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Multifractal finite-size scaling at the Anderson transition in the unitary symmetry class
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We use multifractal finite-size scaling to perform a high-precision numerical study of the critical properties
of the Anderson localization-delocalization transition in the unitary symmetry class, considering the Anderson
model including a random magnetic flux. We demonstrate the scale invariance of the distribution of wave-function
intensities at the critical point and study its behavior across the transition. Our analysis, involving more than
4 × 106 independently generated wave functions of system sizes up to L3 = 1503, yields accurate estimates for
the critical exponent of the localization length, ν = 1.446(1.440,1.452), the critical value of the disorder strength,
and the multifractal exponents.
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I. INTRODUCTION

At the critical point of the Anderson transition (AT), the
single-particle eigenstates take an exotic form: Each spatial
“isosurface” of the wave-function intensity within the system
is a fractal with a certain fractal dimension [1–3]. The
composition of all these fractals comprises a multifractal wave
function whose features are part of the fingerprint of the critical
point, and thus they are shared by all models belonging to
the same universality class. Most interestingly, the study of
multifractality in the wave functions across the critical region
provides an efficient numerical tool—multifractal finite-size
scaling (MFSS)—to monitor and quantitatively characterize
the transition [4,5]. This technique has provided insight into the
localization-delocalization transition in different models and
symmetry classes [6,7], into the quantum percolation problem
[8], and it has also revealed the existence of multifractality in
the spectrum of the Dirac operator in quantum chromodynam-
ics [9].

The MFSS formalism bears the potential to expose the
effect of many-particle interactions on the critical properties
of the AT [10–13], and work along this line is currently being
pursued [14–16]. Indeed, the significance of multifractality
goes well beyond noninteracting models: It has been found that
the ground-state wave function of certain spin systems exhibits
multifractality in Hilbert space in the absence of any disorder
[17–21]. It is furthermore possible to distinguish between
different quantum spin phases in these many-body systems by
studying corrections to multifractal scaling [22,23]. Multifrac-
tality also seems to play a prominent role in interacting systems
subject to strong disorder [24,25], in which an insulating phase
can emerge, corresponding to a many-particle wave function
which is localized in Fock space [26–28]. This has revived the
interest for the AT in complex geometries and random graphs
[29–31], leading to a controversy about the existence of a
nonzero measure phase populated by multifractal (delocalized
nonergodic) states [32–36]. The study of multifractality and of
the applicability of MFSS to different models is therefore of
primary importance not only for disordered systems, but also
for the understanding of quantum many-body systems.
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Here, we present a high-precision numerical analysis of
the AT in the unitary symmetry class, one of the ten existing
symmetry classes for disordered systems [3]. The defining
feature of the unitary symmetry class is the absence of
time-reversal symmetry, which can be broken by applying
an external magnetic field or by the presence of magnetic
impurities. The question of how the AT is affected by a
certain concentration of magnetic moments is currently under
investigation and it is potentially relevant to understanding
the experimental observations of metal-insulator transitions
in doped semiconductors [37–39]. The MFSS formalism has
already been applied in the unitary symmetry class by Ujfalusi
and Varga in Ref. [7]. In this work we consider a different
Hamiltonian in order to (i) confirm the values of multifractal
and critical exponents in this universality class, (ii) present
the study of the behavior of the scaling of the probability
density function (PDF) of wave-function intensities (which
is currently lacking in the d = 3 unitary symmetry class)
and demonstrate its scale invariance at the critical point in
the absence of time-reversal symmetry, and (iii) increase the
precision and reliability of the analysis by considering larger
system sizes up to L = 150 and more statistics.

The organization of the paper is as follows: In Sec. II, we
describe briefly the Hamiltonian considered, which combines
the effects of a scalar disordered potential and a random
magnetic flux. In Sec. III, we recall the basics of multifractality
at the critical point of the AT. In Sec. IV we describe how
the persistence of multifractal fluctuations can be monitored
using the PDF of wave-function intensities, and we proceed
to revisit the generalized multifractal formalism. We present
results from standard and multifractal finite-size scaling in
Secs. V and VI, including estimates for the critical parameters
and multifractal exponents.

II. ANDERSON MODEL IN THE UNITARY
SYMMETRY CLASS

We consider the three-dimensional (3D) Anderson Hamil-
tonian in site basis, where time-reversal symmetry is explicitly
broken by including random phases in the hopping terms,

H =
∑

k

εk |k〉 〈k| −
∑
〈k,l〉

eiφkl |k〉 〈l| , (1)
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TABLE I. Average number 〈N 〉 of uncorrelated wave functions
generated for each choice of disorder W and L. The maximum and
minimum numbers of states for a given W for each L are shown in
brackets. A total of 19 disorder values within the interval [17.9,19.7]
were considered.

L 〈N 〉 (Nmax,Nmin)

20 20070 (20072, 20069)
30 20393 (21127, 20081)
40 20070 (20078, 20054)
50 20049 (20050, 20048)
60 20062 (20064, 20059)
70 15149 (15225, 15104)
80 15094 (15095, 15093)
90 15089 (15090, 15088)
100 15080 (15084, 15072)
110 10047 (10048, 10047)
120 10050 (10108, 10045)
130 10043 (10044, 10039)
140 10259 (11014, 10002)
150 10349 (10864, 10011)

where site k = (x,y,z) is the position of an electron in a
simple cubic lattice of linear size L (measured in terms
of the lattice constant), and 〈k,l〉 denote nearest neighbors.
The random on-site energies εk are uniformly distributed in
the interval [−W/2,W/2], and the random phases φkl are
uniformly distributed in the range [0,2π ]. In order for H to
be Hermitian, we require that φlk = −φkl . The energy scale
is set by the magnitude of the hopping elements, which is
taken to be unity. The Hamiltonian (1) may be viewed as
that of a system in the presence of a random magnetic flux,
yielding random Peierls phases for the hopping terms between
neighboring lattice sites [40,41].

Assuming periodic boundary conditions, the L3 × L3

Hamiltonian is diagonalized in the vicinity of E = 0 (the
center of the spectrum) for different linear sizes L and degrees
of disorder W , close to the critical value Wc � 18.8 where the
localization-delocalization transition occurs [42]. For W < Wc

the system is in the delocalized (or metallic) phase while it is
in the localized (or insulating) phase for W > Wc. As the
transition is approached, the localization (correlation) length
ξ of the eigenstates in the insulating (metallic) phase exhibits
a power-law divergence,

ξ ∝ |W − Wc|−ν, (2)

where ν is the critical exponent determined by the universality
class of H.

Numerically, the eigenstates � = ∑
j ψj |j 〉 are obtained

using the JADAMILU library [43,44]. We consider only a
single eigenstate per sample (disorder realization), namely,
the eigenstate with energy closest to E = 0. This is of primary
importance in order to avoid the strong correlations that
exist between eigenstates of the same sample [5]. Linear
system sizes range from 20 to 150, and disorder values are in
the interval 17.9 ≤ W ≤ 19.7. For each combination of size
and disorder the number of disorder realizations varies from
2 × 104 for the smallest L to 104 for the largest, adding up to

a total of ∼4 025 000 wave functions. The average number of
states considered for each L-W pair is indicated in Table I.

III. MULTIFRACTALITY AT THE ANDERSON
TRANSITION

As suggested by Aoki [1,2], the merging of the extended and
localized characters of the wave function at the critical point
of the Anderson transition would require the state to occupy
an infinite volume as L → ∞—like extended eigenstates do—
but at the same time a vanishing fraction of the whole system—
inheriting the nonergodicity of localized states. This behavior
is provided by a multifractal distribution [45,46]. From an
observational point of view, a multifractal wave function shows
a pattern of large and intricate fluctuations of its intensity. A
critical eigenstate of Hamiltonian (1) is shown in Fig. 1.

FIG. 1. Critical eigenstate of Hamiltonian (1) near the band center
(E = 0) for W = 18.8 and system size L3 = 1503. In the main plot,
sites contributing to 98% of the norm of the wave function (omitting
the sites with the lowest intensities) are shown as cubes whose volume
is proportional to |ψj |2. The color and opacity of the cubes is chosen
according to the value of − logL |ψj |2, which ranges from 0.921 to
3.231. The bottom panel shows the wave function intensities vs site
index j ∈ [1,L3].
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Mathematically, a multifractal eigenstate ψ(r) is character-
ized by a power-law scaling of its moments,

Ld〈|ψ(r)|2q〉 ∼ L−τq , (3)

where d is the Euclidean dimension of the system, the overline
denotes a spatial average, and the angular brackets mean a
disorder average. The so-called mass exponents τq depend
nonlinearly on q ∈ R [3,47]. For general q, we call the
moments

Rq ≡ Ld |ψ(r)|2q =
∫

|ψ(r)|2q dd r (4)

generalized inverse participation ratios (GIPRs).
Among the GIPRs, the case q = 2 corresponds to the

standard inverse participation ratio (IPR), which measures
the inverse of the subvolume of the system where the wave
function has a noticeable amplitude, i.e., it quantifies the
spatial extension of the state. For extended states it scales as
IPRmetal ∼ L−d , while for localized states it will saturate as L

grows, IPRinsulator ∼ 1. The spatial extension of a multifractal
state, however, scales as IPR−1 ∼ Lτ2 , where τ2 < d, i.e., its
volume is unbounded but it occupies only a vanishing fraction
of the whole system as L → ∞.

In a multifractal wave function a set of points with the same
|ψ(r)|2 value, characterized by the variable

α(r) ≡ − logL |ψ(r)|2, (5)

form a fractal with a certain fractal dimension f (α) ≤ d: The
volume Vα of such a set, which corresponds to the number of
points in a discrete lattice, scales as Vα ∼ Lf (α) as L → ∞.
The fractal dimension of the set depends on α, i.e., on the
value of the wave-function intensity. The whole collection of
fractal dimensions occurring in the wave function is called the
multifractal spectrum, f (α).

It then ensues that f (α) is closely related to the PDF of the
variable α, i.e., essentially to the PDF of the wave-function
intensities [48],

PL(α) ∼ Lf (α)−d . (6)

As for single fractals, multifractality persists at different
length scales or under certain scale transformations, e.g., after
coarse graining the distribution: If we regularly partition the
system into (L/�)d boxes of linear size �, and we integrate
inside each box,

μk =
∫

box k

|ψ(r)|2 dd r (7)

or μk ≡ ∑
j∈box k |ψj |2 in a discrete lattice, the resulting

distribution of integrated intensities defined on a system
of linear size L/� will retain the multifractal properties of
the original wave function. Thus, Eqs. (3)–(6) hold true
for the intensities μk upon the substitution L → L/� [e.g.,
αk ≡ − ln μk/ ln(L/�)]. In this case the GIPRs correspond to

Rq =
∑

k

μ
q

k , (8)

which obey

〈Rq〉 ∼ λτq (9)

in the limit that λ ≡ �/L → 0. Here, the brackets denote an
ensemble average over disorder [49].

The general mathematical properties of a multifractal
spectrum are well understood [3,47]. In particular, from
Eqs. (3)–(6) it follows that the function f (α) and the exponents
τq are related by a Legendre transformation,

αq = dτq/dq, fq = qαq − τq, (10)

which defines singularity strengths αq and a singularity
spectrum fq . The exponents τq are conveniently expressed
in terms of anomalous scaling exponents q ,

τq = d(q − 1) + q, (11)

which measure the deviation of the scaling of the GIPR from
the metallic behavior, and determine the power-law nature
of the spatial correlations of the multifractal wave functions
[3,51]. The anomalous scaling exponents are expected to obey
a symmetry relation at the critical point [53,54],

q = 1−q, (12)

which seems to hold for Anderson transitions in different
systems and dimensionality [48,55–62], and has also been
experimentally observed [63].

The study of the scaling of the GIPRs with the length scales
L or � constitutes the standard method to obtain numerically
the multifractal spectrum [61,64–70].

IV. MULTIFRACTAL FLUCTUATIONS AROUND
THE TRANSITION

The analysis of the fundamental multifractal properties of
the critical point requires knowledge of the position of the
transition in the first place. Standard multifractal analysis relies
on this, and it is not useful in order to discern the existence (or
absence) of the transition. The estimation of the position of the
mobility edge and the critical exponent ν, on the one hand, and
the multifractal analysis, on the other, are so far completely
decoupled. The persistence of multifractal fluctuations in the
wave functions around the critical point [71] can however be
used to bridge this gap and perform a full characterization of
the transition.

The starting point is the multifractal scaling of the PDF for
the integrated distribution μk ,

PL/�(α) ∼
(

L

�

)f (α)−d

. (13)

This relation implies that at the critical point the only relevant
length scale in the PDF is the ratio λ = �/L, thus different
system sizes will exhibit the same distribution of intensities
when the box size � is appropriately chosen. Away from the
critical point, however, this is not true, since a length scale
independent f (α) does not exist (no strict multifractality),
and the PDF must contain additional functional dependencies
on L and � [4]. This is clearly demonstrated in Figs. 2 and
3(a), where the flow of the numerically obtained PDF for
our system is shown as a function of disorder and system
size. At the critical point the whole distribution is invariant
upon changing the system size—up to finite-size irrelevant
scaling corrections. As one moves away from the transition the
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FIG. 2. Scaling of the PDF of α across the disorder-induced
metal-insulator transition, for different system sizes at fixed ratio
λ ≡ �/L = 0.1. The solid lines on the floor panel indicate the
trajectories of the position of the PDF maximum vs W . The PDFs are
obtained numerically, averaging over the total number of available
wave functions (cf. Table I).

distribution becomes L dependent again, exhibiting a standard
scaling behavior.

The coarse graining of the wave function acts as a
renormalization transformation of all length scales in the
system by � = λL, for constant λ [72]. In the insulating phase
the localization length will then transform as

ξ ′ = ξ/� ∼ ξ/L. (14)

Therefore, upon coarse graining a localized state becomes
more localized as L increases; consequently the frequency of
low intensities grows, and P (α; W,L,�) shifts towards larger α

values. Similarly, Eq. (14) also applies to the correlation length
in the metallic phase: Upon renormalization, an extended state
becomes more and more homogeneous with increasing L,
and the PDF moves towards the limiting form Pmetal(α) =

L→∞
δ(α − d). From Eqs. (2) and (14), it follows that the degree of

disorder renormalizes as

|W ′ − Wc| ∼ |W − Wc|L1/ν, (15)

where Wc is the fixed point of the transformation. Thus, dis-
order renormalizes to larger (smaller) values in the insulating
(metallic) phase as L grows. A schematic plot W ′ versus L

of the flow of the coarse-graining transformation is shown in
Fig. 3(b).

The shown scaling of the PDF implies that just from
histograms of intensities and observing how these behave
under the described length scale transformation, it is possible
to unambiguously identify a localization-delocalization tran-
sition [73]. It also provides an alternative interpretation of the
Anderson transition as the fixed point of the coarse-graining
transformation of the wave functions. In particular, we believe
that this approach would be valuable to analyze experimental
data, such as local density of states measurements obtained
by scanning tunneling microscopy on solid-state devices
[13,74–79].

Generalized multifractal scaling

This qualitative scaling picture translates into a quantitative
analysis upon formulating appropriate scaling laws for the
relevant quantities around the critical point. In general, the
PDF will depend on W , L, and � away from the critical
point: P (α; W,L,�). The behavior under the renormalization
transformation at fixed λ = �/L described above suggests that
close to the critical point the function can be written as

P(α; |W − Wc|L1/ν,L/�) = P̂(α; L/ξ,L/�), (16)

or in the entirely equivalent form P̃(α; L/ξ,�/ξ ). We then
assume that around the transition relevant quantities are
determined by the ratios of the length scales � and L to the
localization (correlation) length. This statement is in fact the
underlying basis for the scaling theory of localization [80,81].

We proceed to define a generalized multifractal analysis
valid close to the critical point. The scaling law for the GIPR
reads [82]

〈Rq〉(W,L,�) = λτqRq(L/ξ,�/ξ ), (17)

0 2 4 6
α

0

0.2

0.4

0.6

P(α )

0 2 4 6
α

0 2 4 6 8
α

W = 19.7W = 18.8W = 17.9

L = 150

L = 20

(a)

Wc 18.8

W 0

W
INSULATOR

METAL LL

W 20

W 24

W 17

W 13

b

FIG. 3. (a) Scaling of the PDF of α for W = 17.9 (left, metallic phase), W = 18.8 (middle, close to criticality), and W = 19.7
(right, insulating phase), for system sizes L ∈ [20,150] at fixed ratio λ ≡ �/L = 0.1. (b) Qualitative schematic flow of the coarse-graining
transformation of the wave function with box size � = λL for fixed λ, assuming ν > 1. The vertical axis corresponds to the renormalized
disorder W ′ and the horizontal axis to the system size L. For a given disorder W the flow follows the corresponding blue line as L grows. Close
to the fixed point Wc the renormalized disorder obeys Eq. (15).
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which can be rearranged introducing generalized mass expo-
nents

τ̃q(W,L,�) ≡ ln〈Rq〉(W,L,�)

ln λ
, (18)

obeying

τ̃q(W,L,�) = τq + q(q − 1)

ln λ
Tq(L/ξ,�/ξ ). (19)

Here, the tilde is used to emphasize that this equation applies
throughout the critical region and not just at the critical
point. Similarly one can define generalized anomalous scaling
exponents and generalized singularity strengths,

̃q ≡ τ̃q − d(q − 1), (20)

α̃q ≡ dτ̃q/dq =
〈∑

k

μ
q

k ln μk

〉
/(〈Rq〉 ln λ), (21)

which obey scaling laws similar to Eq. (19).
The generalized multifractal exponents (GMFEs) become

the usual scale invariant multifractal exponents at the critical
point Wc in the limit L/� → ∞ (λ → 0). For more details
about the GMFEs we refer the reader to Ref. [5].

Fitting the variation of the GMFEs with disorder, system
size, and box size using scaling laws of the form (19) allows
for the estimation of the q-independent critical parameters Wc

and ν, and the simultaneous determination of a multifractal
exponent for a particular q. We call this approach multifractal
finite-size scaling (MFSS).

V. SINGLE-PARAMETER SCALING AT FIXED λ

The scaling function in Eq. (17) can be written equivalently
as Rq(L/ξ,λ). This form suggests that a standard single-
parameter finite-size scaling (FSS) procedure is applicable
by considering data at a fixed value of λ, which does
not, however, permit the estimation of the scale invariant
multifractal exponents. In this case the scaling laws for the
GMFEs become one-parameter functions,

�q(W,L) = Gq(L/ξ ), (22)

where �q denotes any of the above-mentioned exponents.
In order to fit data for the GMFEs, we follow a standard

procedure and include two kinds of corrections to scaling
[83,84]: (i) nonlinearities of the W dependence of the scaling
variables, and (ii) an irrelevant scaling correction that accounts

for a shift with L of the apparent critical disorder at which the
�q(W,L) curves cross. After expanding to first order in the
irrelevant scaling term, the scaling functions take the form

Gq(�L1/ν,ηLy) = G0
q (�L1/ν) + ηLyG1

q (�L1/ν). (23)

Here � and η are the relevant and irrelevant scaling variables,
respectively. The irrelevant component is expected to vanish
for large L, so y < 0. Both scaling functions are Taylor
expanded,

Gk
q (�L1/ν) =

nk∑
j=0

akj�
jLj/ν, for k = 0,1. (24)

The scaling variables are expanded in terms of w ≡ (W − Wc)
to order m� and mη, respectively,

�(w) = w +
m�∑

m=2

bmwm, η(w) = 1 +
mη∑

m=1

cmwm. (25)

The fitting function is characterized by the expansion orders
n0,n1,m�,mη. The total number of free parameters to be deter-
mined in the fit is NP = n0 + n1 + m� + mη + 4 (including
ν, y, and Wc).

The localization (correlation) length, up to a constant of
proportionality, is ξ = |�(w)|−ν . After subtraction of correc-
tions to scaling,

�corr
q ≡ �q(W,L) − ηLyG1

q (�L1/ν), (26)

the data for the GMFEs should fall on the single-parameter
curves,

�corr
q = G0

q [±(L/ξ )1/ν]. (27)

Numerical procedure and results

When performing FSS, the aim is to identify a stable
expansion of the scaling function that fits the numerical data.
The best fit is found by minimizing the χ2 statistic over the
parameter space. The validity of the fit is decided by the p

value or goodness of fit. We take p ≥ 0.1 as the threshold
for an acceptable fit. As a rule of thumb the expansion
orders n0,n1,m�,mη are kept as low as possible while giving
acceptable and stable fits. Once a stable fit has been found,
the precision of the estimates of the critical parameters is
estimated by a Monte Carlo simulation, i.e., by fitting a large
set of synthetic data sets generated by adding appropriately
scaled random normal errors to an ideal data set generated

TABLE II. The estimates of the critical parameters together with 95% confidence intervals, from single-parameter finite-size scaling at
fixed λ of α̃0 and α̃1, under ensemble average. The number of data points used is ND (average percentage precision in parentheses), the number
of free parameters in the fit is NP , χ 2 is the value of the χ -squared statistic for the best fit, and p is the goodness-of-fit probability. The last
column specifies the orders of the expansion. The system sizes considered are L ∈ [20,150] and the range of disorder is W ∈ [17.9,19.7].

GMFE λ ν Wc −y ND (prec. %) NP χ 2 p n0 n1 mρ mη

α̃0 0.05 1.441(1.417,1.470) 18.822(18.814,18.830) 1.60(1.56,1.63) 133(0.03) 12 139 0.13 4 2 1 1
α̃0 0.1 1.449(1.442,1.456) 18.825(18.820,18.829) 1.69(1.62,1.75) 266(0.04) 11 257 0.45 4 2 1 0
α̃0 0.2 1.441(1.433,1.450) 18.828(18.824,18.832) 1.90(1.71,2.08) 266(0.06) 11 254 0.51 4 2 1 0
α̃0 0.5 1.448(1.430,1.467) 18.827(18.821,18.831) 2.29(1.53,3.10) 266(0.10) 12 225 0.91 4 2 1 1
α̃1 0.1 1.449(1.437,1.462) 18.823(18.817,18.830) 1.65(1.54,1.77) 266(0.10) 11 280 0.13 4 2 1 0
α̃1 0.2 1.445(1.436,1.455) 18.834(18.828,18.840) 2.23(1.87,2.62) 266(0.11) 11 273 0.21 4 1 2 0
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18.83

18.84
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λ

FIG. 4. The estimates of the critical disorder Wc, critical exponent
ν, and irrelevant exponent y, obtained from single-parameter FSS at
fixed λ (see Table II). Error bars are 95% confidence intervals. Full
(empty) symbols show results from the scaling of α̃0 (̃α1).

from the best-fit model. For a detailed description of the FSS
procedure we refer the reader to the appendixes provided in
Ref. [5].

We performed a FSS analysis for α̃0 and α̃1 for different
values of λ ranging from 0.05 to 0.5. All relevant details of the
fits together with the estimated critical parameters are given
in Table II. The obtained values for y, Wc, and ν are shown as
functions of λ in Fig. 4.

The values of the critical disorder and critical exponent
resulting from FSS are mutually consistent for different λ

values and both q = 0 and q = 1. The average precision of
the numerical data for the GMFE degrades slowly when λ

grows (see Table II), since larger λ means smaller renormalized
system sizes, and in general broader distributions of the nu-
merical GMFEs. Interestingly, the amplitude of the irrelevant
scaling contribution also depends strongly on λ, being largest
for small λ values (assuming a fixed set of available system
sizes). This is clearly seen in Fig. 5 which shows the FSS fits
of the numerically calculated α̃0 and α̃1. (This dependence of
the irrelevant correction on λ has not been explicitly observed
in previous FSS studies in the unitary symmetry class [7], and
it is entirely consistent with our ansatz for the MFSS scaling
function in Sec. VI.) This strong variation of the irrelevant
amplitude induces some fluctuation in the estimated irrelevant
exponent and consequently in the position of the critical point.
Nevertheless, the estimates for ν are remarkably stable over the
λ range considered. Since we average over a large number of
samples, even the data for α̃0 for λ = 0.5 is accurate enough to
provide stable fits and reasonable confidence intervals for the
estimated critical parameters. Note that at the latter λ value the
coarse-grained wave function lives in a renormalized system
of size L′ = 2.

The resulting estimates for ν and Wc are compatible
with previous transfer-matrix calculations for the Anderson
transition in the presence of a random magnetic flux [42,85,86].

VI. MULTIFRACTAL FINITE-SIZE SCALING

Now we exploit the full potential of scaling laws of the
form (19), fitting the variation of the GMFE as function of
disorder W , system size L, and box size �. This leads to a

simultaneous estimation of the multifractal exponents and the
critical parameters, ν, Wc, and y.

Besides the more involved form of the scaling functions, a
proper MFSS needs to take data correlations into account:
Different coarse graining � for the same disorder W and
system size L use the same set of wave functions, leading
to correlated estimates of the GMFE for different � and
the same W and L. We generalize the definition of χ2 in
the numerical minimization by including the full covariance
matrix for the GMFE. A detailed description of the calculation
of the covariance matrix and the χ2-minimization procedure
is given in Ref. [5].

In MFSS, the scaling functions include two variables, L/ξ

and �/ξ , which can vary independently but renormalize in
the same way. As for FSS, we need to allow for a nonlinear
dependence in W and for irrelevant scaling variables. In
agreement with the behavior observed in the orthogonal
symmetry class [5], here we also find that the most important
irrelevant contribution is due to the box size �. Therefore, we
use the expansion

̃q(�L1/ν,��1/ν,η�y)

= q + 1

ln(�/L)

2∑
k=0

(η�y)kT k
q (�L1/ν,��1/ν), (28)

for the generalized anomalous scaling exponent, and similarly
for α̃q . Here, � and η are the relevant and irrelevant scaling
variables, with 1/ν and y < 0 the corresponding exponents.
In order to maximize the amount of data and the range of box
sizes which we can fit reliably, we expand to second order
in the irrelevant variable. This is in contrast to the study of
Ref. [7], where the expansion in the irrelevant variable was
restricted to first order and hence only considerably smaller
data sets could be fitted.

The functions T k
q are expanded,

T k
q (�L1/ν,��1/ν) =

nk
L∑

i=0

nk
�∑

j=0

akij�
i+jLi/ν�j/ν, (29)

for k = 0,1,2, as are the scaling variables [see Eq. (25)]. The
expansion of the scaling function is then characterized by
the indices n0

L,n0
�,n

1
L,n1

�,n
2
L,n2

�,m�,mη. [In order to consider
a most general fit, we change independently the expansion
orders of the two relevant variables in T k

q (cf. Ref. [7]).] The
number of free parameters is given by

NP =
2∑

k=0

(
nk

L + 1
)(

nk
� + 1

) + m� + mη + 3. (30)

After subtraction of irrelevant corrections we have

̃corr
q = q + T 0

q ( ± (L/ξ )1/ν, ± (�/ξ )1/ν)/ ln(�/L) (31)

and the numerical data should fall on a common scaling
surface.

Note that, when evaluated at fixed λ, Eq. (28) leads to the
FSS expansion considered in Sec. V, where the amplitude of
the irrelevant terms is proportional to λ−|y|, and thus grows
when λ decreases, as observed in Fig. 5.
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FIG. 5. Plots of the GMFEs α̃0 and α̃1 for λ = 0.05 (left), λ = 0.1 (middle), and λ = 0.5 (right) as functions of disorder at various system
sizes L ∈ [20,150]. The error bars are standard deviations. The lines are the best fits listed in Table II. The estimated Wc are shown by vertical
dashed lines and 95% confidence intervals by the shaded regions. The insets show the data plotted vs L/ξ with the irrelevant contribution
subtracted and the scaling function (solid line).

A. Results

For the MFSS analysis we considered the ensemble aver-
aged GMFE ̃q for different q ∈ [−1,2], and α̃q for q = 0,1.
The estimates of the critical parameters and the multifractal
exponents, together with full details of the fits, are included in
Table III.

For each q value we considered a different range of data,
trying to maximize the number of points that we could fit
reliably. For negative and small q values, we exclude the case
� = 1 in order to minimize the appearance of errors induced
by inaccuracies in the small amplitudes of the calculated
eigenstates. The minimum values of λ included in the data sets
are λmin = 0.013 (�min = 2) for q ≤ 0.75 and λmin = 0.0067
(�min = 1) for q ≥ 1.

The best-fit estimates for the critical parameters as functions
of q are shown in Fig. 6. We obtain a remarkable consistency of
the estimates for Wc and ν, which must be q independent. There
is, however, an apparent fluctuation of the estimated value of
the irrelevant exponent y, whose magnitude shifts to smaller
values for q ≥ 1. This is correlated to the fact that data for

� = 1—which exposes the largest irrelevant corrections—is
considered for these q values. On the other hand, we emphasize
that there is in principle no reason why the irrelevant terms and
y should be independent of q.

For q ≤ 0 we succeed in fitting reliably remarkably
large data sets using a reasonable number of parameters in
the scaling function. The resulting estimates of the critical
parameters from this q range are very stable and exhibit low
uncertainty. Data for q ≥ 0.75, however, turned out to be
more challenging: The data sets that can be reliably fit are
smaller, and higher-order expansions (and consequently more
parameters) are required. In turn, this translates into larger
uncertainties for Wc and ν. This behavior is to be expected:
For q � 1, the interval between the metallic and insulating
limits for the values of the GMFE, ̃q≥1 ∈ [0, − d(q − 1)],
is considerably reduced when compared to the case q ≤ 0,
where ̃q≤0 ∈ [0, − ∞] (cf. Fig. 2 in Ref. [5]). This implies
that within the same W range, the curvature of the data for
q � 1 will be higher as L increases, since the metallic and
insulating bounds close in faster.

TABLE III. The estimates of the critical parameters and multifractal exponents together with 95% confidence intervals, from MFSS of
̃q for q ∈ [−1,2] and α̃q for q = 0,1, under ensemble average. The number of data points used is ND (average percentage precision in
parentheses), the number of free parameters in the fit is NP , χ 2 is the value of the χ -squared statistic for the best fit, and p is the goodness-of-fit
probability. The last column specifies the orders of the expansion: n0

L,n0
�,n

1
L,n1

�,n
2
L,n2

�,m�,mη. The system sizes considered are L ∈ [20,150],
the range of disorder is W ∈ [18.1,19.5], minimum box size �min = 2 (λmin = 0.013) for q ≤ 0.75 and �min = 1 (λmin = 0.0067) for q ≥ 1.
The maximum values considered for λ change from λmax = 0.045 to λmax = 0.1 for different q. For q ≥ 1 and L ≥ 130 the disorder range is
reduced to W ∈ [18.5,19.1].

q q (αq for q = 0,1) ν Wc −y ND (prec.) NP χ2 p Expansion

−1 −1.9512(−1.9545, − 1.9480) 1.442(1.433,1.451) 18.824(18.821,18.827) 1.848(1.826,1.871) 840(0.17) 19 842 0.30 3 1 1 1 0 1 1 1
−0.75 −1.3239(−1.3254, − 1.3224) 1.444(1.436,1.452) 18.825(18.822,18.827) 1.841(1.827,1.855) 840(0.14) 22 813 0.54 3 2 0 1 0 1 2 1
−0.5 −0.7812(−0.7818, − 0.7806) 1.446(1.440,1.451) 18.823(18.821,18.825) 1.835(1.825,1.844) 840(0.13) 21 812 0.57 2 2 0 2 0 1 2 2
−0.25 −0.3356(−0.3358, − 0.3353) 1.445(1.439,1.450) 18.824(18.823,18.826) 1.827(1.819,1.835) 840(0.13) 22 825 0.43 3 2 0 1 0 1 2 1
0 4.1004(4.0994,4.1013) 1.446(1.440,1.452) 18.824(18.822,18.826) 1.808(1.800,1.817) 840(0.04) 22 840 0.29 3 2 0 1 0 1 2 1
0.25 0.2096(0.2094,0.2099) 1.446(1.436,1.457) 18.823(18.821,18.825) 1.783(1.770,1.797) 630(0.13) 23 646 0.13 3 2 0 2 0 2 1 1
0.5 0.2809(0.2805,0.2813) 1.450(1.441,1.458) 18.821(18.819,18.824) 1.765(1.741,1.788) 540(0.13) 23 553 0.13 3 2 0 2 0 2 2 0
0.75 0.2092(0.2087,0.2097) 1.448(1.436,1.461) 18.823(18.820,18.827) 1.758(1.709,1.806) 540(0.15) 27 552 0.12 4 2 0 2 0 2 3 0
1 1.9122(1.9056,1.9193) 1.454(1.440,1.468) 18.814(18.806,18.823) 1.590(1.526,1.654) 540(0.07) 30 559 0.07 4 3 0 2 0 2 1 0
1.25 −0.3317(−0.3343, − 0.3288) 1.457(1.439,1.476) 18.822(18.809,18.834) 1.625(1.523,1.728) 540(0.15) 30 551 0.10 6 2 0 1 0 1 2 0
1.5 −0.7618(−0.7663, − 0.7575) 1.441(1.419,1.464) 18.819(18.807,18.831) 1.567(1.485,1.655) 661(0.18) 30 688 0.06 6 2 0 1 0 1 2 0
1.75 −1.2690(−1.2776, − 1.2603) 1.437(1.420,1.453) 18.814(18.798,18.830) 1.513(1.393,1.638) 661(0.21) 29 683 0.08 4 3 1 0 1 0 2 0
2 −1.8347(−1.8490, − 1.8197) 1.435(1.400,1.465) 18.816(18.794,18.836) 1.536(1.355,1.738) 661(0.25) 31 675 0.10 4 2 3 1 2 0 2 0
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FIG. 6. The estimates of the critical parameters Wc, y, and ν, as functions of q, obtained from MFSS for ̃q and α̃q (only q = 0,1). Error
bars are 95% confidence intervals. The corresponding values are listed in Table III. The inset in the middle plot shows the average data precision
vs q for the data set used. A density plot of the histograms obtained from the Monte Carlo simulations used to determine the uncertainty of
the estimates is shown for each q. The color scale on top of each graph is for the density plot. The histograms are normalized so that their
maximum value is unity.

Additionally, in order to maximize the number of fitted
data for q ≥ 1 we relaxed the goodness-of-fit criterion and
regarded any fit with p ≥ 0.05 as acceptable. We find that
this helps to reduce the ambiguity of stable fits in this q

range. This choice for the p threshold may indeed be well
justified, since the uncertainty of the data in this range might be
slightly underestimated. By increasing the number of disorder
realizations the uncertainty of the numerically obtained GMFE
could in principle be continuously reduced. The data, however,
is also affected by the error of the numerically obtained
wave-function amplitudes, which has been so far ignored. This
latter error establishes a lower bound for the uncertainty of
the averaged GMFE: If the mean relative error in the wave-
function amplitudes is σψ , we estimate that for each state the
uncertainty in the value of ̃q behaves as σ̃q

� |q|σψ/ ln2 λ.

A quick analysis leads us to think that in the region q ≥ 1 some
points in the data sets might be close to this boundary, and
hence it is plausible that their error is slightly underestimated.

The data set with the highest precision occurs for α̃0

(0.04%). From the MFSS analysis of α̃0 we find

Wc = 18.824 (18.822,18.826) (32)

and

ν = 1.446 (1.440,1.452), (33)

where the error limits correspond to 95% confidence intervals.
Our estimate for the critical exponent is in perfect agreement
with recent results from transfer-matrix calculations on the
same random-phase model [42]. The value of Wc also agrees
reasonably well. The study of Ref. [7] using MFSS on a related

18.5

19.0

19.5

0.02
0.04

0.06
0.08

0.1

4.0

4.5

W

λ

α∼ 0

FIG. 7. MFSS of α̃0. Left: GMFEs (•) as functions of disorder W for different λ = �/L. The solid lines are cross sections at fixed λ of the
best fit, plotted for different L. Note that all points are fitted simultaneously. Alternating colors have been used for better visualization. Right:
GMFEs with irrelevant contribution subtracted (•, ◦) and the scaling surfaces (symbol ◦ highlights the maximum value of λ). The inset is the
scaling function at the critical point, highlighted also in the right face of the main plot. The arrow indicates the multifractal exponent given by
the extrapolation λ → 0. The shaded regions indicate the range of λ accessed in our simulations.
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FIG. 8. Multifractal exponents q obtained from MFSS. The
numerical values are listed in Table III. Error bars denote 95%
confidence intervals. Note that 0 = 1 = 0 by definition. The
inset shows a comparison of the reduced multifractal spectrum
q/q(1 − q) between the unitary and the orthogonal symmetry
classes (data from Ref. [5]).

Hamiltonian belonging to the unitary symmetry class also
reports a value of ν in accordance with our estimate.

B. Multifractal spectrum

In Fig. 7 we show the best fit and the corresponding
scaling surface for α̃0 in terms of the variables L/ξ and λ.
The scale invariant multifractal exponent α0 corresponds to
the asymptotic value at the critical point as λ → 0. This is
highlighted in the inset of Fig. 7, where the behavior of the
scaling function at criticality—when the sheets of extended
and localized phases meet—is shown versus log10 λ.

The whole spectrum of anomalous multifractal exponents
q obtained from MFSS is shown in Fig. 8. As for the
orthogonal symmetry class [5,48,61,67], and also in agreement
with the results reported in Ref. [7], the multifractal spectrum
in the unitary symmetry class shows a clear tendency to
obey the symmetry relation (12). Nevertheless, within the
achievable numerical accuracy, slight deviations from the
symmetry become visible as |q| grows. We emphasize that
the value of the multifractal exponents is very sensitive
to the estimated position of the critical point Wc, which
in turn depends strongly on the estimation of y. Indeed,
obtaining a reliable estimate of Wc is more difficult than
extracting the value of the critical exponent ν. Additionally,
the extrapolation λ → 0 is intrinsically limited by the range
of system sizes available. Therefore, we tend to think that the
observed deviations are not a genuine violation of relation (12).
Nevertheless, the exact q range for the validity of the symmetry
relation would be dependent on the existence (or absence)

of termination points in the ensemble averaged multifractal
spectrum (see Ref. [3]); an issue which is not yet resolved.

In the inset of Fig. 8, we show the reduced anomalous
exponents q/q(1 − q) for the unitary and the orthogonal
symmetry classes. Both multifractal spectra are remarkably
similar (the relative distance between 

unitary
q and 

orthogonal
q

is around 4–5% for q ∈ [−1,2]), and the dominant difference
is a shift in the reduced anomalous exponents, in agreement
with the observations of Ref. [7]. As for the orthogonal
symmetry class [5], the multifractal spectrum exhibits a clear
deviation from parabolicity, which requires q ∝ q(1 − q).
For a comparison of the multifractal spectra against the existing
analytical results in d = 2 + ε dimensions [3], we refer the
reader to Ref. [7], where a thorough analysis is presented.

VII. CONCLUSIONS

We have presented a detailed numerical analysis of the
persistence of multifractal fluctuations in wave functions
around the 3D Anderson transition in the unitary symmetry
class, for a Hamiltonian which describes an electron in a
disordered cubic lattice in the presence of a random magnetic
flux. The existence of multifractality and the presence of the
transition are best observed by analyzing the behavior of the
PDF of wave-function intensities in the vicinity of the critical
point. We emphasize that the PDF analysis provides a most
convenient way to unambiguously assess the existence of a
disorder induced metal-insulator transition.

The use of very large system sizes up to L3 = 1503 and
averaging over more than 4 million wave functions from
uncorrelated disorder realizations has led to a very precise
estimation of the position of the critical point at energy
E = 0, Wc = 18.824(18.822,18.826), and of the localization
length critical exponent, ν = 1.446(1.440,1.452). This latter
value is in agreement with previous studies of the same
model using the transfer-matrix technique [42,85–88] and level
statistics [89], and also with results for a system in a uniform
magnetic field using transfer matrix [90], or (as in this work)
a generalized multifractal analysis [7,91]. We note the small
relative difference (∼4%) between our estimate for ν and the
analytical result of Ref. [92] (ν = 3/2), which, at the level
of approximation there considered, might be relevant for the
unitary symmetry class [93].

The values for the multifractal exponents reported in
Refs. [7,91] are compatible with our findings here, and thus
this analysis helps to confirm the universality of the properties
of the critical point in this symmetry class.
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