations [20,21] have addressed problems
in which QMT is important, such as proton delocalization in
water [22,23], hydrogen [24], and QA [25,26].

PIMC is based on the path integral formalism of quantum
mechanics, and it samples the density matrix corresponding
to the quantum Hamiltonian H by means of a classical
Hamiltonian Hcl on an extended system having an additional
dimension, the imaginary-time direction. The original quan-
tum system is thus mapped into a classical one, which can be
simulated by standard Monte Carlo sampling.

Although QMC techniques are rigorously derived to de-
scribe equilibrium properties, we show here that equilibrium
PIMC simulations also provide important dynamical quanti-
ties, and in particular the quantum tunneling rate. In Ref. [27],
we have studied tunneling events in a ferromagnetic Ising
model. The Ising ferromagnet can be described by an effective
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FIG. 1. Illustration of a double-well potential energy V (x) and
energy levels. The degenerate levels EL and ER correspond to the
localized states |ψL〉 (blue) and |ψR〉 (green). The degeneracy is
lifted by the linear combination of localized states that produce
the true eigenstates ψ0 = 1/

√
2(|ψL〉 + |ψR〉) (red curve) and ψ1 =

1/
√

2(|ψL〉 − |ψR〉). The tunneling splitting � can be calculated from
the overlap of the localized states.

double-well model, with the total scalar magnetization as a
reaction coordinate. We have demonstrated numerically that
PIMC tunneling events occur with a rate k that scales, to
leading exponential order, as �2—identical to the physical
dynamics. We have also seen that with open boundary
conditions (OBCs) in imaginary time, the tunneling rate
becomes �, thus providing a quadratic speedup.

In this paper, we investigate the scaling relation between the
PIMC tunneling rate and � for a broader class of problems,
which are of paradigmatic importance in quantum chemistry.
We explore models in which the effective one-dimensional
picture of tunneling should break down [28]. Our results for
continuous variables extend those for the Ising model [27], and
we find that the QMC tunneling rate always follows �2 scaling
(or better with OBCs). We argue that this is a manifestation
of a phenomenon in which QMC can efficiently simulate
the tunneling splitting of the ground-state energy levels in
a broad class of multidimensional systems, in all cases when
the autocorrelation time of the QMC pseudodynamics remains
finite (see Sec. V).

II. INSTANTONS AND QMC

A. Path integral Monte Carlo

PIMC and path integral molecular-dynamics (PIMD)
techniques arose directly from the Feynman path integral
formulation of quantum mechanics, and they are used to
simulate thermodynamic equilibrium. To briefly introduce this
approach for continuous space, we start from the expression
for the partition function Z:

Z =
∫

dx〈x|e−βH |x〉, (1)

where x is the particle position (the generalization to arbitrary
dimensions is straightforward), β = 1/kBT is the inverse
temperature, and H is the Hamiltonian of the system. Typical
real-space Hamiltonians are sums of two noncommuting
operators H = � + V , where � = 1/2m∂2/∂x2 is the kinetic
operator (m being the particle mass) and V (x) is the potential
energy. We first notice that the operator e−βH corresponds to
an evolution in imaginary time β. We use the Trotter-Suzuki
approximation e−δτ (�+V ) ≈ e−δτ �e−δτ V for small δτ [21].

Splitting the imaginary-time evolution into P small time
steps of length δτ = β/P , the path integral expression for
Eq. (1) then becomes

Z ∝
∫

dx1dx2 · · · dxP exp
P∑

i=1

Si, (2)

where Si = Ki + Ui is the action of each step. Ki = (xi−1 −
xi)2/(2δτ /m) is the kinetic part and Ui = δτ /2[V (xi−1 − xi)]
in the so-called primitive approximation. Notice that x1 = xP

(closed boundary conditions in imaginary time) for evaluating
the trace of the density operator.

This provides an analogy between a quantum system and
a classical system with an additional dimension: Eq. (2) is
a classical configurational integral, and the multidimensional
object (x1, . . . ,xP−1) ≡ x(τ ) can be viewed as a ring polymer,
whose elements are connected by springs. Each element is
labeled by its position along the imaginary-time axis, with
0 � τ < β. We refer the reader to Ref. [21] for a detailed
review of path integrals. An essential feature of Eq. (2)
is that the integrand is positive, and hence the distribution
exp

∑P
i=1 Si can be sampled by means of METROPOLIS Monte

Carlo methods or molecular-dynamics (MD) simulations.
The main difference between a pure Monte Carlo and a
MD approach is that the latter samples from the canonical
distribution by evolving an appropriate equation of motion,
whereas the former uses stochastic Monte Carlo dynamics
(see the Appendix).

B. Instantons in PIMC

Connections between exact quantum dynamics and PIMD
approaches, such as centroid molecular dynamics [29] and
ring polymer molecular dynamics [30], have been discussed
[31–33] in the context of real-space simulations. Here we
follow an alternative approach and summarize the picture
of Refs. [27,34] based on the instanton theory of tunneling
through energy barriers.

In a PIMC or PIMD simulation, one samples paths x(τ,t) at
each update along the simulation time axis t , and these paths
are distributed according to the functional S(x(τ )) as in Eq. (2).
We can define an underlying pseudodynamics used to sample
the paths to be given by a first-order Langevin dynamics,
∂x(τ,t)/∂t = −δS/δx(τ,t) + η(τ,t). In this case, the analogy
between quantum statistic and classical statistical mechanics
has already been worked out in the stochastic quantization
approach in the context of quantum field theory [35]. Here, the
velocity of the (deformations of) path ∂x(τ,t)/∂t is linked to
the generalized force δS/δx(τ,t) and a Gaussian white noise
η(τ,t) satisfying the obvious fluctuation-dissipation relation.
We can numerically integrate the discretized version of the
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FIG. 2. Left: Illustration of the typical instantonic paths in
configuration space, with PBC, x∗∗(τ ) (cyan), and OBC in imaginary
time, x∗(τ ) (pink). These paths are transition states of the PIMC
and path integral ground-state (PIGS) pseudodynamics, respectively
(in the space of imaginary-time trajectories) in double-well models
(sketched in the gray-scale heat map; see Fig. 6 for a more realistic
example). Right: Instantonic trajectories (projected on the reaction
coordinate x axis) as a function of the imaginary time τ . Notice that
PIMC instantons have to cross twice the barrier to fulfill the PBC
constraint.

equation of motion (with time step δt ), x(τ,t + δt ) = x(τ,t) −
δt δS/δx(τ,t) + √

2δtz(τ,t), where z(τ,t) is a deformation path,
which, after a Trotter discretization, is a vector of uniformly
random distributed numbers in the range [−1,1]. This defines
a Markov chain whose fixed point is the desired distribution,
in the δt → 0 limit.

If the system displays two degenerate minima, then the
transition state of the pseudodynamics is given by the point
xTS(τ ) satisfying δS(xTS(τ ))/δx(τ ) = 0 with the condition that
xTS(τ ) is not entirely contained in one of the attraction basins
corresponding to the two minima [35–38].

Finding this transition state is generally very complicated,
but in the case of a double-well potential V (x) it can be done
analytically. Here the dominant contribution to the integral
comes from the stationary action path x∗∗(τ ) [determined
exactly by the condition δS(x(τ ))/δx(τ ) = 0], which is called
an instanton [39–41]. This trajectory in imaginary time
corresponds to a particle moving in the inverted potential
−V (x) (see Fig. 2). Following Ref. [27], it is possible to
evaluate the action S at this point, and the amplitude is given
by

exp (−S[x∗(τ )]) ∝ � (instanton), (3)

where x∗(τ ) is the open trajectory that connects the two
classical turning points under the barrier, near the minima.
Notice that, when computing the (diagonal) density matrix
ρ(x), PBCs in imaginary time are required. Now the integral
over the closed paths is dominated by the imaginary-time
trajectory x∗∗(τ ), which moves under the start of the barrier,
reaches the turning point, and returns. Therefore, the saddle-
point estimation of the integral gives a squared tunneling
amplitude

exp (−S[x∗∗(τ )]) ∝ �2 (double instanton), (4)
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FIG. 3. Average mean first tunneling time (MFTT) with PIMC
(for PBCs and OBCs) as a function of x0 for different values of λ,
at β = 20, corresponding to a temperature always much lower than
the barrier height. We use a dimensionless mass parameter m = 1/2.
The inset shows the shape of the double-well potential V (x), whose
barrier width (at the top) is 2x0. In the OBC case, deviations from
the expected 1/� behavior occur when the tunneling rate becomes
larger.

due to the cost of creating an instanton and an anti-instanton
(see Fig. 2). Returning to the PIMD pseudodynamics, accord-
ing to Kramers theory [42], the escape rate is k ∝ e−S(xTS), and
therefore k ∝ �2 if standard closed path integrals are used,
whereas k ∝ � if the paths are opened. In Sec. III we extend the
study of Ref. [27] and demonstrate that the quadratic speedup
in the tunneling rate in the case of open boundary path integrals
holds also in multidimensional continuous-space problems.

III. ONE-DIMENSIONAL DOUBLE-WELL POTENTIAL

Let us consider the following one-dimensional double-well
potential:

V (x) =
⎧⎨
⎩

λ(x − x0)4 − (x − x0)2, x � x0,

0, −x0 � x � x0,

λ(x + x0)4 − (x + x0)2, x � −x0,

(5)

with λ,x0 > 0. We can separately tune the width and the height
of the barrier, varying λ and x0. The height of the energy barrier
is �V = 1/4λ, and the distance between the two minima is
d = 2(x0 + √

1/2λ) (see the inset of Fig. 3). Decreasing λ

reduces the energy splitting �, as the two wells become deeper
and more separated. The parameter x0 only increases the well
separation but does not change the potential energy barrier
height. Moreover, a variation of x0 leaves the characteristic
frequency of the potential wells unchanged, i.e., the kinetic
energy associated with the localized states |ψL〉 and |ψR〉.

Following Ref. [27], we measure the mean first tunneling
time (MFTT), defined as the number of updates required to find
the system in the right well, if the particle has been localized
in the left one at the beginning of the simulation. From Fig. 3
we see that the MFTT scales as 1/�2 when PBCs are used,
whereas it scales as 1/� for OBCs, as the parameters x0 and
λ change. The gap � is obtained using a discrete variable
representation (DVR) technique [43]. This scaling relation
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FIG. 4. Top panel: position distributions (histograms) obtained
considering the center (blue) or the tail (orange) of the OBC path. The
distributions are area-normalized, respectively, with the exact ρ(x) ≈
|ψ0|2 distribution (red) and the exact ground state ψ0(x) (green). We
plot only for x > 0 and we use x0 = 3 and λ = 0.14 in Eq. (5).
The difference between the sampled distributions and the reference
ones are negligible. We perform simulations at low temperatures,
β = 20 
 �V . Middle and lower panel: the position of the particle
as the simulation progresses for PBCs and OBCs (both for the center
and the tail). As expected, the tunneling rate is much larger for OBCs.

holds for PIMC with local METROPOLIS updates and PIMD
(using both first- and second-order Langevin thermostats), at
large β, and in the limit of small time steps δτ ,δt (for PIMD) →
0 limit. This means that the scaling of the tunneling rate in
a double-well model, k ∝ �2, is correctly reproduced [19].
Since the computational time required to evaluate tunneling
splittings increases as the gaps become smaller, we limit the
present simulations to a finite set of potential parameters,
which allow us to acquire sufficient MFTT statistics.

Why do the open paths tunnel faster from the point of
view of PIMC pseudodynamics? To answer this question,
we first observe that, for sufficiently low temperatures, the
center of the open path x∗(τ ≈ β/2) sample from the ground-
state distribution |ψ0(x)|2, whereas the tails, x∗(τ ≈ 0) and
x∗(τ ≈ β), sample from the ground-state distribution ψ0(x).
Therefore, the tails spend more time inside the barrier (see
Fig. 4) compared to the center, which follows instead the more
localized ψ2

0 distribution. Once one of the two tails crosses the
barrier, then the rest of the open polymer may easily follow,
so that the whole polymer “tunnels” faster compare to its PBC
counterpart. This also means that, with OBC, it is possible to
sample from the equilibrium distribution ρ(x) ≈ |ψ0|2, using
the center of the path, while having a considerable speedup
in the sampling. We notice that this feature is not surprising
as the OBC technique is closely related to the so called path
integral ground state [44] (PIGS) technique. Indeed, in the
PIGS [44] approach, sampling from the tails gives the mixed

distribution ψ0(x)ψT (x), but in our case the trial wave function
is ψT (x) = 1.

Therefore, we propose that OBCs should be used not only in
the context of quantum annealing but much more broadly also
in material simulations, as far as low-temperature conditions
are investigated.

IV. MULTIDIMENSIONAL TUNNELING

The double-well model provided in Sec. III is a prototypical
example of one-dimensional tunneling. One could argue that,
despite having many-spin degrees of freedom, the spin models
investigated in Ref. [27] are also effectively one-dimensional
models, as the relevant reaction coordinate is the total
scalar magnetization M . Indeed, the instantonic nature of the
transition state can be seen if we plot M(τ ) as a function of
the imaginary-time parameter τ .

It is much more straightforward to devise models that
require multidimensional tunneling in continuous space, rather
than spin models [45,46]. Toward that end, we borrow insights
from quantum chemistry, where simplified model for char-
acterizing proton tunneling have been devised [4,28,47,48].
In particular, in Ref. [28] a semiclassical theory of multidi-
mensional tunneling is formulated, unraveling its qualitative
differences compared to one-dimensional tunneling. It was
found that in multidimensional tunneling, two regimes can
be identified: the pure tunneling case, which is effectively
one-dimensional, where the tunneling path can be defined
uniquely, and the mixed tunneling regime, when tunneling
occurs very broadly, i.e., where a set of dominant semiclassical
paths {xTS} is not defined. In the first case, the action that
defines the semiclassical wave function is purely imaginary,
whereas in the latter the action is complex. We refer the
interested reader to Ref. [28] for analytical details.

Investigating QMC simulations for such mixed tunneling
models, where the QMC scaling relation with the exact QMT
rate might be expected to break down, we instead find that the
quantum tunneling rate given by QMC scales as the adiabatic
quantum evolution also in this case.

A. QMC tunneling rate scaling

We first consider the simple shifted parabola bidimensional
model of Ref. [28], which is a minimal model for the
antisymmetric mode coupling mechanism for proton tunneling
in malonaldehyde, a well-studied molecular test case. The
Hamiltonian reads

H = � + VA, (6)

with

� = −g2

2

(
∂2

∂x2
+ ∂2

∂y2

)
, (7)

where g > 0 is a dimensionless parameter that sets the strength
of the quantum fluctuations. The potential is

VA(x,y) =
{

1
2 (x + 1)2 + 1

2ω2
y(y + y0)2, x < 0,

1
2 (x − 1)2 + 1

2ω2
y(y − y0)2, x � 0,

(8)

where y0 � 0 and ω2
y > 0 are dimensionless harmonic po-

tential parameters. This potential represents two parabolas,
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FIG. 5. Average MFTT tunneling time with PIMC (with PBC) as
a function of ωy for different values of g = 0.2,0.3,0.4 (pink, blue,
and red data series, respectively) and two values of y0 = 0 (empty
symbols) and 1 (full symbols). The potential considered is VA as in
Eq. (8). Lines represent a fit to the exact �−2 gap values, obtained with
the DVR method. The proportionality constant α(g) that multiplies
the inverse gap squared is different for each g value, and it is fitted
using only the y0 = 0 data series. Notice the logarithmic scale on
both axes.

located, respectively, in the half-planes x < 0 and x > 0, with
centers shifted along the y axis by an amount 2y0. In the case
of a malonaldehyde molecule, the coordinate x represents the
motion of transferring the proton, while y represents the C-O
stretching mode.

Following Ref. [28], let us introduce a parameter a2 = y2
0 −

g/ωy , whose sign distinguishes between the two ground-state
QMT cases: pure tunneling for a2 > 0 and mixed tunneling
for a2 < 0.

In Fig. 5 we present results of PIMC simulations with local
updates, using PBC, at large β (very low temperature), and
in the converged time step δτ → 0 limit, to describe faithfully
ground-state tunneling. The path deformations are obtained
by displacing each bead at a time by an amount (dx,dy).
The displacements are Gaussian-distributed with zero mean,
and the variance is tuned in order to obtain a METROPOLIS

acceptance probability of ≈40%.
Again we study the MFTT obtained with PIMC simulations

as a function of the parameter ωy , in the range [0.05,2] and
for three different choices of g = 0.2,0.3,0.4, and for two
shifting values y0 = 0 and 1. Following Ref. [27], we define
the MFTT as the number of PIMC updates required to observe
an instantonic state. In turn, we algorithmically define an
instanton path as spending approximately the same fraction
of imaginary time in either well.

With these parameter ranges,1 we can roughly mimic
proton transfer reactions in malonaldehyde [48]. For this
molecule, it is found that if the tunneling is described only
by a one-dimensional process, the tunneling rate is reduced
by two orders of magnitude compared to experimental and

1The actual value would be g ≈ 0.1; here, we artificially enhance h̄

in order to increase the observed tunneling rate.

recent theoretical values [49,50]. Furthermore, it was argued in
Ref. [28] that deviations from the one-dimensional picture lead
to a mixed tunneling regime where no well-defined tunneling
path exists. Therefore, it could be possible that QMC under-
estimates the exact tunneling rate. In the context of a quantum
annealing problem, this might mean that the performances of
QA and its simulated version through QMC could be very
different, under these “mixed tunneling” conditions.

We first perform tests for y0 = 0. While according to
Ref. [28] we are in the mixed tunneling regime, in this
case x and y directions decouple, leading with effective
one-dimensional tunneling along the x direction. Indeed,
the gap � is constant as a function of ωy , and we observe
the same in QMC, where the MFTT remains constant. Its
precise value depends on the parameter g. We use these data
to fix the proportionality constant α(g), which we use later to
compare the MFTT to the value α(g)�−2. Notice that in the
ωy → 0 limit the two wells become parallel and indefinitely
extended along the y direction. In this limit, we observe an
infinite number of tunneling paths that connect reactants on
the left well with the products on the right.

Next, we set y0 = 1 and repeat the simulations. This
time the scaling of �−2 as a function of ωy is nontrivial.
Nevertheless, it approaches the previous value—for any given
g—in the ωy → 0 limit, as the two wells are infinitely
long and the shift given by y0 becomes irrelevant. In this
case, we cross the transition point a2 = 0 between the two
regimes of tunneling, when ωy = g. We observe a satisfactory
agreement between the QMC MFTT data series and the
α(g)�−2 functions, while residual differences still remain.
Notice also that, if we fix the constant α(g) targeting the
pure tunneling regime, then the QMC tunneling time is always
slightly smaller than α(g)�−2, so QMC seems to be slightly
more efficient than QA, even with PBC.

B. QMC reaction pathways and fluctuations
around the instanton solution

In this section, we explicitly track the QMC pseudodynam-
ics transition states and compare to the instantonic trajectory
computed by minimizing the action S. Let us consider the
symmetric mode coupling potential,

VS(x,y) = 1

8
(x − 1)2(x + 1)2 + ω2

y

2

(
y + γ

ω2
y

(x2 + 1)

)2

.

(9)

This potential energy surface is continuous and has been
widely used as a model for proton tunneling. In the typical
example of malonaldehyde, the coordinate x represents the
motion of the proton transferring between the oxygen atoms,
while y gives the scissorslike motion of the O-C-C-C-O
frame [28]. We use the dimensionless potential parameters
(ωy,γ,g) = (0.48,0.39,0.10) to fit the model to the ab initio
potential energy surface [49]. In this way, we can directly
compare the transition paths given by the PIMC simulation
with other techniques, such as the ring polymer instanton (RPI)
method [6,50–52], recently introduced to calculate energy
splitting. In the RPI framework, one first needs to locate the
saddle point of the action S (the instanton), and then evaluate
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VS(x,y) of malonaldehyde of Eq. (9). Red lines represents a collection
of 20 instanton paths sampled with PIMC. These samples are
uncorrelated as they correspond to independent tunneling events after
full reinitialization of the starting path in the reactant well. That is,
when the MFTT identification criteria are met (see the text), we
stop the PIMC simulation and collect the last path that has been
generated. We use a sufficiently large inverse temperature (β = 400,
P = 512), Trotter slices, and OBCs in imaginary time. We single
out, in orange, one of these instances in order to appreciate their
instantonic character. Indeed, most of the Trotter slices are located
at the bottom of the two wells, and only a very few of them are
located on the barrier (cf. Fig. 2); these correspond to the middle
of the imaginary-time trajectory (τ ≈ β/2). The PIMC instanton
paths are not smooth, given the large number of Trotter slices, and
they represent fluctuations around an average transition path that is
qualitatively very close to the RPI solution taken from Ref. [50]
(green; see the text). We also plot the MEP (blue) for comparison.
The proton tunneling paths typically take place on a region quite far
from the saddle point (0,γ /ω2

y ≈ 1.7) of the potential.

the splitting energy by computing the functional integral
up to second order in the fluctuations around the dominant
contribution. This approach employs neither PIMC sampling
nor PIMD, as the instanton path is obtained via the action’s
minimization and the initial guess is an OBC path that already
connects the reactant to the product state.

In Fig. 6, we plot a sample of transition paths produced by
the PIMC pseudodynamics, and we recognize their instantonic
character. We compare some OBC transition paths sampled
with our PIMC simulation against the RPI solution recently
published in Ref. [50]. We see that these instanton paths form
a bundle around the RPI saddle point solution, and they are
qualitatively distant from the minimum energy path (MEP),
which would be typical of a classical thermally activated
process [50]. It is remarkable that a simple PIMC simulation
obtains the instanton path, which is otherwise computed only
by a complex minimization procedure as in the RPI scheme.

Another advantage of PIMC is that we can directly sample
the statistical fluctuations around the dominant solution x∗(τ ).
To second order, the action can be expanded as [35]

S � S[x∗] + 1

2

∫ β

0
dτ ′

∫ β

0
dτ ′′ δ2S[x∗]

δx(τ ′)δx(τ ′′)
y(τ )y(τ )

� S[x∗] + 1

2

∫ β

0
dτ y(τ )Ĝ[x∗]y(τ ), (10)

where y(τ ) is a fluctuation path, satisfying y(0) = y(β) = 0, and
Ĝ = − d2

dτ 2 + V ′′[x∗] is the fluctuation operator, or Hessian,
adopting the notation of Ref. [51]. Here V ′′[x∗] is the second
derivative of the potential computed along the instanton path
x∗(τ ).

In practice, one always deals with discretized trajectories in
imaginary time. Therefore, also the operator Ĝ is discretized
using finite differences and then diagonalized to obtain the
normal modes and frequency of the fluctuations. The resulting
product of Gaussian integrals allows one to evaluate Eq. (10).

However, it could be cumbersome to evaluate G for ab
initio potentials (as they require an evaluation of the second
derivatives of the potential), or in the case of rugged energy
landscapes, where local curvature at the saddle point V ′′[x∗]
does not correctly represent the actual amplitude of the
quantum fluctuations [38,53]. On the other hand, the inverse
operator G−1 can be computed stochastically with PIMC,
using the relation

Ĝ−1[x∗](τ1,τ2) = 〈y(τ1)y(τ2)〉x∗ , (11)

where the right-hand side denotes the statistical average of
the fluctuations, around a given path x∗. This approach gives a
more effective and fast estimate of the curvature of the potential
surface in the above cases.

We note that PIMC sampling techniques have already
been used to compute tunneling splittings in molecular and
condensed-matter systems [54–57]. Here we propose an
alternative and simple way to compute ratios of quantum-
mechanical rate constants. Suppose that the potential displays
several minima, i.e., that we have one reactant state R and two
or more possible product states P1,P2. By computing the ratio
of the average PIMC tunneling times with OBCs, required to
perform the transitions R → P1 and R → P2, respectively, we
can estimate the ratio of the tunneling splittings �R,P2/�R,P1

corresponding to the two quantum-mechanical transitions,
provided that enough statistics of instanton events can be
gathered in a reasonable amount of time. This approach
is predictive, as the instantons are generated by the PIMC
pseudodynamics without any a priori knowledge of the final
product state.

This problem is closely connected with quantum annealing,
where, starting from some high-energy “reactant” states R’s,
one would like to reach the “product” state Pi having the lowest
possible potential energy after a sequence of tunneling events
[58]. The relative probability of finding this state, compared to
other metastable ones, is well described by PIMC simulations.

V. POTENTIAL OBSTRUCTIONS FOR QMC
SIMULATIONS

While the above results hold in a broad class of spin and
continuous models, let us list here also possible counterex-
amples to this finding, where obstructions to efficient QMC
simulations are present. The first kinds of counterexamples
are models in which topological obstructions for a PBC
path integral exist. In these cases, the paths cannot explore
all the space because local updates cannot generate paths
having different winding-numbers [59,60]. On the other hand,
global updates can easily restore ergodicity in all cases, but at
the expense of generating instantonlike moves and therefore
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biasing the MFTT estimation. Nevertheless, this issue may be
solved by using OBCs instead of PBCs.

A different type of obstruction is realized in models
in which the wave function and its square modulus are
concentrated on different supports [59,61]. This obstruction
remains even in the OBC approach. Indeed, the tails (which
sample from the ground state) and the center (which samples
from its square) may remain trapped in different subspaces,
breaking the ergodicity of the simulations. We notice that
examples that display such features are ad hoc designed
discrete models, and it would be extremely interesting to find
counterparts in realistic continuous-space models.

Finally, we remark that a practical limitation of this
technique concerns the evaluation of vanishingly small gaps.
Indeed, the waiting time to observe instantons in PIMC
increases as the tunneling splitting become smaller. So even
if QMC only requires polynomially increasing resources to
simulate the system, if the gap closes exponentially with
the system size, the QMC simulation time will also increase
exponentially.

VI. CONCLUSIONS

We have studied the tunneling of path-integral-based equi-
librium simulations in continuous-space models, generalizing
a previous study [27] on ferromagnetic spin models. We
demonstrate that the PIMC tunneling rate scales as a �2

if periodic boundary conditions in imaginary time are used,
while it scales as � with open boundary conditions. These
scaling relations seem to be a general property of path
integral methods, as long as reasonable semilocal updates
are employed during the Markov chain pseudodynamics (see
Sec. II B). In this case, in double-well potentials, it is possible
to directly identify the transition state of the path integral
pseudodynamics—a purely classical process—and therefore
compute its classical reaction rate using Kramers theory.

This transition state is the instanton path, and we remark
here that this trajectory is sampled by the PIMC pseudody-
namics using local updates, i.e., we do not need to engineer
such global update moves as in Refs. [45,56]. Indeed, the
latter approach would invalidate the premises and discussions
presented in this paper and artificially increase the reaction
rate observed with PIMC. On the other hand, building in
instantonic updates in the METROPOLIS procedure requires
full knowledge of the system, i.e., knowing in advance the
transition states. Having this knowledge, one would solve
beforehand the quantum annealing problem, for example,
without even running any PIMC simulation.

We remark again that what we found concerns the scaling of
the quantum tunneling splitting. It is not possible to determine
quantitatively the quantum rate with a single-shot simulation
yet. Indeed, while the exponent of the QMC tunneling rate
(i.e., the inverse of the MFTT) is not sensitive to the specific
choice of the updates in the QMC pseudodynamics, the
QMC prefactor depends on the details of the simulation. For
this reason, only the ratio of two tunneling splittings can
be calculated using the present technique, as discussed in
Sec. IV B.

The quadratic speed-up in tunneling efficiency is a robust
feature of OBC simulations for tunneling through individual

barriers. In the context of simulations, therefore, we propose
that open path integral simulations should be used instead of
PBCs and will accelerate the sampling whenever ground-state
properties are desired.

We also turned our attention to simplified models for
proton transfer, where multidimensional tunneling is deemed
important, and a semiclassical description of tunneling as
an effective one-dimensional process has been seen to fail.
Nevertheless, the scaling relation of the PIMD transition rate,
compared to the exact incoherent tunneling rate �2, holds also
in this case.

The above finding is very interesting because often in a mul-
tidimensional potential the smooth tunneling path (instanton)
connecting the minima of the potential does not exist due to
the effects of so-called dynamical tunneling [28,62–64]. The
lack of an instanton path was also studied, e.g., in the case of
the two-dimensional shifted parabola model [28] considered
in our study. On the other hand, as explained above in Sec. II B
based on the Kramers theory arguments, the existence of the
instanton path is a key requirement that leads to identical QMT
and PIMC scaling laws.

To explain this conundrum, we observe that the difficulty
with an instanton description in the case of tunneling in a
multidimensional potential usually occurs when one needs
to match the solutions given by Wentzel-Kramers-Brillouin
(WKB) theory in classically allowed and forbidden regions
at the boundary formed by caustics. Caustics result in the
complex (oscillatory) behavior of the wave function under the
barrier [28,62,63]. This oscillatory behavior results in a phase
problem in QMC.

We argue that at zero temperature this situation does not
occur generically, because a classically allowed region in
configuration space “collapses” into the point corresponding
to the minimum of the potential. As usual, to study tunneling
one should consider the wave function under the barrier that
nearly coincides with the ground-state wave function near one
of the minima of V , exponentially decaying away from it. The
mechanical action S[x(τ )] = ∫ τ

∞[mẋ2(τ1) + V (x(τ1))]dτ1 for
the wave function is associated with the unstable Lagrangian
manifold [65] formed by real-valued trajectories (x(τ ),p(τ )) in
the phase space moving in the imaginary time τ in the inverted
potential −V [above p(τ ) is a system momentum]. The
trajectories emanate at time t = −∞ from the corresponding
maximum of the −V . In general, projections of the Lagrangian
manifold onto the coordinate space x can have caustics
and cusps (and more complex singularities in dimensions
higher than 2 [66]) in the classically forbidden region. These
singularities lead to multivaluedness of the action surface, and
some of its branches become complex. However, the minimum
action surface is real- and single-valued. It possesses lines
where the surface gradient is discontinuous (see Fig. 7). They
correspond to the so-called switching lines in configuration
space [67]. Points at different sides of the switching are
reached by topologically different imaginary-time paths, as
shown in Fig. 7(b). Therefore, any point x can be reached
by the most probable path that provides the minimum of
the action and never crosses a switching line. An instanton
is a particular member of the minimum-action family of
paths that connects the two maxima of the potential −V . It
corresponds to the heteroclinic orbit (x∗(τ ),p∗(τ )) contained

134305-7



MAZZOLA, SMELYANSKIY, AND TROYER PHYSICAL REVIEW B 96, 134305 (2017)

Lagrangian
manifold

cusp

fold

fold

(a)

0

caustic

caustic

(b)

3

1

2

2

3

1

(c) action
surface

switching
line

1

1

2

2

3

FIG. 7. (a) Unstable manifold with a cusp singularity and three
typical imaginary-time paths emanating from one of the minima
of the potential. (b) Projection of the unstable manifold onto the
coordinate plane (X1,X2). The two folds project onto caustics,
while projections of the three trajectories intersect at the point X0

that lies on the switching line, showed as a dashed line. (c) The
action S(X0) is a three-valued function in between the caustics.
Two of its lower branches intersect along the switching line. After
Refs. [67,69].

in the unstable Lagrangian manifold shared by the two maxima
[68]. This explains why ground-state tunneling splitting for the
particle in a multidimensional potential is always described by
the instanton with a real-valued action and therefore can be
simulated efficiently by PIMC.

This confirms that PIMC simulation of QMT in the ground
state can be done without any loss of efficiency compared to
what a real system would do. The fact that PIMC simulations
have the same scaling with the problem size as physical
quantum annealing was recently confirmed experimentally,
again on a spin system on a chimera graph [70]. In this context,
it is unlikely that QA will find a ground state of optimiza-
tion problem that can achieve an exponential speedup over
classical computation only by using QMT as a computational
resource.

We remark here that these conclusions hold only when so-
called stoquastic Hamiltonians are used, i.e., Hamiltonians that
allow PIMC simulations. This is the case of the Hamiltonians
used in this paper. In most reaction simulations, protons are
assumed to be distinguishable particles, and in QA the standard
transverse field Ising Hamiltonian is also stoquastic [11,12].
This provides additional evidence that QA machines should
implement nonstoquastic Hamiltonians that display a sign
problem [71–73] in order to avoid efficient simulations by
QMC methods.
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APPENDIX: DETAILS OF THE PATH
INTEGRAL SIMULATIONS

The typical Hamiltonian (here written in one dimension for
the sake of simplicity) is given by

H = p2

2m
+ V (x), (A1)

where x and p are the position and momentum coordinate,
respectively, m is the mass of the particle, and V (x) is the
potential. The kinetic operator is p2/2m, where the strength of
the quantum fluctuations is controlled by the particle’s mass
m. By applying the standard Trotter breakup for the density
operator e−H/T , the partition function at temperature T is given
by

Z = tr e−H/T

≈
∫

dx exp

[
−

P∑
k=1

(
mPT

2
(xk − xk+1)2 + 1

PT
V (xk)

)]
,

(A2)

where xk is the coordinate of the kth system’s replica (time
slice), and P is the total number of Trotter replicas. If we
use PBC, then xP+1 = x1. We refer the reader to Ref. [21]
for additional details concerning energy estimators and more
sophisticated Trotter breakups, i.e., more accurate approximate
propagators. Equation (A2) represents the partition function
of a classical ring polymer, made of P beads at the fictitious
temperature PT . The neighboring replicas (in imaginary time)
interact via a harmonic potential having a spring constant κ =
m(PT )2.

PIMC. The simplest way to sample Z is to perform
METROPOLIS Monte Carlo moves on this extended system,
the METROPOLIS weight being the integrand of Eq. (A2).
The simplest local update consists in moving only one
coordinate replica x ′

k → xk + δz and accepting/rejecting the
move according to the METROPOLIS algorithm. z is a uniform
random number in the range [−1,1], and δ is tuned in order
to optimize the autocorrelation times. This is the kind of local
update used in the main text. One MC sweep consists of P

local attempts.
PIMD. It is possible to sample from the finite-temperature

canonical distribution of the ring polymer [74] using also
molecular dynamics (MD). In this case, the sampling is driven
by the forces. Among all the possible MD integrator schemes,
here we choose the Langevin equation of motions. Two kinds
of Langevin MD can be considered, namely first and second
order. The first-order case can be considered as a particular
case of PIMC where the updates are not completely random,
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i.e., they follow the forces, and where the acceptance/rejection
is missing. In this case, the update rule consists in

x ′
k = xk + δfk +

√
2T δηk, (A3)

where δ is the integration time step, η is a Gaussian-distributed
random number (with zero mean and unitary variance), and fk

includes all the forces acting on the kth replicas,

fk = −∂V (xk)

∂xk

/
P + PT 2m(xk+1 − 2xk + xk−1). (A4)

In the MD framework, all updates are accepted at the cost
of introducing a time-step discretization error, which can be
systematically removed in the limit δ → 0.

In the second-order case, we instead add the conjugate
momenta π to the x coordinates, so that the ring polymer

Hamiltonian reads

Hcl =
P∑

k=1

(
π2

k

2
+ m(PT )2

2
(xk − xk+1)2 + 1

PT
V (xk)

)
.

To sample the equilibrium distribution e−Hcl/PT , we integrate
the following equation of motion:

π ′
k = (1 − δγ )πk + δ/mfk +

√
2γ T δ/mη, (A5)

x ′
k = xk + πkδ, (A6)

where, again, δ is the integration time step, η is a Gaussian-
distributed random number, and fk includes all the forces
acting on the kth replicas. In this equation, γ is a parameter
that has to be tuned in order to minimize autocorrelation times
and—in general—can also be position-dependent.
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