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Anisotropic thermal expansion in flexible materials
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A definition of the Grüneisen parameters for anisotropic materials is derived based on the response of phonon
frequencies to uniaxial stress perturbations. This Grüneisen model relates the thermal expansion in a given
direction (αii) to one element of the elastic compliance tensor, which corresponds to the Young’s modulus in that
direction (Yii). The model is tested through ab initio prediction of thermal expansion in zinc, graphite, and calcite
using density functional perturbation theory, indicating that it could lead to increased accuracy for structurally
complex systems. The direct dependence of αii on Yii suggests that materials which are flexible along their
principal axes but rigid in other directions will generally display both positive and negative thermal expansion.
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I. INTRODUCTION

Materials which lack cubic symmetry will expand (or
contract) at different rates in different directions in response
to a change in temperature. Thermal expansion anisotropy
has been the subject of considerable recent attention due to the
discovery of flexible framework materials with unusually large
positive or negative coefficients of thermal expansion (CTEs)
along one or two crystal axes [1–6]. However, anisotropy has
a long history of complicating fundamental understanding of
the origins of thermal expansion [7], and owing to the thermal
stress introduced in consolidated polycrystals, anisotropy can
limit the practical uses of materials [8,9].

In some cases the origin of thermal expansion anisotropy
can be appreciated intuitively by inspection of the structure:
the interatomic interactions in graphite are obviously stronger
within the graphene layers than between them. In other
cases the relationship is subtler, e.g., temperature-induced
displacive phase transitions in quartz and cristobalite intro-
duce significant thermal expansion anisotropy while retaining
the network topology [10,11]. The orthorhombic Sc2W3O12

structure, which produces characteristically large anisotropy
between axes with negative and positive CTEs, is isomorphic
to the cubic aluminosilicate framework of garnet [9,12]. In
the metal-organic wine-rack framework material MIL-53(Al)
replacement of an OH− anion by F− leaves the crystallographic
symmetry unchanged but significantly modifies the thermal
expansion anisotropy, changing the volumetric CTE αV from
positive to negative [3].

The origins of thermal expansion in crystalline solids are
commonly studied through a model originated by Grüneisen
[13] which relates the contribution of a phonon mode to
thermal expansion to the volume derivative of its frequency.
The Grüneisen approach is useful because changes in phonon
frequencies as a function of volume can be measured using
variable-pressure inelastic scattering techniques and can be
calculated ab initio using, for example, density functional
perturbation theory (DFPT), allowing explication of the
mechanisms of thermal expansion [14–20]. However, this
model does not consider material anisotropy, and an extension,
incorporating coupling between elastic anisotropy and thermal
expansion anisotropy, is required for noncubic crystal families.
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The most notable such extension, based on replacing the
volume perturbation by uniaxial strain perturbations, was
developed by Barron and Munn [21] following the earlier
work of Grüneisen and Goens [22]. Due to the experimental
challenges involved in applying uniaxial strain to a sample
[23], the anisotropic Grüneisen theory of Ref. [21] has,
until recently, been used primarily to calculate directional
Grüneisen parameters from experimental thermal expansion
and heat-capacity data [9,10,24–27] and to identify the con-
tributions of acoustic modes to thermal expansion anisotropy
[28]. Therefore, until the fairly recent development of ab initio
methods which could calculate phonon band structures as a
function of an arbitrary strain, the ability of the Barron–Munn
model to predict anisotropic thermal expansion had been
untested. Ab initio prediction of thermal expansion anisotropy
has shown results mixed between qualitative and quantitative
levels of accuracy [29–33].

In order to understand and predict the behavior of flexible
materials, defined here as those with some elastically compli-
ant direction, we must understand how thermal expansion and
elasticity are coupled. To further this goal, herein a Grüneisen
model based on uniaxial stress perturbations is reported, which
allows explicit treatment of the coupling between Grüneisen
parameters along different axes. The ability of the uniaxial
stress model to predict axial CTEs is compared to that of the
uniaxial strain model through DFPT calculations on several
simple highly anisotropic materials (Fig. 1).

II. GRÜNEISEN MODELS

A. The isotropic Grüneisen model

To understand the place of anisotropy within the Grüneisen
formalism, it is instructive to begin with a brief discussion of
the original Grüneisen model for isotropic or cubic systems.
The thermodynamic Grüneisen parameter γ is introduced
through the identity

αV = 1

V

(
∂V

∂T

)
P

= 1

KT

(
∂S

∂V

)
T

= 1

V

γCV

KT

, (1)

where the quantity γCV represents a “phonon pressure,”
resulting from vibrational anharmonicity, which acts against
the bulk modulus KT to change the dimensions of the unit
cell. Using the quasiharmonic approximation (QHA), the
contribution of an individual phonon mode with frequency
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FIG. 1. Crystal structures of materials with highly anisotropic thermal expansion and elastic properties used herein to test anisotropic
Grüneisen models [34]. From left to right: zinc, graphite, and calcite. The c axes are aligned vertically.

ωn,k to the thermal expansion is determined through the mode
Grüneisen parameter γn,k, where

γn,k = − V

ωn,k

(
∂ωn,k

∂V

)
T

. (2)

Then, γ and γn,k are related by

γ =
∑

n,k γn,kCV,n,k∑
n,k CV,n,k

. (3)

Differences between γ as defined by Eq. (1) and γ as defined
by Eq. (3) are due to anharmonic phonon-phonon interactions
and therefore are reduced with decreasing temperature [35].
The exact validity of Eqs. (1)–(3) also requires elastic isotropy
of the lattice vectors and internal strain coordinates [36].
When cubic symmetry is not present, the phonon frequencies
depend not only on the volume of the system but also on the
combination of strains required to reach a given volume from
the equilibrium state.

B. Uniaxial strain models

Barron and Munn defined Grüneisen parameters for the
response of a phonon to a (uniaxial) Lagrangian strain ηij

as [21]

γ̂ij,n,k = − 1

ωn,k

(
∂ωn,k

∂ηij

)
ηkl �=ij

. (4)

Following averaging, by analogy to Eq. (3) the directional
thermal expansion is then constructed as [21]

αij =
(

∂ηij

∂T

)
t
= Cη

V

∑
kl

sijkl γ̂kl, (5)

where sijkl are elements of the isothermal compliance tensor.
Note that the directional thermal expansion is defined here
as a derivative under conditions of constant “thermodynamic
tension” t , where

tij =
(

∂F

∂ηij

)
ηkl �=ij ,T

. (6)

Therefore, the perturbation in Eq. (4) is uniaxial in terms of
strain and thermodynamic tension but not stress since there are
generally stresses in the directions perpendicular to ij induced
by the Poisson effect. These transverse stresses are accounted
for in Eq. (5) by linking the directional Grüneisen parameters

through the cross compliances, which assumes a mechanical
coupling between the axial CTEs.

Choy et al. [37] treated Barron and Munn’s definition of
the Grüneisen parameter as arbitrary and instead assumed an
expression intermediate between Eqs. (1) and (5):

αij = 1

V

γ̃ijCη

3KT

. (7)

However, this model is necessarily limited by its neglect of
elastic anisotropy and has been used sparingly for ab initio
prediction of thermal expansion [38].

C. Uniaxial stress model

Here a Grüneisen model based on uniaxial stress perturba-
tions is introduced. This model is compared schematically to
the uniaxial strain model in Fig. 2, which shows a square
lattice with a positive Poisson ratio and positive thermal
expansion where each bond vibrates independently. When the
lattice is subjected to a uniaxial strain perturbation, the bonds
aligned with the perturbation elongate, and their vibrational
frequencies decrease, indicating a positive contribution to α.
However, a negative contribution to α comes from the bonds
orthogonal to the perturbation, proportional to the Poisson
ratio relating the two axes. If a uniaxial stress perturbation is
applied, the Poisson effect contracts the bonds perpendicular to
the perturbation, again resulting in a decrease in α proportional
to the Poisson ratio. It can therefore be appreciated that, for this

FIG. 2. A comparison of the uniaxial strain and stress models
for a simplified system with positive thermal expansion and positive
Poisson ratio. Bonds colored in blue are lengthened by the pertur-
bation, leading to a decrease in vibrational frequency and a positive
contribution to the bulk Grüneisen parameter, while those colored in
red are contracted by the Poisson effect, increasing their frequency
and therefore reducing the Grüneisen parameter.
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simplified system, the two models are equivalent. However, as
shown below, this is not necessarily the case in more complex
systems.

The derivation of a Grüneisen model based on uniaxial
stress perturbations begins with consideration of the thermal
expansion of a volume V under a constant stress σ . This
stress is treated as a Cauchy stress; that is, the volume
of the stress-free reference state V0 is approximately equal
to V . Accordingly, the conjugate infinitesimal strain e is
used, leading to the definition of thermal expansion used
experimentally in the limit of small strains. Then, an arbitrary
element of the thermal expansion tensor α is related to a
uniaxial stress perturbation as

αij =
(

∂eij

∂T

)
σ

=
(

∂eij

∂σij

)
T ,σ ′

(
∂σij

∂T

)
eij ,σ ′

= sijij

(
∂σij

∂T

)
eij ,σ ′

, (8)

where the subscript σ ′ indicates that the elements of σ other
than σij are kept constant. To simplify, it is assumed that the
external stress is negligible and that Cσ ′ ≈ Ce (the derivation
without these assumptions is presented in the Supplemental
Material [39]). The QHA is then introduced as follows:

αij = sijij

∂

∂T

[
− 1

V0

(
∂F

∂eij

)
T ,σ ′

]
eij ,σ ′

, (9)

αij = −sijij

[∑
n,k

1

V0

(
∂ωn,k

∂eij

)
T ,σ ′

Ce

ωn,k

]
. (10)

The Grüneisen parameters are defined as

γ̌ij,n,k = − 1

ωn,k

(
∂ωn,k

∂eij

)
T ,σ ′

= − 1

sijij

(
∂lnωn,k

∂σij

)
T ,σ ′

,

(11)

γ̌ij =
∑

n,k γ̌ij,n,kCe,n,k∑
n,k Ce,n,k

, (12)

leading to the following expression for αij :

αij = sijij γ̌ij

Ce

V0
. (13)

For tetragonal and hexagonal crystal families, it is desirable
to consider a biaxial stress perturbation along a and b in order
to preserve phonon degeneracies [40]. Therefore, analogous
areal versions of Eqs. (11) and (13) are required:

γ̌A,n,k = −
(

∂lnωn,k

∂lnA

)
T ,σcc

, (14)

αaa = (saaaa + saabb)γ̌A

Ce

V0
, (15)

where A is the area of the ab plane.

III. COMPUTATIONAL METHODS

In order to test the uniaxial stress model in comparison to the
uniaxial strain model, the axial CTEs of several materials were

calculated ab initio using both models. The selected materials
(graphite, zinc, and calcite; Fig. 1) exemplify simple structures
with highly anisotropic thermal and mechanical behavior, and
their physical properties are well known [24,28,41–46].

Density functional theory calculations were carried out
with the ABINIT software package (version 8.0.8) using pseu-
dopotentials and plane waves [47,48]. All calculations were
performed using the Perdew–Burke–Ernzerhof generalized
gradient approximation to the exchange-correlation functional
[49]; for graphite and calcite the dispersion correction of
Grimme [50] (known as “vdw-DFT-D2”) was added. Op-
timized norm-conserving Vanderbilt pseudopotentials [51]
from the ABINIT library [52] were used in all cases; these
pseudopotentials were tested by comparing calculated elastic
properties to experimental results [39,41,43,46]. Plane-wave
basis-set energy cutoffs, Monkhorst–Pack grid spacings [53],
and van der Waals tolerance factors [50] were chosen through
convergence studies [39]. The values of these parameters are
presented in tabular form in the Supplemental Material [39].

For each material, the initial geometry [34,54] was relaxed
under conditions of zero external stress and under uniaxial
(biaxial) stress and strain perturbations along the c axis (ab

plane). The magnitudes of the perturbations were generally
chosen to give strains of 0.1% for both the stress and strain
cases. The phonon energies and elastic tensors of the relaxed
geometries were calculated using DFPT [55–57]; integration
of phonon energies over the Brillouin zone yielded heat
capacities [58]. Grüneisen parameters and axial CTEs were
obtained from these data as described above. In the case of
zinc, electronic contributions to the axial CTEs were included
[21,59].

IV. RESULTS

The first two materials considered, zinc and graphite,
have very simple structures and similar thermoelastic prop-
erties. The stress and strain models used to predict their
axial thermal expansion showed reasonable agreement with
experimental data (Fig. 3). The predicted αcc in graphite
was significantly lower than the experimental value at low
temperature, despite the calculated phonon band structure
and elastic tensor providing good matches to experiment
(see the Supplemental Material [39]). However, the van der
Waals nature of the interactions along c provides a significant
challenge for dispersion-corrected density functional theory
[57,60]. Otherwise, the stress model of Eq. (13) produced
results identical to those of the strain model [Eq. (5)].

Zinc and graphite have significant elastic anisotropy, as
their c axes are considerably more compliant than their a

axes [39,41,43], but the elastic couplings between the a

and c axes are not unusually strong (for zinc νaacc = 0.32
and νccaa = 0.13; for graphite νaacc = −0.20 and νccaa =
−0.008). Since the stress and strain perturbations are identical
in the limit of the zero Poisson ratio, a more rigorous test
can be obtained by considering a material with strong elastic
couplings between axes. The calculated elastic tensor of calcite
indicates that it has significant elastic couplings between its
principal axes (Fig. 4). The directional Young’s moduli (Yii =
siiii

−1) also show significant anisotropy (Fig. 4), and therefore,
the elastic contribution to thermal expansion anisotropy in
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FIG. 3. Linear thermal expansion in zinc and graphite along the a (orange lines) and c (blue lines) axes, as predicted by stress (solid lines)
and strain (dash-dotted lines) models. Experimental data [24,42] are shown as squares.

calcite is expected to be different from those of zinc and
graphite.

Unlike in the cases of zinc and graphite, the stress and
strain models gave significantly different predictions of axial
thermal expansion in calcite (Fig. 5), with the stress model
providing a good match to the experimental data and the
strain model erroneously predicting αaa to be positive and
αcc to be negative. Thermal expansion anisotropy in calcite
is driven by low-energy acoustic and optic modes (Fig. 6) in
which the CO2−

3 unit remains rigid. The acoustic modes which
propagate along c (with wave vector 	 − Z) have large positive
Grüneisen parameters with respect to all perturbations, while
those which propagate in the ab plane have negative Grüneisen
parameters. The group of optic modes with negative mode
Grüneisen parameters below 150 cm−1 involves librations of
the CO2−

3 unit, while the group between 150 and 450 cm−1

includes motion of the Ca2+ ion, although there is considerable
eigenvector mixing away from 	. This view of calcite as,

in some respects, a framework solid is supported by the
directional Young’s moduli showing maxima coinciding with
the directions of Ca–O–C linkages and by the large Poisson
ratios in these directions (Fig. 4).

The Grüneisen parameters obtained from the stress pertur-
bations indicate that negative thermal expansion along a is
driven by low-energy acoustic and librational modes. Along
c, the Grüneisen parameters are small and mostly positive; the
reduced stiffness along c increases αcc. By contrast, the mode
Grüneisen parameters related to the strain perturbation along
a and along c are similar. Due to the significant Poisson ratios
relating a and c (νaacc = 0.45 and νccaa = 0.26) the stresses
transverse to the strain perturbation are of the same order
of magnitude as the stresses along the perturbation direction.
Therefore, the inaccuracy of the uniaxial strain model in this
case indicates that the convolution of the axial Grüneisen
parameters through the cross compliances [Eq. (5)] is
inexact.

FIG. 4. Directional Young’s moduli (in GPa, left) and Poisson ratios (right) of calcite. The Young’s modulus in a given direction is shown
as a green surface. The surface corresponding to the maximum Poisson ratio is shown in blue, and the surface corresponding to the minimum
Poisson ratio is shown in green. Visualization generated with ELATE [61,62].
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FIG. 5. Linear thermal expansion in calcite along the a (orange
lines) and c (blue lines) axes, as predicted by stress (solid lines) and
strain (dash-dotted lines) models. Experimental data are shown as
squares [28] and circles [44].

V. DISCUSSION

The similarities and differences between the uniaxial stress
perturbation [Eq. (13)] and the uniaxial strain perturbation
[Eq. (5)] can be appreciated by considering their application to
the simplified model shown in Fig. 2. In the simplified model,
the vibrational frequencies are linearly related to the lattice
constants. This requires two predicates: that the vibrational
frequencies are proportional to interatomic distances and
that the interatomic distances are proportional to the lattice
constants. The first is a form of the QHA, stating that phonon
energies can be expressed as a function of internal strain
coordinates [36]. The second is geometric: in the simplified
model, there are no atomic coordinates which are not fixed by
the lattice. If this is not the case, the bond lengths will not, in
general, scale linearly with the lattice vectors, and the stress
and strain models will be inequivalent. This can occur if the
relative positions of the atoms are not fixed by symmetry.

Therefore, the differences between the stress model and the
strain model for the materials studied herein (Figs. 3 and 5) can
be explained by their structures. The atomic coordinates of zinc
and graphite are fixed by the lattice constants and therefore are
analogous to the simple structure of Fig. 2, and the stress and
strain models give results of comparable accuracy. Unlike zinc
and graphite, calcite features an internal coordinate not fixed
by the lattice constants and flexible Ca–O–C linkages. This, in
combination with the large Poisson ratios in calcite (Fig. 4),
leads to the large discrepancy between the two models seen in
Fig. 5.

The increased accuracy of the stress model relative to the
strain model seen in the ab initio calculations of α presented
herein can therefore be attributed to the assumption of the strain
model that thermal strains along different axes are coupled
purely elastically. This treatment ignores that the internal
strain coordinates relevant to a particular mode may not have
the same elastic behavior as the lattice. When performing a
uniaxial stress perturbation, the Poisson effect is included

directly in the model, and no correction for the transverse
stresses is required. Since the magnitude of this correction
is determined by the cross compliances, for many systems
the difference between the two models is relatively small.
However, it will be especially important for materials with
unusual elastic properties.

The uniaxial stress model also offers other advantages to the
understanding of the origins of thermal expansion. Coupling
between thermal expansion and elasticity can be understood
in a simpler way, as the Grüneisen parameter along one axis
and one element of the compliance tensor determine the CTE
in that direction without reference to the transverse axes.
Therefore, negative thermal expansion is impossible without
modes with negative Grüneisen parameters. In fact, although
the strain model allows for negative thermal expansion from
positive Grüneisen parameters due to the Poisson effect, the
only materials where it has been suggested that this occurs are
zinc and cadmium [64].

The stress model has an advantage over the strain model
in that one element of α can be calculated independently
of the others. This offers the possibility of, for example,
calculating one element in order to understand the mechanisms
of uniaxial negative thermal expansion [65] or to test the
accuracy of an exchange-correlation functional or a set of
pseudopotentials for a given system. Especially for monoclinic
and triclinic crystal families, the computational expense
required to calculate Grüneisen parameters for every element
of α may be prohibitive, but a qualitative understanding of
thermoelastic behavior could perhaps be obtained with some
subset thereof.

More generally, Eq. (13) can be applied to an element of α

aligned in an arbitrary direction. Therefore, thermal expansion
in off-axis directions can be related to one element of the
Grüneisen tensor and one element of the compliance tensor,
whereas for the uniaxial strain model 6 and 21 elements,
respectively, are required. Specifically, Eq. (13) indicates
that thermal expansion in an arbitrary direction is inversely
proportional to the Young’s modulus (Yii = siiii

−1) in that
direction. This result was perhaps anticipated by Barker [66],
who found that for a broad range of materials the approximate
relationship Yα2 ≈ 15 Pa K−2 holds and that differences in
thermal expansivity between materials are often driven by
their relative Young’s moduli rather than by differences in
the Grüneisen parameter.

In some cases, variations in thermal expansivity within
a material can be predicted by examination of the elastic
anisotropy and the symmetry of the lattice. For example, con-
sider calcite, which is stiffest along directions corresponding
to Ca–O–C linkages (Figs. 4 and 1) which do not coincide
with the unit-cell vectors. As Fig. 7 indicates, the directions
of maximum stiffness have very low thermal expansion (α
 =
6 × 10−8 K−1). If, based on Eq. (13), one was to assume that
the stiffest directions have smaller magnitudes of α
 than the
principal axes do, this would lead to the conclusion that α


must be negative along one principal axis and positive along
the other based on the required symmetry of α (i.e., that its
maxima and minima lie along principal axes) [67].

This analysis can be extended to other orthotropic systems
where stiffness maxima are not aligned with the unit-cell
vectors; for example, the metal-organic wine-rack framework
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FIG. 6. Phonon band structure of calcite, with bands colored according to their axial mode Grüneisen parameters calculated using stress
and strain perturbations. Phonons with energies greater than 450 cm−1 do not contribute significantly to thermal expansion and are not shown
here. The density of states ρ, weighted by the Grüneisen parameters as

∑
k ρk(ω)γn,k(ω), is shown as a histogram at the right of each plot, with

positive values in blue and negative values in red. Special points in and paths through the Brillouin zone were selected following Ref. [63].

material MIL-53(Al) has α
 = 7 × 10−7 K−1 along the stiff
wine-rack axes, leading to anomalous thermal expansion
along the compliant principal axes (αbb = −1.4 × 10−5 K−1,
αcc = 2.4 × 10−5 K−1; see Fig. 7) [3,68]. When the Grüneisen
parameter along the stiffest direction is anomalous, even

FIG. 7. A comparison of indicatrixes of directional thermal
expansion and Young’s moduli in several extremely anisotropic
materials [1,3,28,29,44,68]. Directional Young’s moduli are shown
as orange curves, while blue and red curves correspond to positive
and negative linear coefficients of thermal expansion, respectively.
The magnitudes of these indicatrixes are normalized for ease of
comparison.

more unusual behavior can occur. For example, Ag3Co(CN)6

has α
 = −2.5 × 10−5 K−1 along its Co–CN linkages (a
typical value for an M–CN chain) [69]; this, along with the
compliance of the ab plane, results in colossal positive and
negative thermal expansion along the principal axes (αaa =
1.4 × 10−4 K−1, αcc = −1.3 × 10−4 K−1; see Fig. 7) [1,29].

The misalignment mechanism can be expected to occur
commonly in materials which exhibit negative linear com-
pressibility, which requires a mixture of stiff and compliant
directions to balance stability and flexibility [70]. Elastic
anisotropy measures which consider the off-axis moduli
[68,71,72] could be used to search for materials with uni- or
biaxial negative thermal expansion in the growing databases
of calculated elastic properties [73,74]. Of course, the phe-
nomenon is essentially geometric and coincides with the
geometric arguments previously used to explain anomalous
thermal expansion and negative linear compressibility in
these materials [1,3,68,75,76]. However, removing the cross-
coupling term of the strain model facilitates understanding
of relationships between thermal expansion anisotropy and
framework flexibility by removing the need to consider the
(often large) Poisson ratios directly.
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VI. CONCLUSIONS

A Grüneisen model for anisotropic materials based on uni-
axial strain perturbations has been proposed. This model has
the advantage of including the mechanical coupling between
axes explicitly, allowing directional thermal expansion to be
related to mode Grüneisen parameters and the Young’s mod-
ulus in only that direction. The model was tested by ab initio
prediction of thermal expansion in several highly anisotropic
materials, revealing that the uniaxial stress model has accuracy
equal to or better than that of the previous uniaxial strain

model. By relating the directional Young’s moduli to thermal
expansion directly, it can be predicted that framework materi-
als whose rigid units are misaligned with the principal axes are
likely to display positive and negative axial thermal expansion.
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