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Within the framework of a realistic multiband p-d model, we derived an effective Hamiltonian to describe the
exchange interaction effects near the spin crossover in magnetic Mott-Hubbard insulators under pressure. It is
shown that the single-ion mechanism of spin crossover under the change in the crystal field does not lead to a
thermodynamic phase transition; however, at 7 = 0 a quantum phase transition appears. It has been found that
the cooperativity leads to a modification of the quantum phase transition to a first-order phase transition and the
appearance of metastable states of the system. The pressure-temperature phase diagram has been obtained to
describe the magnetization and high-spin population near the spin crossover of Mott’s insulators with d® ions.
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I. INTRODUCTION

A spin crossover (SCO) was discovered by Cambi and
Cagnasso almost 80 years ago [1], and it has attracted the
attention of researchers ever since. Primarily, the interest
in SCO systems has been connected to the hope to design
free inertial molecular two-state switches which can be
used to store and process information in fast computational
devices. The development of nanotechnology has prompted
studying this phenomenon to use certain properties of the
SCO in quantum transport and to create a new generation of
sensors and displays [2]. Spin systems with crossover include
extensive classes of materials: organometallic complexes,
organic radicals, inorganic salts, and transition-metal oxides.
The SCO phenomenon is associated with the energy-level
crossing of two different spin multiplets of a magnetic ion with
varying some external parameters, i.e., temperature, pressure,
light irradiation, etc. Due to its cooperative nature, the SCO
connects the micro- and macroscopic properties of the system.
Sometimes the SCO is considered a special type of phase
transition, the so-called supercritical transition [3]. A nice
example of a planetary scale of a spin-state transition is the
SCO in ferropericlase at high pressure [4], which probably
takes place in the Earth’s mantle [4-8]. To date, the effect
of pressure and temperature on the spin transition has been
described in terms of various approaches and approximations.
One of the most common approaches is based on the Landau
theory of phase transitions [9]. A second successful approach
is based on the Ising model [2,10-34]. A third approach is the
microscopic one [35]. Each of these approaches has strengths
and weaknesses (for discussion see Refs. [36,37]).
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In general, SCO results from a competition between the
Hund intra-atomic exchange interaction and the crystal-field
value determined by surroundings ions. At first glance, it
is a problem of an individual ion in a given crystal field.
The external or chemical pressure changes the crystal field
and induces the SCO as well as all other external effects
changing the interatomic distance. Cooperative effects in such
systems result in different hysteresis phenomena and play an
important role in the practical applications and understanding
of their nature. One can single out several essential types
of interactions between metal ions, namely, electron-phonon,
quadrupole, and exchange interactions.

Cooperativeness in magnetic insulators is usually caused
by the interatomic exchange interaction. However, this mech-
anism does not work in SCO systems with the ground state
being the low-spin (LS) singlet ion level. The magnetic cations
of organometallic complexes are connected to each other
by chemical bridges, and cooperative effects are realized
through elastic interaction. In the literature, we have found
a few works that discuss cooperative magnetic effects through
the exchange interaction between the excited high-spin (HS)
states (see., e.g., [21,38]). In all these studies the form of the
exchange interaction is postulated phenomenologically, as the
Heisenberg exchange interaction with empirical parameters.
In the last decade many works based on density functional
theory have appeared to describe the SCO phenomenon. For
example, the SCO properties and phase diagram have been
obtained for the [Fe(PM — BIA),(NCS),] compound [39].
Recently, various models with the elastic constant depending
on the distance between the structural elements have been
studied using the methods of molecular dynamics [40,41] and
Monte Carlo simulations [42,43]. Along with the use of static
pressure there are also some studies on the effect of impact
pressure on the spin state of coordination complexes, such as
[Fe(phen),(NCS),] [44]. It was shown that a relatively low
pressure pulse of 0.02 GPa is capable of inducing an almost
complete conversion of the spin on the hysteresis branches.
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Such effects may be applied to spin-state switching devices by
using SCO materials.

Since the direct overlap of d orbitals of neighboring ions
in the transition-metal oxides is small, the main mechanism of
the exchange interaction in these compounds is the Kramers-
Anderson indirect exchange (superexchange). In addition,
the interplay of electronic hopping between neighboring
ions with the orbital structure of different spin multiplets
also results in spin-orbital cooperative effects in strongly
correlated transition-metal oxides [45]. The most common
and versatile approach to the SCO problem is based on the
effective Hamiltonian. Within this approach, all these materials
are treated from a single point of view. However, when
two different spin multiplets are close, effective interaction
between the magnetic cations may be far from the Heisenberg
interaction, and the effective Hamiltonian should be obtained
from a multielectron microscopic approach.

The present work is devoted to a neat derivation of the
effective Hamiltonian for transition-metal oxides with SCO
and studying the influence of arising cooperative effects on the
formation of the physical features of these materials. By using
the effective Hamiltonian approach, we study the effect of the
exchange interaction on the SCO. In this way the orbital HS
and LS states of the 3d ion are described in terms of one-half
pseudospin. To obtain all the parameters of the effective
Hamiltonian, we applied the hybrid multielectron local-density
approximation (LDA) plus generalized tight binding (GTB)
approach [46]. The use of projection Hubbard operators as
part of the LDA+GTB method yields terms in the effective
Hamiltonian not considered previously. They are responsible
for the exciton-type interaction. This opens up interesting
possibilities for further research into both equilibrium and
nonequilibrium phenomena in SCO systems, for instance,
interaction with radiation.

This paper is organized as follows. In Sec. II we derive the
effective Hamiltonian for the multiband model of strongly
correlated 3d oxides. In Sec. III the SCO phenomenon is
studied in the mean-field approximation. In Sec. IV the results
of numerical simulations are presented. In the conclusion we
discuss the obtained results.

II. EFFECTIVE HAMILTONIAN APPROACH TO THE SPIN
CROSSOVER IN MAGNETIC INSULATORS

For transition-metal (TM) compounds with the predomi-
nant type of ionic bonding (i.e., oxides, halides, etc.), strong
electron correlations determine the insulator and magnetic
properties. The commonly accepted minimal model for de-
scription of such compounds is a multiband p-d model
[47-49]. This model explicitly takes into account the Coulomb
interaction of the d electrons of the TM ion. The Hamiltonian
of the model can be written as

H="Has+H,+Hpa. ey

Here the first term, Hy = Y, ; Egd,‘t,\,gdi,x,a + HGoulomb_ ge_
scribes the d electrons in the crystal field (A = xy, yz,zx,x2 —
y2,z%) and their Coulomb interaction. The second term, H,, =
> Sﬁp;ra(,pjm + Y X t;‘,’?(p;“ijrﬁg + H.c.), with the
j.a.o (j,J") a.B,0
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hopping integral being tf,‘g , describes p electrons of oxygen or
other ligands involved in o and 7 coupling (&, 8 = x,y,z). The

third term, H ¢ = ZO_].).G(t;;’djw Djac + h.c.), characterizes
the hybridization of the cation-anion states.

In this approach the Coulomb energy of p electrons is
usually neglected. However, if necessary, it can be easily
taken into account within the framework of our LDA+GTB
approach (see below). The multiband p-d model with all
Coulomb interactions (d-d, p-p, and p-d) included was
discussed in [50].

An important advantage of this multiorbital model is
the ability to form different many-electron states (terms) of
the transition metal’s ion. These terms are characterized by
different values of the spin, 0 < § < 5/2, and the orbital
angular momentum. For a d" ion in the crystal field, the ground
state depends on the relationship between the Hund exchange
constant Jy and the crystal field, 10Dq. In some cases, the
amount of cation-anion hybridization makes a contribution to
the stability of HS/LS terms [51].

The magnitude of the crystal field depends on the in-
teratomic distance, and it changes when external pressure
or “chemical pressure” is applied. The chemical pressure
appears when isovalent substitution occurs in a series of
solid solutions or stretching. For ionic crystals energy terms
of d"-electron configurations in a cubic crystal field have
been obtained numerically. The results are presented by the
so-called Tanabe-Sugano diagrams [52].

In the framework of the LDA+GTB approach, parameters
of the Hamiltonian (1) are obtained from the first principles.
In order to adequately account for electron correlations, the
cluster approach of the GTB method is applied [50].

In the GTB approach the crystal lattice is divided into
clusters (“elementary cells”), and the total Hamiltonian can be
written as H = Ho + Hy, where Ho = )~ H.(f) is related
to the contribution of all noninteracting clusters and H; =
> ¢ Hee(f,8) describes hopping and interaction between
clusters.

The Hamiltonian H.(f) can be diagonalized exactly. We
denote by |p) its eigenstates with energy E,. The next step
is to introduce the Hubbard X operators. They are defined in
the standard way [53]: X?q = |p){q|. The algebra of the X

operators is determined by the multiplying rule, X ?q Xy =

8 po8qr X f‘v, and the completeness condition, Y X f;" = 1. The
indices p and ¢, being collective indices, contain a set of the
following quantum numbers: the number of electrons n, per
unit cell; an irreducible representation I', which describes the
transformation of the orbital part of the wave function under
the action of the point-symmetry group of the given crystal;
the magnitude of the spin S; and its projection m . Thus, one
can write |p) = |n,; Tymr; S;mg).

It is assumed that for the neighboring cells the eigenstates
are orthogonal. If not, as in the case when two adjacent
clusters share a common oxygen, one needs to use the
orthogonalization procedure, employing Wannier functions
instead of the group of oxygen orbitals. Such a procedure was
proposed for the three-band p-d model in [54] and generalized
to a multiband model in [55].

Since the Hubbard operators form a linearly independent
basis, any local operator can be expressed as a linear
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combination of X operators. For instance, a single-electron an-
nihilation operatora,, ina f cell with the band index v can be
written as ague = 3, 1P)(Plasue|g) (gl =3 ,, Voopg X5
In the X-operator representation the Hamiltonian (1) takes
the form

H=> (E,
f.p

where g is  the

> oo TV" yw(m)yw(n) Here TJE;' are the hopping
matrix elements in the basis of the orthogonalized Wannier
functions. The SCO occurs in the case of the energy-level
crossing of the two different spin states under the influence of
external factors.

In what follows, we generalize the method of projection
operators, developed for the Hubbard model [56], to obtain
the effective Hamiltonian from (2) by excluding the interband
hopping integral through the dielectric gap. We define for two
nearest-neighbor sites i and j the projection operator P; as

Po=) (XX 4 D0XIXET )
4 p-p

an)xﬂ‘[ + Z Z tmnXmexn (2)
f#g mn

chemical potential and 1% =

On the right-hand side of Eq. (3) only those states |p) and |p”)
for which the number of electrons per unit cell 7, is more (or
less) than what follows from the electrical neutrality condition
are taken into consideration. As one can see, the operators P;
and P, = 1 — P, satisfy the following identity: P, P, = 8,5 Py,
where a,b = 1,2.

Let us consider the auxiliary Hamiltonian, H, = H' +
nH’, where H' = PyHP, + P,HP, and H' = PyHP, +
Py’H Py, with n being a formal parameter. At the end of com-
putation we set n = 1. Using the identity H =), P, H Ps,
one can show that H,|,=; = H. Here H' contains interatomic
electron hopping inside the individual Hubbard subbands,
while H” describes the interband electron hopping via the
large Mott-Hubbard band.

We employ the method of operator perturbation theory
to eliminate the processes with the interband hopping. The
essence of the operator perturbation theory is that, using a
canonical transformation, 7:(,, = exp(—inU)H, exp(inU), one
can choose the operator U so that the terms of the Hamiltonian
linear in 7, 7:1,7, i.e., contributions of the interband hopping,
vanish. As one can show, this condition results in the following
equation for the operator U':

H'+[H,U]=0. “
One can see that the condition H = {,,|,—; can be recast as
H=H + [ UL, 5)
Using the results obtained in [56], we found

1
[PPH Py, PYHP1], (6)

ct

H = P/HP, + PyHP, —

where E., = (P,H P,) — (P) H P;) is the charge-transfer en-
ergy that determines the insulator gap E,. The first two terms
in (6) describe the electron hopping in the conductivity and
valence bands. The last term results in the effective exchange
Hamiltonian given by the superexchange interaction. This
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approach has been developed for the Hubbard model [56] and
has been used with X operators for La,CuO,4 and FeBO; [57].

Gathering all the results together, one can show that the
effective Hamiltonian in the representation of spin operators
S; and pseudospin operators t; becomes

Hesr = Z ZJa,g<S°‘ Sﬁ—f-sn n]>p,pj

o,f=1,2 (i, )

+LF(P) = €0l Y 77 + Heiton- )

The summation is performed over neighboring sites on a
lattice with coordination number z. The first term describes
the exchange contribution to the Heisenberg Hamiltonian; nf
stands for the operators of the particles on ith site, and the
parameter £ = —1,3 corresponds to the antiferromagnetic and
ferromagnetic ordering, respectively. The projection opera-
tors, p¥ = (1/2)(1 4 A,7/), are defined in the subspace of
eigenstates of the pseudospin operator, t{|o) = A4|o), With
the eigenvalues being A; = 1 and A, = —1. The index « takes
a value of 1 for the HS state and 2 for the LS state of the
system; thus, Pl = 1), pl12) =0, p?|1) =0, p?|2) = |2).
The second term in Eq. (7) describes variation in the relative
energy of electronic configurations for LS and HS states
under the influence of the applied pressure P. In Eq. (7)
we set &g = A /2, where Ay = E g — Eyg is the energy gap
between the LS and HS states at zero pressure. Here f(P)
denotes a pressure contribution to the spin gap 9. We consider
the situation when at P = 0 HS is stable (gy > 0).

In the representation of spin and pseudospin operators, the
Hamiltonian (7) has the form

Hegr = Z ZJa,g<S°‘ Sﬂ—i—i f)

o, f=1,2 (i, j)

X (14 AT 4+ ApT; + AahpTi 7))
+LF(P) =20l Y 77 + Hexiton- ®)

The third term in Eq. (7) includes the interaction of the
excitonic type. The simplest form it takes is for the two-level
system. In this case orbital and spin singlets |S) stand for the
LS state, and the HS state is described by a spin triplet | M),
with the spin projections being M = 0, & 1. Thus, Hexjton can
be written as

Hexiton = Jexiton Z Z [T
M (i.))

— (=DM (rft;”X,M‘SX;VI’S + rl._rj_XiS’MXJS.‘M)],
©))

where on the ith site the Hubbard operators X** and X7
describe the excitations in the spin subspace of the system
from the singlet state to the triplet state with the projection of
the spin M and vice versa. The operators 7, and 7, have the
same meaning for the orbital part of the wave functions.

Note that the interaction between the spin and orbital
degrees of freedom has long been studied in the literature
using the Kugel’-Khomskii model [58]. Our Hamiltonian
contains a formally similar combination of the pseudospin

-xM X M- 7; XSMXjV’S
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and spin operators, but the physical origin of pseudospin
states here is different from the single-electron analogs in the
Kugel’-Khomskii model.

The Hamiltonian (7) can be generalized by including
the phonon interaction between TM ions and the spin-orbit
interaction. The phonon contribution is described by [58]

He ph—JIZr*r"JrJqu (10)

(i,7)

where the coupling constants J; and J; are determined by
the interaction of different phonon modes of the lattice. The
spin-orbit interaction in the highest order of the perturbation
theory leads to a mixture of the LS and HS states caused by
tunneling of the system through a potential barrier between
the LS and HS states. The corresponding Hamiltonian can be
written as [59]

Hs0+tunneling =J; Z T,'x- (1 1)

In recent years the unusual properties of supramolecules,
containing spin-active coordinated TM ions of the iron group,
have increasingly drawn the attention of researchers. These
systems exhibit both the thermal SCO and the SCO arising
from the impact of pressure or as a result of the light irradiation
of the sample (Light Induced Excited Spin State Trapping
(LIESST) effect. This phenomenon is due to the interaction of
vibronic levels with different multiplicities), which are often
accompanied by hysteresis [60].

Irradiation of a frozen [Fe(ptz)s](BF4), sample at a wave-
length of 514 nm results in spin-allowed transitions 'A; —
'T). The excited state will relax back to the initial singlet
state unless the spin-orbit interaction provides intersystem
transitions in the triplet states, > 75 and > T;. These states overlap
with the quintet 5 E, which then relaxes into a metastable state
3T,. The latter can exist indefinitely at low temperatures since
the potential barrier separates it from the ground state ' A;. To
reverse LIESST, the low-lying state >7; should exist. This state
is intermediate in the two intersystem transitions and can decay
into 3T, and ' A,. Therefore, by irradiating such a state at the
closest infrared wavelength transition, ’T, — E [752.7nm
for [Fe(ptz)s](BF4),], the reverse transition in singlet YA, can
be carried out.

The terms Hexion and H._p,, [see Egs. (9) and (11)]
are directly related to the LIESST effect and can be used
for description and simulation of the SCO in supramolecule
systems.

III. MEAN-FIELD APPROXIMATION
In what follows we consider an antiferromagnetic system
(& = —1, Jup > 0) and restrict ourselves, for simplicity, to
considering only antiferromagnetic interactions, writing the
effective Hamiltonian as
= X S (s8] - gt o]
+(f(P)—e0) Y _ T/ (12)
i

ao,f=1,2 (i,j)
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The method can be applied in a straightforward way also in the
ferromagnetic case, £ = 3 and Jyg < 0. In regard to possible
pseudospin ordering we restrict ourselves in this paper to the
case of pseudospin ferromagnetism. This means that each ion
has the same spin state.

In the mean-field approximation the effective Hamiltonian
HME can be written as (for details see the Appendix)

=Ho — Z Z 2Jupnianp Sp(m”)SY — Acr Z T

i ap=172
13)

where m{ = (0,0,m?) is a unit vector, so that one can write
the staggered magnetization (S¥) = S, (m{),

1
=> > [va,snan,s<m%<mﬂ> — 5 Bupta(l —n,s)]

i ap=1,2
(14

> Awphpng +leo— f(P).  (15)

a.p=1.2

1
AW =3

Here vog = 2J48S. 58, and

Aup =zJo,ﬂ<(S°‘)(S’3) + %NaNﬁ). (16)

We denote by n, = (pf) = (1/2)(1 4+ Ay(T*
(o = 1) and LS-state (o« = 2) fractions.

Thus, the Hamiltonian H™¥ given by Eq. (13) can be
considered the effective Hamiltonian for the description of
SCO as pressure, temperature, or both are changed.

The computation of thermodynamic averages yields the
sublattice magnetization m and uniform pseudospin order
parameter T = (T°):

My =BSQ, <ﬂ Z Vaa’”a”ot”’”o/)v (17)

oa'=1,2
(%) =tanh(BAe + In \/g), (18)

where my, = (m?), B =1/kpT, g = gus/grs is the ratio of
the degeneracy of HS and LS states, and

Bs(x) = (1 + %) coth [(1 + %)x]

L ot (2 (19)
25 7"\ 28
is the Brillouin function.
The populations of HS and LS states are found to be

1 + tanh(BAefr + In /g)

)) the HS-state

Nps =n| = 5 , (20
1 — tanh(BA In
Nis=ny = (b 23“ +hnve) @1)

IV. IMPACT OF COOPERATIVE EFFECTS ON THE
SPIN CROSSOVER

We find that in the mean-field approximation the SCO in the
transition-metal compounds can be described by the effective
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Hamiltonian (13). The populations of HS and LS states are
described by the self-consistent system of the transcendental
equations [Egs. (17), (20), and (21)].

In what follows we restrict ourselves to the consideration of
the case S, = 0. It is convenient to introduce a new parameter
q, writing N, = qS,. Further, we assume g = 2. Let us denote
m=ml,l’l=I’l1,S=Sl,J22=J12=J21 =0,andJ=J11.
Then Egs. (17), (20), and (21) can be rewritten as

m =Bg(Bvmn?), (22)
o 1+ tanh(,BAzeff +In \/E), 23)

where
At = %(l +m®n + s — f(P). (24)

The effective Hamiltonian (13) can be recast as

H" =Ho— ) B-Si— At )7/, (25)

where B = zJSn?(m) and

Nvm?
Ho =

n(Bn —1) — %n(l —n). (26)

The critical pressure P, corresponds to the energy-level
crossing of HS and LS states and satisfies the equation &y —
f(P.) = 0. Its magnitude is determined by a competition of
the crystal field and the intraionic Hund exchange. For TM
ions in the cubic and tetrahedral crystal fields, the explicit
magnitudes of P, are obtained in [61-64]. Further, we assume
f(P) =aP, so that one can write &g = aP,.

Below, in our numerical simulations, the parameters are set
as follows: S =2,z=6, g =15, J =28K, a = 80K/GPa,
and P, = 55 GPa. The pressure is measured in units of P, and
the temperature is in units of J.

First, we consider the behavior of the system described
by Egs. (22)—(24) in the absence of exchange interaction,
J = 0. In this case the magnetization m = 0. The results of
numerical simulations are presented in Fig. 1. Similar figures
were obtained previously in [7,65-70]. At T = 0, one can
observe a sharp jump in the population of the HS state at
the crossover point. In the thermodynamic limit this is related
to the quantum phase transitions with the order parameter
being the Berry phase [71]. With increasing temperature, the
quantum phase transition becomes a smooth crossover.

A. Low-temperature limit

In the limit of 7 — 0, we succeeded in obtaining the
analytical solution given by the following multivalued function
(blue dashed line for m = 0 and red solid line for m = 1 in
Fig. 2):

L, 0< P < Py,
n=3a,(P—1), 1<P <P, 27
0, P =1,
where P, = 1 + ! and
2aP. 28)
Oy = ————.
v(1 + m?)
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FIG. 1. HS-state population vs pressure and temperature in the
absence of the exchange interaction (J = 0).

The interval of pressure, AP, = «,, L corresponds to the

region of critical behavior of a physical system in which hys-
teresis phenomena are significant. For the chosen parameters
we find APy ~ 4.2 GPa and A P; ~ 8.4 GPa. Note that in the
absence of cooperativity (J = 0) the width of this domain is
zero, AP, = 0.

At zero temperature the ground state of the system is defined
by the minimum of its energy,

E = —Eo[(1 + m®)n® + ap(1 — P)(2n — 1)], (29)

where Eg = Nv/2.

InFig. 3 the dimensionless energy of the system, e = E/Ey,
is depicted at zero temperature. It is clear from Fig. 3 that
SCO at zero temperature is the first-order HS-LS transition at
critical pressure Py > Pc, Py = 1.076 for the chosen set of
parameters.

0.4r

1.2 1.3

FIG. 2. The HS fraction vs pressure. Red solid line: 7 = 0,m =
1; blue dashed line: 7 = 0,m = 0.
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FIG. 3. Energy of the system, ¢ = E/E, at zero temperature vs
pressure for m = O (blue dashed curve) and m = 1 (red solid curve).

B. Numerical solutions

At fixed temperature and volume, the equilibrium state of a
system is characterized in terms of the Helmholtz free energy,
F = FE —TS. The computation of the free energy per site
yields

F=Hy—kgTInZ, —kgTInZ., (30)
where
vm? v
Hy = Tn(?an -1 - En(l —n). 31

The partition functions of the spin and pseudospin subsystems,
Zs and Z,, respectively, are given by

sinh [(1 + 55)Bvmn?]
7. =
sinh (%,vanz)
Z; =2,/g cosh(BAcs + In \/g). (33)

Figures 4(a) and 4(b) depict P-T phase diagrams of the
HS-state population n g and magnetization m, corresponding
to the minimum free energy F' (30), respectively.

In Fig. 5 all the possible self-consistent solutions of the
system of equations (22) and (23) for the above set of
parameters, marked with red circles for the magnetization
m and blue crosses for the population of the HS state nyg
for some specific values of external pressure (see below) as
a function of temperature, are depicted. Those solutions that
correspond to the minimum of the free energy are connected
by solid lines (red lines for the magnetization m and blue
lines for the population of the HS state nyg). The remaining
solutions are metastable. From Fig. 4 it is clear that due to the
exchange interaction J the ground magnetically ordered state
is maintained until Py > P¢ despite the fact that in the single-
ion picture when P > P the ground state is a nonmagnetic
LS state. The increase in Py vs Pc is related to the additional
energy gain of the HS state vs LS due to the interatomic
exchange coupling. At P > Py the magnetic ground state
is transformed into a nonmagnetic state by the first-order
transition. The crossing of two energies that are typical for

; (32)
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FIG. 4. P-T phase diagram corresponding to the minimum of the
free energy: (a) HS-state population and (b) magnetization. Here 7%,
P* is the tricritical point, and 7”, P’ is the reentrant transition critical
point.

the first-order phase transitions is clearly visible in Fig. 3. In
the range of pressure P < Py [Figs. 4(b), 5(a) and 5(b)] with
increasing temperature the system undergoes the second-order
phase transition to the paramagnetic state. In the P-T diagrams
of a physical system (Fig. 4) the existence of a singular point,
the so-called tricritical point [T*, P* in Fig. 4(b)], at which
the second-order phase transition line continuously crosses the
line of the first-order phase transitions, is clearly visible. At
P > P, the ground state of the system is not magnetic. With
increasing temperature, the magnetic HS state is populated,
and due to the first-order phase transition the antiferromagnetic
phase is restored [Figs. 5(c) and 5(d)] as itis energetically more
favorable for P < P’. Thus, due to the cooperative interaction
J in systems with spin crossover under pressure the reentrant
transition at Py < P < P’ may exist. With a further increase in
temperature the system goes into the paramagnetic state via a
phase transition of the second order if P < P* and of the first
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order close to the second if P* < P < P’ [Fig. 5(d)]. With
increasing pressure at P > Pc an energy interval between the
ground nonmagnetic LS state and the nearest excited magnetic
HS state is increased. When P > P’ [Fig. 5(e)], the thermal
energy required for the HS-state population to reach the desired
extent becomes comparable with the value of the exchange
interaction J, and magnetic order disappears.

V. CONCLUSION

Previously, the effect of interatomic Coulomb and exchange
interaction was studied in Ref. [19], where quite similar mean-
field solutions were obtained. We studied the effect of pressure
on SCO that was not discussed in [19].

Cooperative effects in the SCO systems, where the role of
the controlling parameter is carried out by external pressure,
lead to an unusual modification of the system. The magnetic
ordering can be suppressed by external pressure, and near the
quantum critical point a region of metastable states arises.

In the absence of exchange interaction and magnetization
at J = 0, there is a sharp change in the population of the HS
state at the crossover point at 7 = 0, which corresponds to a
quantum phase transition [71]. With increasing temperature,
the quantum phase transition at 7 = 0 smeared into a smooth
transition, a crossover. In the presence of cooperativity in
the form of an exchange interaction, the quantum phase
transition with an increase in temperature is reconstructed
into a thermodynamic transition of the first and then of the
second order. The appearance of first-order phase transitions
with discontinuities of the magnitude of the magnetic moment
and the population of ionic terms due to the large (up to 10%)
difference in the HS and LS ionic radii results in a break in
the volume of the crystal as a function of temperature and
pressure. Metastable states contribute to the appearance of a
hysteresis loop and a kind of irreversibility of the process
of phase transformation. Features in the behavior of the
volume with increasing pressure result in anomalies in the
modulus of elasticity and the speed of sound propagation in
materials with a spin crossover. The P-T phase diagram we
obtained can be used to analyze and describe the experimental
data and measurements of magnetic, structural, and various
thermodynamic quantities in magnetically ordered substances
with a spin crossover under pressure. The direct message to
experimentalists from this paper is that at low temperatures
spin crossover under high pressure is indeed the first-order
phase transition if the sample temperature is below the
tricritical temperature 7* =~ 0.8Ty .

In SCO compounds, local bistable states, i.e., HS and
LS states, have different molecular sizes, and the elastic
interaction is important. The elastic interaction, induced by
the lattice distortion due to the difference in the molecular
size, causes an effective long-range interaction. In realistic
compounds the short-range interaction also plays a role in
phase transitions. For example, if we consider the usual
Lennard-Jones potential between molecules which depends
on the spin states, the model has both elastic and short-range
interactions [72]. Competition and interplay between the
short-range and long-range interactions are interesting topics
in phase transitions [73-80]. In the pure short-range model,
clustering of the ordered phase takes place near the critical
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temperature, leading to the divergence of the correlation length
of the order parameter. However, the long-range interaction
suppresses the generation of domains, and the configuration
is uniform even at the critical temperature [43]. This effect
should be experimentally observable as an absence of critical
opalescence [43,79,80]. Phase transitions in such systems
belong to the mean-field universality class.

In [81,82] the authors showed short-range interactions
favoring nearest-neighbor HS-LS pairs (called antiferromag-
neticlike) and a long-range (elastic) interaction favoring all
molecules in the same spin state (all LS or all HS, called
ferromagneticlike). In our work we found that short-range
exchange interaction could favor both anti- and ferromagnetic
HS-/LS-state ordering. It can be seen from expression (8)
that the magnetic ordering determines the orbital pseudospin
ordering. Thus, an antiparallel ordered orientation of the spin
magnetic moments of neighboring lattice sites of the crystal
(sAFM) at J > 0 contributes to the ferromagnetic ordering of
the pseudospin moments (t FM). Conversely, a parallel ordered
orientation of the spin magnetic moments of neighboring sites
(sFM) contributes to the antiferromagnetic ordering of the
pseudospin moments (t AFM). In addition, for J < 0, states
with the same orientation of the spin and pseudospin moments
(sFM-tFM, s AFM-t AFM) are favorable from the viewpoint
of the energy minimum.

In the experiment the independent variables are the pressure
and temperature. In this paper, an analysis of the SCO system
was carried out for a fixed volume, using the Helmholtz
free energy. However, even in this limited approach, one
can determine the main properties of the SCO. The potential
difference from the general case, which includes the possible
change in the system volume, will be only quantitative. In
order to take the latter effect into account, one should consider
the Gibbs thermodynamic potential instead of the Helmholtz
free energy. That research is in progress.

X-ray diffraction data indicate that in the region of critical
pressures where magnetic, electronic, and spin transitions are
observed, the structural transformations occur, but in different
crystals they occur according to different scenarios [83]. In the
magnetically ordered phase, at T < Ty, a sharp volume jump
is observed, and at T > Ty only a smooth change occurs,
while in most cases the symmetry of the crystal is conserved.
So at T = 300 K for (MgFe)O and GdFe3;(BOs3)4, for which
Tn < 300 K, there is a smooth change in volume. For FeBO3
(Ty = 348 K) there is a jump without hysteresis within the
measurement error. For the orthoferrites (NdFeO3, LaFeOs,
PrFeO;) and hematite Fe,O3 with high Ty, there is a jump
with hysteresis [83].

Summarizing, the main results of this paper are the follow-
ing: due to interatomic exchange interaction, spin crossover
at T < T* < Ty is the first-order phase transition and is
accompanied by a sharp volume change. For T* < T < Ty
spin crossover is the second-order phase transition. For T >
Ty spin crossover is not a phase transition.
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APPENDIX: MEAN-FIELD APPROXIMATION

In this Appendix we deduce the effective Hamiltonian in the
mean-field approximation. We start with the Hamiltonian (7)

Heir = Z Z Jop (SY Sl; + A%)P?Pf

o,p=1,2 (i,])

+LF(P) =20l Y 77 + Hexiton: (A1)

where we set Af}f’a = (& /4)n§‘n§} . In what follows we neglect
the contribution of the last term, Hexiton-

Let us write the spin and pseudospin variables as SY =
(S¢) + 68y and 1 = (1) 4+ 7. Here &Sy =S¢ — (SY),
817 =tf — (tf), and (- - -) denotes the average value. In the
mean-field approximation one neglects the contribution of the
second-order terms in the fluctuations, so that

({S7) +887) ({Sf) + 857)

~(ST)ST) + osi(S) + (Srps]. a2
() +350) 55+ 57)
S R T AT R
((77) + 877) ({x5) + 875) = (v ){z5) + 87(5) + (7)o
(AD)

In the mean-field approximation the spins and pseudospins are
independent of each other, and their average does not depend
on the site. Thus, one can write (77) = (r%) and (SY) = (8%).

The antiferromagnetic case can be resolved by introducing
two topologically equivalent sublattices, say, A and B [84,85].
Then in the mean-field approximation one can show that

(Sa) = —(Sp).

PHYSICAL REVIEW B 96, 134103 (2017)

Using Eqgs. (A2)-(A4) in (A1), we obtain
S=— Y Jap(R nang + 2ngng (8%)8S
o,B=1,2 (i,))

+ 2R nadpl) + [F(P) =20l Y 75, (AS)

where R = (8*)(8%) + A and ne = (pf) = (1/2)(1 +
Ao (T?)) denotes the HS- state (@ = 1) and LS-state (o« = 2)
fractions. Here and below, for J,s and & we mean only their
absolute values.

Substituting 88/ = 8/ — (8#), 8p” = p/ — ny into (AS),

we obtain
G= 2 0 Sl S~ Rt =)
(i,j) a,p=1,2
=2 D Jap(20anp(S)S] + R Agnaty)
(i.j) . p=1,2

+LF(P)— el Y T (A6)

Next, we replace the particle number operator by its aver-
age, n{ — (n¥) = Ng, and replace Rg.ﬁ by Rup = (S*)(SP)y +
(§/4)Ny Ng. Then, in the approximation of the nearest neigh-
bors we obtain

0= Z 3" Japl2nans(S7)(SP) —

i ap=12

—%Z Z Jaﬂ(2nan5

i a,p=12

+If(P) =&l )T

aﬁna(l - nﬂ)]
<So‘>SiS + Raﬁkﬁnarf)
(A7)

Let m = (0,0,m¥) be a unit vector, so that (SY) = S, (mY).
Then one can recast the effective mean-field Hamiltonian (A7)
as follows:

1
=> > [vaﬁnan,s<m“><mﬂ> = 5 Baupna(l = nﬁ)}

i ap=12
- X chonans sy - s Y
i ap=12
(A8)
where Vop = ZJaﬂSaS5, Aaﬁ = ZJaﬁRaﬁ, and Aeff =

(1/2) g g1 2 Daprpna + [0 — f(P)].
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