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Partial local density of states from scanning gate microscopy

Ousmane Ly,1 Rodolfo A. Jalabert,1 Steven Tomsovic,2 and Dietmar Weinmann1

1Université de Strasbourg, CNRS, Institut de Physique et de Chimie des Matériaux de Strasbourg, UMR 7504, F-67000 Strasbourg, France
2Department of Physics and Astronomy, P.O. Box 642814, Washington State University, Pullman, Washington 99164-2814, USA

(Received 7 June 2017; revised manuscript received 21 August 2017; published 29 September 2017)

Scanning gate microscopy images from measurements made in the vicinity of quantum point contacts were
originally interpreted in terms of current flow. Some recent work has analytically connected the local density
of states to conductance changes in cases of perfect transmission, and at least qualitatively for a broader range
of circumstances. In the present paper, we show analytically that in any time-reversal invariant system there are
important deviations that are highly sensitive to imperfect transmission. Nevertheless, the unperturbed partial
local density of states can be extracted from a weakly invasive scanning gate microscopy experiment, provided
the quantum point contact is tuned anywhere on a conductance plateau. A perturbative treatment in the reflection
coefficient shows just how sensitive this correspondence is to the departure from the quantized conductance value
and reveals the necessity of local averaging over the tip position. It is also shown that the quality of the extracted
partial local density of states decreases with increasing tip radius.
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I. INTRODUCTION

Since its development 20 years ago [1], scanning gate
microscopy (SGM) has revealed fascinating phenomena in
transport processes and has been considered as a powerful
tool to probe local properties [2,3]. In this technique the
conductance of an electronic device is measured while the
tip of an atomic force microscope (AFM) is scanned above its
surface. The AFM tip acts as a movable gate that scatters the
electrons, leading to a spatially dependent modulation of the
conductance [4].

One of the most investigated nanostructures is the quantum
point contact (QPC) [5,6], defined in a two-dimensional
electron gas (2DEG). When the tip is raster-scanned over the
surface of the system, electrons are backscattered to the QPC,
giving rise to a conductance map that exhibits a branched
pattern. In the case of a QPC opening into an unconstrained
2DEG, these patterns have been interpreted as a signature of
the electron flow in the disordered potential resulting from
the ionized donor atoms [7,8]. Thus, a link is presumed
to exist between SGM measurements and local properties
(local densities of states [LDOS] and current densities) of
the unperturbed devices.

Typically, the tip voltages used to study QPC setups
operating in the regime of conductance quantization are strong
enough to create a large depletion disk (much bigger than
the Fermi wavelength) in the 2DEG underneath the tip. The
connection with local properties has been argued to concern
the classical turning point of the electron trajectories with
the Fermi energy that leave the QPC and encounter the tip
potential [9].

In order to address this problem, the paradigmatic case
of a QPC perturbed by a weakly invasive tip has been
considered in the linear [10,11] and nonlinear [12] regimes
(in source-drain bias voltage). In particular, in the regime
of conductance quantization of clean 2DEGs, spatial and
time-reversal symmetries have been shown to play a key role
in establishing a correspondence of the SGM response with
the LDOS and the current density on both sides of the QPC.

The SGM technique has also been used to study systems
with a variety of electronic confinements, including open

quantum dots [13–18] and Aharonov-Bohm rings built in
high-mobility semiconductor heterostructures [19–22], as well
as carbon nanotubes [23] and graphene-based microstruc-
tures [24,25]. For systems with sufficient electronic confine-
ment charging effects are relevant, and for very small quantum
dots a biased SGM tip mainly acts as a gate that modifies the
number of electrons in the dot and affects the conductance via
the Coulomb-blockade phenomenon [23,24,26–28].

For relatively large and open quantum dots, the charging
effects are not crucial and, as in the case of QPC setups,
the connection between the SGM measurements and local
properties has been pursued. In these systems, qualitative
similarity between conductance changes and LDOS has been
noted whenever the LDOS exhibits some localized structure.
For instance, minima of the SGM response appear where the
LDOS vanishes [21,22]. Furthermore, numerical simulations
for rectangular resonant cavities [29] indicated that the
conductance terms derived in Ref. [10] are correlated with
the LDOS when the Fermi energy is close to a resonance with
a cavity state. For one-dimensional systems, a perturbative
approach has revealed that the first-order conductance change
in the presence of a δ-tip is related to the Hilbert transform of
the LDOS [21,30].

It is important to note that electronic confinement is asso-
ciated with a change in the interpretation of SGM maps with
respect to the case of a QPC. Specifically tailored experiments
have shown the need of such a change of interpretation when
the QPC setup is modified by electronic confinement guiding
the electron transport [18,31]. The need of different interpre-
tations for setups with and without electronic confinement can
be traced, in the case of weakly invasive probes, to special
features of conductance quantization characterizing QPCs in
the absence of confinement, where the transmission channels
are either completely open or closed [10].

The issue of whether the transmission channels are com-
pletely open (and otherwise completely closed), i.e., the perfect
transmission case, turns out to play a crucial role in the
interpretation of measurements and their relationships to local
properties. It has been shown that in the case of perfect
transmission, the second-order conductance change is the
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first nonvanishing term in a perturbation series [10] and it
is proportional to the square of the LDOS [11]. However,
the analytic relationship between conductance changes and
local properties becomes more complicated for imperfect
transmission.

In this paper analytical and numerical approaches are de-
veloped to study the connection between SGM measurements
and local properties for the case of a QPC in which the tip
potentials can be perturbative or nonperturbative, local or
extended, etc. In addition, cases where the 2DEG surrounding
the QPC can be disordered or clean are treated. First, in the
perturbative regime and on a perfect conductance plateau (i.e.,
at perfect transmission), the SGM on one side of the QPC is
unambiguously related to the partial LDOS (PLDOS, defined
in the next section) of scattering states impinging from the
other side, with no requirement of spatial symmetry. Thus,
the PLDOS plays a more fundamental role than the LDOS.
Next, it turns out that there are significant deviations from
the PLDOS that are highly sensitive to how far one is from
a perfect transmission case. Nevertheless, averaging over the
tip position allows one to develop a quantitative method for
extracting the PLDOS even in this regime. Finally, it is shown
that increasing the width of the tip reduces the quality of the
PLDOS one can extract.

In Sec. III the main results of the existing analytic
perturbation theory [10,11] are summarized. The analytical
derivation of the relationship between SGM and PLDOS
for weak local tips is presented in Sec. IV for the case of
conductance steps and in Sec. V for the case of perfect
unit conductance. The corrections for nonperfect unit con-
ductance are treated perturbatively in Sec. VI. A method for
extracting the PLDOS and effectively disentangling first- and
second-order contributions to the conductance response for
imperfect transmission are given. Numerical simulations of the
second-order conductance correction dominant in the perfect
transmission case are presented in Sec. VII for the case of
local tips, and the full conductance correction is shown in
Sec. VIII. The case of extended tips is discussed in Sec. IX.
Some technical aspects related with the scattering states are
relegated to Appendix A, and Appendix B establishes the link
of a particular contribution to the SGM response with the
LDOS.

II. PARTIAL LOCAL DENSITY OF STATES IN THE
SCATTERING FORMALISM

The spinless partial local density of states (PLDOS) for
electrons impinging into the scatterer from lead l can be
defined by [32,33]

ρlε(r) = 2π

N∑
a=1

|�l,ε,a(r)|2, (1)

using the subensemble of the basis of outgoing scattering
states (A3) incoming from lead l. N is the number of
propagating modes in the lead at the energy ε.

The decomposition of the spinless LDOS ρε(r) as

ρε(r) = ρ1ε(r) + ρ2ε(r), (2)

valid for the two-lead case, naturally appears in scattering
problems in which one is concerned with the response of the
system to a small perturbation of the confining potential [30].
Such is the case of the SGM response, as well as that
of the self-consistent treatment of electrical ac transport in
mesoscopic systems [33]. The definition (1) corresponds to
an injectivity, [30,32,33] where the preselection of carriers is
done by the incident lead l from where they impinge into the
scatterer.

Denoting by M the number of open transmitting eigen-
channels, the basis of scattering eigenfunctions (A9) gives the
expressions for the PLDOS on the right and left, respectively,
of the scatterer as

ρ1ε(r) = 2π

M∑
m=1

|χ1,ε,m(r)|2, x > 0, (3a)

ρ2ε(r) = 2π

M∑
m=1

|χ2,ε,m(r)|2, x < 0. (3b)

Since quite generally, M � N , and the transmitted parts of
the scattering eigenstates (A9) are proportional to the diagonal
elements of the transmission submatrices, the expressions (3)
are considerably easier to evaluate than (1). However, it is
important to keep in mind that the expressions (3a) and (3b)
only describe the region opposite to the lead determining their
PLDOS and are not appropriate for obtaining the LDOS using
Eq. (2), since they refer to different regions of space. For
instance, for a QPC embedded in a clean 2DEG, ρ1ε(r) ∝ 1/|r|
far away from the QPC [34], while the LDOS is independent
of r.

III. PERTURBATIVE RESULTS

An analytical description of SGM in the presence of a strong
tip is a challenging theoretical task. However, a perturbative
approach [10] is tractable in the weakly invasive case, where
the tip-induced potential constitutes a small perturbation of the
electrostatic potential seen by the electrons. To begin, consider
a weak tip potential VT(r) = vTf (r − rT), where f (r) is a
normalized function with

∫
drf (r) = 1, which perturbs the

system. The change in the dimensionless (in units of 2e2/h)
tip-position-dependent conductance can be written as

g(rT) = g(0) + δg(rT), (4)

with

δg(r) = vTg(1)(r) + v2
Tg(2)(r) + O

[
v3

T

]
. (5)

The unperturbed conductance g(0) is given by the Landauer-
Büttiker formula as the total transmission probability. It can
be expressed as a trace over the propagating modes

g(0) = Tr[t†t] =
M∑

m=1

T 2
m (6)

in terms of the transmission submatrix t of the unperturbed
scattering matrix S at the Fermi energy εF or the trans-
mission eigenvalues Tm of the M open eigenchannels (see
Appendix A).
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The basis of the transmission eigenmodes is particularly
suited to express the SGM conductance corrections. Assuming
time-reversal invariance from here on, the two lowest-order
corrections [10,11] are

g(1) = 4π

vT
Tr[RT Im{U21}], (7)

g(2) = −4π2

v2
T

Tr[T 2 U12U21 − R2 U21U12

+RT Re{U22U21 − U21U11}]

− 4π

v2
T

2∑
l̄=1

P
∫ ∞

εt
1

dε̄

ε̄ − εF

× Tr[RT Im{U2l̄(εF,ε̄)U l̄1(ε̄,εF)}]. (8)

R and T are real diagonal reflection and transmission
submatrices appearing in the polar decomposition (A4) of S.
The matrix elements

U l̄l
m̄,m(ε̄,ε) =

∫
χ ∗̄

l,ε̄,m̄
(r)VT(r)χl,ε,m(r)dr (9)

are those of the tip potential between two scattering eigen-
functions, where l, m, and ε label the incoming lead, the
channel number, and the electron energy of the scattering
eigenfunction, respectively. If the arguments ofU l̄l are omitted,
it is understood that both are taken at εF, and the necessary
matrix element tip position dependence on rT is assumed. The
limiting integration energy εt

1 is that of the lowest transverse
energy and P stands for the principal part of the integral. The
traces over the N propagating modes in the leads in Eqs. (7)
and (8) are dominated by the contribution from the subspace
of the M open eigenmodes.

On a conductance plateau where the transmission is perfect,
RmTm = 0 for all eigenmodes m. There, the first-order
contribution (7) vanishes [10,11] and the SGM response is
given by v2

Tg(2); note that only one term above of v2
Tg(2)

survives as well. The relative importance of the linear and the
quadratic SGM responses when moving between conductance
plateaus and conductance steps of the QPC can also be affected
by temperature, which mixes the two regimes and can lead to
an increase of the SGM response with increasing temperature,
as it was obtained in Ref. [34].

Although it is not of direct experimental relevance, the
case of a local tip f (r) = δ(r) is an interesting study case. In
particular, the first-order conductance correction reduces to

g(1)(rT) = 4π

M∑
m=1

RmTmIm{χ∗
2,εF,m(rT)χ1,εF,m(rT)}, (10)

and the second-order correction for perfect transmission
reduces to

g(2)(rT) = −4π2
M∑

m,m̄=1

|χ2,εF,m̄(rT)|2|χ1,εF,m(rT)|2, (11)

where M stands for the number of the partially open eigen-
channels of the QPC in Eq. (10) and perfectly open channels
in Eq. (11). These expressions can be further simplified in
cases exhibiting various kinds of symmetries and/or where

the geometry allows for the evaluation of the scattering
wave-functions [10,11].

IV. g(1)(rT) VERSUS PLDOS IN THE
CONDUCTANCE STEPS

Focusing first on a QPC setup without disorder, the
asymptotic form of the scattering eigenfunctions can be used
everywhere in the 2DEG, except in and very close to the
constriction. The form (A9) enables expressing the product
of scattering eigenfunctions impinging from different leads, in
the first-order correction (10) due to a weak δ potential scanned
in the right of the QPC, as

χ∗
2,ε,m(r)χ1,ε,m(r)

= Tm

{
�

(+) 2
2,ε,m(r) + Rm�

(+)
2,ε,m(r)�(−)

2,ε,m(r)
}
. (12)

Recalling �
(−)
2,ε,m(r) = �

(+) ∗
2,ε,m(r) leads to

Im{χ∗
2,ε,m(r)χ1,ε,m(r)} = TmIm

{
�

(+) 2
2,ε,m(r)

}
. (13)

From (A9a) we have �
(+)
2,ε,m(r) = χ1,ε,m(r)/Tm for x > 0 in the

case of open modes (Tm �= 0). Thus, Eq. (10) simplifies to

g(1)(rT) = 4π

M∑
m=1

RmIm
{
χ2

1,εF,m(rT)
}
. (14)

Denoting αl,ε,m(r) as the argument of χl,ε,m(r), Eq. (14) can
be written

g(1)(rT) = 4π

M∑
m=1

Rm sin[2α1,εF,m(rT)]|χ1,εF,m(rT)|2. (15)

The sum over eigenmodes reduces to the contribution of the
last one (m = M), which is the only partially open channel
having Rm > 0.

In the case of a single open channel (M = 1) there is a
direct relation between the first-order conductance change and
the PLDOS, since, according to (3),

g(1)(rT) = 2R1 sin[2α1,εF,1(rT)]ρ1εF (rT). (16)

However, in the case of M > 1, the structure of the m sum in
Eq. (15) does not reduce to a simple relationship with ρ1εF (r).

In a disorder-free 2DEG, the prefactor sin(2α1,εF,1) of
the SGM response (16) is simply sin(2kFr + α0) with a
constant phase α0, thus generating half-Fermi wavelength,
λF/2, oscillations and a proportionality factor 2R1 between
the spatial oscillation amplitude of the first-order conductance
correction in the first step and the PLDOS.

In the case of a disordered structure, Eq. (16) does not apply
inside the disordered region; nevertheless, if the disorder is
weak and leads to small-angle forward scattering only, one
can expect the structure of Eq. (16) to mostly remain. For
example, the phase oscillation cannot have such a simple
position-dependence strictly speaking, but a paraxial optical
approximation [35] holds and a fairly regular radial phase
behavior of nearly the same wavelength persists in the eigen-
functions. In these circumstances, the explicit dependence of
the SGM response on the phase of the scattering eigenfunction
might be helpful in characterizing properties of the fluctuating
potential in the 2DEG with further analysis.
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In general, the first-order conductance correction in tip
strength is not proportional to the PLDOS, even for the case
of a δ-tip. In fact, g(1)(rT) is only local in the sense that
Im{χ2

1,εF,m(rT)} is the local information about the eigenfunc-
tion of the unperturbed system. However, in the case of a
single partial mode, the PLDOS provides an upper bound for
the absolute value of the former and the sinusoid term creates
a fringing effect.

For one-dimensional tight-binding systems the SGM re-
sponse has been expressed in terms of the real part of the
local Green function [21,30] and thereby related to the LDOS.
We have checked that in the case of a one-dimensional chain
the first-order conductance correction (10) [and therefore also
the relation (16)] is consistent with the result of Refs. [30]
and [21]. However, (10) is more general and (16) is expected to
be valid whenever there is only one single partially open mode
of the QPC, without being limited to strictly one-dimensional
systems.

V. CORRESPONDENCE BETWEEN g(2)(rT) AND PLDOS
FOR PERFECT TRANSMISSION

Symmetries have been shown to play a key role in the
quest of identifying SGM maps with local properties [11].
In particular, for a fourfold symmetric QPC operating in
the regime of perfect transmission, the conductance change
induced by a weak local tip in the absence of magnetic
field has been shown to be proportional to the square of the
LDOS, and also proportional to the local current density. In
the same framework, it has been pointed out [36] that the
correspondence with the PLDOS holds even for asymmetric
QPCs, provided that the conductance is set to the first plateau,
as long as the system remains time-reversal invariant.

An important task, undertaken in this section, is the
generalization of previous results to any conductance plateau
of an arbitrary QPC under the sole assumptions of time-
reversal symmetry and a local tip. To describe transport
within the Landauer formalism, the QPC can be treated as
a scatterer centered at the origin r = 0. With the definitions
of Appendix A, ϕ

(−)∗
l,ε,m(r) = ϕ

(+)
l,ε,m(r), and �

(−)∗
l,ε,m(r) = �

(+)
l,ε,m(r).

Therefore, on the mth conductance plateau, where Rm = 0,

χ2,ε,m(r) = χ∗
1,ε,m(r) (17)

in the 2DEG on both sides of the QPC. Using this relationship
in the second-order correction (11) leads to

g(2)(rT) = −ρ2
1εF

(rT), (18)

for rT at the right of the QPC.
Unlike the relation for the first step, which is linear in

the PLDOS and fringed in space, perfect transmission on any
plateau leads to a quadratic dependence on the PLDOS without
fringing. Interestingly, no spatial symmetry is required for the
correspondence (18) in the considered regime of conductance
quantization. Nevertheless, a perfect conductance quantization
with exact unit transmission is a regime difficult to reach in
experiments with real QPCs.

VI. g(2)(rT) VERSUS PLDOS NEAR PERFECT
TRANSMISSION

In Sec. V perfect transmission is assumed in order to
establish the correspondence between the second-order con-
ductance correction and the PLDOS. Here that condition
is relaxed. Beyond the unity case of perfect conductance
quantization where all Rm = 0, the first-order correction (15)
is nonzero, and all terms of the second-order correction g(2) in
Eq. (8) must be considered.

Begin with the situation of transmission slightly below
the unity case on the Mth conductance plateau, where the
transmission of the highest open channel M is not perfect. The
expressions of the scattering eigenstates (A9a) and (A9b) can
be used to find that

χ2,ε,m(r) = 1

Tm

(1 + Rme2iα1,ε,m(r))χ∗
1,ε,m(r) (19)

for an open mode at the right of a generic QPC. By
inserting (19) into Eq. (8) (where the last term is related to
a Hilbert transform of the density of states, see Appendix B),
and only keeping the lowest order terms in Rm, g(2) reads

g(2)(rT)

= −2πρ1εF

M∑
m=1

|χ1,εF,m(rT)|2(1 + 2Rm{cos[2α1,εF,m(rT)]

+ ηεF (rT) sin[2α1,εF,m(rT)]}), (20)

where

ηεF (r) = 1

π
P

∫ ∞

εt
1

dε̄

ε̄ − εF

ρε̄(r)

2ρ1εF (r)
(21)

for positions r to the right of the QPC. Notice that the relation
of the LDOS to the imaginary part of the diagonal Green
function Gε(r,r) implies ηεF (r) = −ReGεF (r,r)/(2πρ1εF (r)).
Taking Rm = 0 for all m < M gives

g(2)(rT)=−ρ2
1εF

− 4πRMρ1εF |χ1,εF,M (rT)|2{cos[2α1,εF,M (rT)]

+ ηεF (rT) sin[2α1,εF,M (rT)]}, (22)

and the small reflection amplitude is linked to the deviation
from unit conductance by g = R2

M , where g = M − g(0)

quantifies the departure from unit transmission on the Mth
plateau. In the case of unit transmission one has RM = 0,
and (22) reduces to (18). For completeness, in the same regime
Eq. (16) can be rewritten as

g(1)(rT) = 4πRM |χ1,εF,M (rT)|2 sin[2α1,ε,M (rT)], (23)

which has similarities in its form with respect to the correction
terms for g(2)(rT). Recall, however, the corresponding con-
ductance correction varies linearly with the strength of the tip
potential unlike for g(2)(rT).

In the case of transmission just above the unity case with low
transmission TM+1 through the QPC mode M + 1, a similar
procedure, assuming Rm = 0 for all m � M and keeping only
the lowest terms in TM+1 yields

g(2)(rT)

= −ρ2
1εF

+ 2πT 2
M+1|�(−)

2,εF,M+1(rT)|2

×{ρ1εF + 4π |�(−)
2,εF,M+1(rT)|2(1 + cos[2α1,εF,M+1(rT)])2

− 2ρ1εFηεF (rT) sin[2α1,εF,M+1(rT)]}. (24)
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The small transmission in the QPC channel M + 1 causes
departures from (18) that are expected to be proportional to
T 2

M+1.
However, in a real system slightly above integer dimen-

sionless conductance, the small transmission of the M + 1st

channel can coexist with an imperfect transmission of the
Mth channel, g = R2

M − T 2
M+1, and the departure from (18)

has contributions from both channels, which are difficult to
separate in the numerical work. To avoid this complication,
we concentrate in the following on the case of positive g at
positions on the conductance plateau where the opening of the
next channel is exponentially suppressed and thus negligible.

It is worth emphasizing a few features of the expressions
contained in Eqs. (22) and (23). The scale of the deviations
from the square of the PLDOS is greatly magnified by being
proportional to the square root of g as opposed to being
linear. In other words, the approach to the perfect transmission
case is rather slow with respect to the limit g → 0, and
even tiny imperfections produce highly visible deviations.
Nevertheless, all the deviations oscillate about zero with a
wavelength on the order of λF /2, and a spatial averaging over
a region λF /2 × λF /2 results in a near uniform distribution of
angles α over 2π , giving a means for the near elimination of
the correction terms in (22). Thus, though with reduced spatial
resolution, it is still possible to cleanly extract the PLDOS.
The PLDOS is not proportional to the LDOS in this case, and
the distinction matters.

Furthermore, since the contribution of g(1)(rT) to δg(rT) is
linearly proportional to the tip strength vT and the contribution
of g(2)(rT) quadratic, measurements with two well-chosen
values of vT would be sufficient to separate out the contri-
butions from Eqs. (22) and (23); with a few more tip strength
measurements per tip site, noise and other inaccuracies could
be overcome in the separation as well. In the event that
|χ1,εF,M (rT)|2 mostly varies slowly on the scale of λF , then
probability densities due to individual eigenstates and the
spatial behavior of α could be extracted as well. Given that
η(r) is related to the phase of the real part of the diagonal
Green function, in an ideal situation, it could be extracted
also.

In order to quantify the departures of g(2)(rT) from the
perfect case, introduce the ratio between the coefficient of the
second-order SGM correction and the square of the PLDOS,

κ(rT) = − g(2)(rT)

ρ2
1εF

(rT)
. (25)

If the unperturbed conductance g(0) is just below that of M = 1,
and the sum over QPC eigenmodes is restricted to m = 1, then

κ(r) = 1 + 2
√

g{cos [2α(r)] + η(r) sin [2α(r)]}. (26)

The indices of α and η are omitted; it is understood that α =
α1,εF,1 and η = ηεF .

As mentioned above, even fairly local spatial averaging
approximately yields κ = 〈κ(r)〉 = 1. Interest is therefore in
the quantity κ − 1. Similar to the case of the first-order SGM
correction at a conductance step, discussed in Sec. IV, the
above relationship provides bounds for the possible values of

1

2

0 0.2 0.4

g
(0

)

εF/t

30w

10w

x

y

P1

P2P3

P4

P5P6 P7P8

FIG. 1. The conductance of the QPC defined in a tight-binding
lattice with lattice parameter a and hopping t as a function of Fermi
energy. The inset shows the geometry of the QPC. The width and
length of the narrow channel are w = 11a and L = 19a, respectively.
The points P1–P8 indicate the Fermi energies and unperturbed
conductances at which the statistics of Sec. VII have been performed
using tip positions inside the dashed white rectangle.

the ratio κ ,

|κ − 1| � 2
√

g

√
1 + η2

max, (27)

where ηmax is the maximum value of |η(r)|. A priori, ηmax is not
known, but if not extracted as described, it can be obtained by
direct numerical computation of the scattering wave-functions
(see Sec. VII) or estimated from simple setups, like that of an
abrupt QPC, where the analytical form of the scattering wave-
functions is known [11]. The maximum value of η occurs in
regions where the PLDOS is weak and can in general approach
infinity. Its actual value depends on the problem and region
under consideration. In one numerical example given ahead,
its maximum is of the order of 60.

Another interesting quantity is the variance of κ − 1 given
by

σ 2 = 2g(1 + η2), (28)

where η2 is the average value of η2 in the scan region.

VII. g(2)(rT) VERSUS PLDOS FOR LOCAL TIPS:
SIMULATIONS

In order to test our analytical approach and go beyond the
above-described perturbation theory, we performed numerical
simulations using the quantum transport package KWANT [37]
that is based on the recursive Green function method [38].
It can be used to calculate δg(r) as a direct subtraction, and
g(1)(rT) or g(2)(rT) by constructing numerical derivatives with
respect to vT.

In our simulations the 2DEG is discretized on a tight-
binding network with lattice parameter a and a hopping
integral t = h̄2/(2m∗a2), m∗ being the electron’s effective
mass. We chose an abrupt constriction defined by a hard-walled
square well of width w = 11a and length L = 19a attached
to two semi-infinite leads, sketched in the inset of Fig. 1.
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FIG. 2. Left column: −g(2) (with the energy and length units introduced through the hopping integral t and the spatial tip extension a2) vs
the tip position for the first (a) and second (d) plateaus (points P1 and P5 in Fig. 1, respectively). Central column: the square of the PLDOS
for the same points on the first (b) and second (e) plateau. Right column: difference between the two first columns. The QPC is situated at the
upper-left corner of the figures.

In order to optimize the computational time the left lead
is narrowed. Figure 1 shows the dimensionless conductance
through the QPC as a function of the Fermi energy of the
incoming electrons. As the latter is increased, the QPC’s
conductance increases in steps of unit height. The structures
on the plateaus are due to the abruptness of the QPC that lead
to Fabry-Perot–like oscillations within the constriction [39].

A. Local correspondence for perfect transmission

In order to address this regime, consider the analytically
predicted relationship (18) between the second-order con-
ductance correction g(2)(rT) for a δ-tip and the PLDOS for
perfect conductance. On the tight-binding lattice, the δ-tip is
modeled as an additional on-site energy εT on a single site,
corresponding to a tip area of a2 and thus vT = εTa2. This
strength is varied so as to extract g(2)(rT). The Fermi energies
are chosen on the first and second plateaus for which the
values of the unperturbed conductances g(0) are very close
to perfect transmission with |g| < 10−5 (points P1 and P5

in Fig. 1). The corresponding Fermi wavelengths are λF =
16.8a and λF = 9.4a, respectively. The resultant conductance
responses are shown in Fig. 2, where g(2)(rT) is compared
to −ρ2

1εF
for the first plateau case in panels (a) and (b), and

likewise for the second plateau case in panels (d) and (e). The
correspondence is excellent, as expected given the regime of
the calculation. This is illustrated in panels (c) and (f), which
show the differences, [ρ2

1εF
+ g(2)(rT)], respectively, for the

two plateaus. The differences are quite small, as expected, and
they show the λF/2 oscillations, which are characteristic of the
correction terms for imperfect transmission.

B. Departures from local correspondence
for imperfect transmission

It is shown in Sec. VI that the precise local correspondence
between the second-order SGM correction and the PLDOS
squared degrades away from perfect transmission. We now
present a quantitative numerical analysis of the departure
from local correspondence for the example of the second

conductance plateau of the QPC. Similar results can be
obtained on other plateaus. Figure 3 presents the values of
g(2)(rT) and ρ2

1εF
at different points of the scanned region inside

the white dashed rectangle shown in the inset of Fig. 1. The
region of length 10w has been chosen so as to contain points
close to the QPC and at larger distances. This region width
is small as compared to the width of the 2DEG (30w), and
additional lateral leads on the full length at the right of the
QPC are used in order to avoid finite-size effects.

The data shown in Fig. 3 confirm that the exact point-by-
point local correspondence is progressively broken as |g|
increases. Close to the perfect transmission condition, for the
case with g = 8 × 10−6 (P5 in Fig. 1 with scans depicted in
the lower panels of Fig. 2), the equivalence between −g(2)(rT)
and the square of the PLDOS is attained (black dots). For other

−0.02

−0.01

0

0 0.01 0.02

g
(2

)
t2

a
4

ρ2
1εF

t2a4

FIG. 3. Second-order SGM correction vs ρ2
1εF

at random sampled
tip positions in the scanned region for different values of the
unperturbed conductance on the second plateau (points P5, P6, P7, and
P8 in Fig. 1). The corresponding departures from the quantized value
are g = 8 × 10−6, 5 × 10−4, 10−3, and 6 × 10−3 for the black, blue,
green, and red points, respectively. Inset: the same data are presented
after a spatial average over a disk of radius of λF/2, exhibiting a clear
data collapse.
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FIG. 4. κ − 1 is plotted vs the departure from perfect transmission
g, when a wide region in the right side of the QPC is sampled.
The results for the clean structure of Figs. 2 and 3, g = 6 × 10−6

(black; P1 in Fig. 1), g = 8 × 10−5 (blue; P2), 7 × 10−4 (green;
P3), are presented, but those for g = 7 × 10−3 (red; P4) are out of
the scale of the main figure. The data corresponding to two different
disorder configurations are represented by the gray distributions. The
black solid lines show the analytical bounds κ± of Eq. (27), taking
ηmax = 60. Upper inset: the probability density of κ − 1. The color
code is the same as in the main figure. For comparison, the dotted line
shows a Gaussian probability density. Lower inset: the corresponding
standard deviation vs g. The black solid line corresponds to the
analytical expression (28) of σ with η2 = (ηmax/2)2.

points of the unperturbed conductance shown in Fig. 1, P6

with g = 5 × 10−4 (blue), P7 with 10−3 (green), and P8 with
6 × 10−3 (red), the sampled points exhibit progressively wider
distributions around the equivalence (18). The distributions
are displayed in Fig. 4, where κ − 1 is plotted for different
Fermi energies on the first plateau (P1, P2, P3, and P4 in
Fig. 1), labeled by the value of g. In agreement with our
analytical findings of the previous section, the average value
of κ remains equal to 1, but the width of the distribution
drastically increases with g within the bounds κ± established
in Eq. (27) (solid lines) using the value ηmax = 60 of the abrupt
QPC.

The probability density of (κ − 1)/σ is shown in the upper
inset of Fig. 4 for the same positions on the first conductance
plateau. The rescaling by the variance collapses the probability
densities for all the values of g to approximately a universal
Gaussian form (dotted line). The analytical result of (28) for
the standard deviation σ of the ratio κ from its mean value
(κ = 1) is evaluated using the assumption η2 = (ηmax/2)2 and
is shown to agree with the numerical results (lower inset of
Fig. 4).

The possible connection of SGM response with local
properties needs to be extended to the realistic situation where
the QPC is surrounded by a disordered 2DEG. Though it is
difficult to treat this case analytically because the asymptotic
form of the scattering wave functions is attained only beyond
the region of disorder far from the QPC, the incorporation of

disorder in the numerically tackled model is straightforward.
We assume the disorder to be due to randomly distributed
donor atoms in a plane situated at a distance z = 10a, with
a concentration of Nd = 4 × 10−4 a−2. By taking a = 5 nm,
Nd is equal to 1012 cm−2, which is a realistic value for a
high-mobility 2DEG and corresponds to elastic and transport
mean-free paths of 1 and 52 μm, respectively. The two vertical
gray lines in Fig. 4 correspond to samplings of different
disorder configurations, resulting in small departures from unit
transmission, which are quantified by the values of g. Thus,
disordered QPCs, as well as clean ones, have departures from
the local relation between −g(2)(rT) and the PLDOS squared
that are uniquely governed by the crucial parameter g.

C. Locally averaged correspondence for local tips

Sections VI and VII B show that even small deviations
from perfect conductance drastically alter the SGM-PLDOS
correspondence. However, according to Eq. (26) and the
calculations of the (Fig. 3) inset, the average of κ is equal
to unity. The precise κ values, though, should fluctuate in
a quasirandom way with a standard deviation scaling as the
square root of g. Such a behavior is the signature of the
λF/2-wavelength oscillations in the SGM response occurring
in the clean case, which is modified in the presence of disorder.
Nevertheless, as discussed in Sec. VI, the oscillations should
self-cancel once averaged over a domain of length scale as
short as λF/2 in both directions of the plane. In order to
verify this interpretation, the numerically obtained values are
averaged over a disk of radius of λF/2. As illustrated in
the inset of Fig. 3, the averaging results in a data collapse,
yielding the equivalence between 〈−g(2)(rT)〉 and 〈ρ2

1εF
(rT)〉,

even in the case of imperfect unit transmission. The recovery of
the SGM-PLDOS correspondence upon averaging shows that
there is a global structural correspondence with a characteristic
length scale given by the Fermi wavelength. However, this
correspondence is found for a local tip and only between the
PLDOS squared and the second-order correction.

A finite temperature also has a tendency to reduce the
fringes with period λF/2 that are the main deviations from the
SGM-PLDOS correspondence. Though the related mechanism
is an energy average, very different from the spatial average
proposed above, it might still be possible that a moderate
temperature helps to improve the extraction of the PLDOS
from SGM data.

VIII. FULL SGM RESPONSE FOR LOCAL TIPS

A priori, from an experimental point of view, the relation-
ship between the various order terms and the full conductance
change is not obvious. Even for weakly imperfect transmission
somewhere on a plateau, depending on the tip strength, the full
SGM response may depend not just on the leading second-
order term, but also crucially on the first- and the other higher-
order terms. Thus, δg(rT) can vary considerably as a function
of the tip strength for less than perfect transmission cases,
which would most often be the case in experiments. This is
illustrated in Fig. 5, where δg(rT),g(1)(rT),g(2)(rT) are plotted
for two different tip strengths. The longer system treated here,
in comparison with the simulations of Fig. 2, is numerically
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FIG. 5. SGM response for two tip strengths, vT = εFa
2/4 (left column) and vT = 3εFa

2 (right column), with g = 1.3 × 10−4 on the
second conductance plateau of a QPC in a disordered 2DEG. Ordered vertically for each case, the quantities plotted are full response δg(rT),
first correction g(1)(rT), and second correction g(2)(rT). The changing nature and relative balance of the different order terms is clearly visible.
The weaker tip strength is expected to be dominated by the first-order term in the left column, but not so for the stronger tip strength in the
right column.

more demanding and thus the width of the 2DEG at the right of
the QPC is limited to 20w. The specific example illustrated is
on the second plateau of the quantized conductance where
g = 1.3 × 10−4 using tip strengths of vT = εFa

2/4 and
vT = 3εFa

2. The characteristic branching behavior of the
fringes due to disorder [7] is observed. The changing nature
of the full SGM response and its relationships with the linear
and quadratic parts of the response are clearly seen.

Continuing to restrict ourselves to the weakly invasive
regime, if the goal were to extract a local quantity, in this
case, the square of the PLDOS, two operations would greatly
enhance the quality of the analysis. The first is to make a few
measurements with different tip strengths. Depending on the
accuracy of the measurements or ambient noise, this would
allow one to separate linear, quadratic, or even higher-order
variations with respect to tip strength. The quadratic dependent
response is the one related to the PLDOS squared; see Eq. (22).
Second, one would average the data over a region of side
length or radius λF/2. Consider the weak-tip-strength case
illustrated in Fig. 5. There, the first-order term dominates

the full SGM response δg(rT). Nevertheless, extracting first
the quadratic-tip-dependent part of the full response before
averaging leads to a much more accurate extraction of the
PLDOS squared. This is illustrated in Fig. 6. In the first row,
δg(rT) is shown with its locally averaged image to the right.
In the next row, the quadratic tip dependence is deduced first,
and then averaged. Finally, in the bottom row, the negative
of the squared PLDOS is plotted along with its average. The
improvement in the correspondence of the quadratic portion
of δg(rT) relative to the full response to the average PLDOS is
quite striking.

The results shown in Fig. 6 demonstrate that the combined
operations of extracting the quadratic tip dependence of δg(rT)
and λF/2 averaging result in nearly perfect extraction of the
PLDOS squared. Still, it is valuable to have a quantitative
measure of the quality of this process to answer how well this
works as a function of the imperfection of transmission on
or near a plateau, and how well it works as a function of tip
strength if one chooses just to use δg(rT) without extracting
the quadratic tip dependence first. A good measure is given by
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FIG. 6. Extracting an accurate PLDOS squared from the full SGM response in the weakly invasive regime for the disorder configuration of
Fig. 5 for the weaker tip strength vT = εFa

2/4: (a) δg(rT) on the right side of the QPC; (b) the quadratic tip dependence portion of δg(rT); (c)
the negative of the squared PLDOS, −ρ2
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. In (d), (e), and (f), respectively, the data of panels (a), (b), and (c) have been averaged over a disk

of diameter λF/2.

the cross-correlation factor [29],

C = |(〈δg〉 − δg)(〈ρ2〉 − ρ2)|
σδgσρ2

. (29)

The averages, symbolized by the overlines, are taken over the
scanned area in the right of the QPC [in contradistinction
to the local O(λF/2) averages, 〈...〉, defined in Sec. VII].
The standard deviations of the two quantities are the usual
normalization factors of a properly normalized correlation
function. Applied to δg(rT) for a range of tip strengths and
g’s gives the results shown in Fig. 7. It shows two correlated
trends. The correlation coefficient decreases with decreasing
tip strength and with increasing g. The value of vT for which
near perfect correlation is achieved depends on the departure
g from perfect transmission. Figure 8 shows an example for
the case of the disordered system and tip strengths used in
Fig. 5, where the saturation is reached rather quickly as vT/a2

increases beyond the Fermi energy.
Interestingly, the above dependence of δg(rT) on the tip

strength generates a criterion for the validity of perturbation
theory [10]. Note that the criterion for the Born approximation

in a one-dimensional scattering problem [40] vT � εFλF is
consistent with our numerical results, since the linear extension
of the local tip in our tight-binding model a is much smaller
than λF. In this regime, close to the perfect transmission, the
second-order contribution prevails, and the full SGM response
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FIG. 7. Cross-correlation factor (29) as a function of the strength
vT of a local tip (horizontal axis) and the deviation from perfect
transmission (vertical axis), on the second conductance plateau of the
QPC in a disordered 2DEG of Figs. 5 and 6.
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Squares and triangles represent the correlation factor between the
SGM response with the unperturbed PLDOS at the tip center and at
the classical tuning points, respectively.

to a local tip is highly correlated to the PLDOS squared, even
for tip strengths larger than the Fermi energy.

IX. FULL SGM RESPONSE FOR NONLOCAL TIPS

The case of a local tip, discussed up to this point, is the
simplest to analyze, but the existing experimental implemen-
tations of SGM setups involve extended tips. Considering the
tip as a point charge at a distance d from the 2DEG, the tip
profile in the plane of the 2DEG is of the form

f (r) = 1

2πd2

[
1 +

(
r − rT

d

)2]−3/2

. (30)

Numerical calculations of the electrostatic problem, treating
screening within the Thomas-Fermi scheme, result in an
approximately Lorentzian (Gaussian) profile when the tip-
induced potential does not (does) deplete the 2DEG [1,16,21].
Notwithstanding, for tip strengths strong enough to produce
depletion, it is observed that the main feature determining
the SGM response is the diameter D of the depletion disk,
and the details of the tip profile are of lesser importance.
Therefore, in our numerical simulations, we adopt the tip
profile (30) for all regimes and express our results in terms
of D = 2d[{vT/(2πd2εF)}2/3 − 1]1/2.

Working in the previously established regime of strong tip
strength [maximum tip potential VT(rT) = vT/(2πd2) = 2εF],
the SGM response δg(rT) for varying tip width d and thus
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FIG. 9. SGM response calculated using the tip shape (30) for fixed tip potential height vT/(2πd2) = 2εF and varying depletion disk size
D = λF/2 (a), D = λF (b), and D = 2λF (c). Panels (d), (e), and (f) show the averages of the SGM responses over a disk of radius λF/2 for the
same tip sizes.
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different depletion diameters D is present in Fig. 9, where
the unperturbed conductance and the disorder configuration
is the same as in Fig. 5 (second conductance plateau with
g = 1.3 × 10−4).

For D = λF/2 [panel (a)], the SGM scan resembles that
of the δ-tip [Fig. 5(d)], but with values of δg(rT) that are 1
order of magnitude larger due to the tip extension. For larger
tip extensions, D = λF (panel b) and D = 2λF (panel c),
the SGM image gets more blurred and some resolution is
lost. This blurring effect is more pronounced on the averaged
conductance changes, as depicted in the right column panels
of Fig. 9.

The inset of Fig. 8 shows the cross correlation C between
the nonlocal SGM and the squared unperturbed PLDOS
as a function of the depletion diameter D. Gray symbols
correspond to the case of a tip shape of the form (30), the
black ones to the case of a hard wall potential of diameter D.
The squares represent cross correlations of the SGM response
with the PLDOS at the tip center, while triangles depict the
results obtained when the PLDOS is taken at the classical
turning points situated at the edge of the depletion disk.
Since the classical turning point is not determined uniquely
in the presence of disorder, the data in this inset are for
the disorder-free structure. We have checked that including
disorder does not change significantly the results when the
tip center is taken as the reference point for the PLDOS.
For both tip shapes, (30) and hard wall, and independent of
where the PLDOS is taken, the cross correlation decreases
with increasing depletion diameter D.

If the PLDOS is taken at the classical turning point
(triangles) instead of the tip center (squares), the SGM
response becomes less correlated with the PLDOS. The
classical argument of Ref. [9] that predicts that a large circular
hard-wall tip does image the local properties of the unperturbed
structures by reflecting back the classical trajectories that hit
the tip with normal incidence does not appear as a limiting
case of our results. One reason could be that our numerics did
not reach sufficiently large depletion disks with D 
 λF to
observe such a behavior [41]. Another reason could be that the
SGM response in the classical limit is not well correlated with
the squared PLDOS as in the case of local tips, though another
link to the PLDOS at the classical turning point of a large disk
cannot be excluded from our study.

X. CONCLUSIONS

With regards to the quest of extracting information about
local electronic properties in phase-coherent devices from
SGM measurements, we have investigated the correspondence
between the SGM response in the vicinity of a QPC and
the unperturbed PLDOS. Only on the first conductance step
could the PLDOS be shown to settle an upper bound for
the magnitude of the first-order SGM correction. We have
shown analytically that the unperturbed PLDOS squared
is unambiguously related to the second-order conductance
correction induced by a local tip, provided that the system
is time-reversal symmetric and the QPC is tuned to perfect
transmission. The second-order correction dominates the SGM
response on a “perfect” conductance plateau if the tip strength
is not too strong. If the QPC transmission is imperfect,

the exact correspondence is broken and the departures are
quantified with a perturbation theory. It does not depend on fine
details of the setup but rather on the scale of the unperturbed
conductance’s deviation from perfection, g.

We have demonstrated that a correspondence between the
locally averaged second-order SGM response and the PLDOS
survives for imperfect transmission obtained when the highest
propagating eigenchannel is not completely open. Numerical
simulations within a recursive Green function approach have
confirmed our analytical findings and shown that they also
hold in the case of disordered systems.

Moreover, we found that in the case of a local tip, and
sufficiently small g, the full SGM response is related to the
PLDOS once the tip is strong enough such that the second-
order conductance correction dominates.

In the case of nonlocal tips, where the depletion disk
created by the tip exceeds half the Fermi wavelength, the
correspondence between the SGM response and the PLDOS
established for weak local tips degrades with increasing
depletion disk radius.

Most SGM experiments are performed in high-mobility
2DEGs in which the Fermi wavelength is smaller than the
depletion disk under the tip. In that case the relationship
between the SGM response and the PLDOS squared degrades
and beyond a large enough radius cannot be used directly
to and unambiguously extract local electronic properties. For
experiments in the weakly invasive regime, the resolution of
the SGM response is also limited by the width of the tip
potential [42]. One way to approach the regime where the
direct link is valid would be to use systems with lower Fermi
energy and thus larger Fermi wavelength.

In a very recent SGM experiment [43] performed using
ultracold atom gases, a tightly focused laser beam played the
role of the tip and could be scanned in the neighborhood of a
QPC attached to two atom reservoirs. In this case a resolution
better than 10 nm with a tip size well below λF was obtained.
In this regime, we expect that the relationship established
between the SGM response and the LDOS is applicable.
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APPENDIX A: SCATTERING WAVE-FUNCTIONS

In this Appendix we recall the main concepts of scattering
theory for quantum transport in view of the application to the
SGM setups implemented through the text. The incoming lead
modes ϕ

(−)
1(2),ε,a(r) are given by

ϕ
(−)
1,ε,a(r) = c√

ka

exp [ik−
a x] φa(y), x < 0, (A1a)

ϕ
(−)
2,ε,a(r) = c√

ka

exp [−ik−
a x] φa(y), x > 0, (A1b)
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where φa(y) is the wave function of the ath transverse channel
along the lead and k−

a the longitudinal wave number ka with
an infinitesimal imaginary part necessary for incoming modes.
We note c = [m∗/(2πh̄2)]1/2, with m∗ the effective electron
mass. In writing x < 0 and x > 0 we mean the asymptotic
condition in the left and right leads, respectively (see Fig. 1).

In the basis of the 2N incoming modes the scattering matrix
is defined by

S =
(

r t ′
t r ′

)
. (A2)

The incoming modes give rise to outgoing scattering states,
which in the asymptotic regions can be expressed as

�1,ε,a(r) =
{

ϕ
(−)
1,ε,a(r) + ∑N

b=1 rba ϕ
(+)
1,ε,b(r), x < 0∑N

b=1 tba ϕ
(+)
2,ε,b(r), x > 0

,

(A3a)

�2,ε,a(r) =
{

ϕ
(−)
2,ε,a(r) + ∑N

b=1 r ′
ba ϕ

(+)
2,ε,b(r), x > 0∑N

b=1 t ′ba ϕ
(+)
1,ε,b(r), x < 0

,

(A3b)

in terms of the matrix elements of the reflection r (r ′) and
transmission t (t ′) submatrices for electrons impinging from
the left (right) lead.

The scattering matrix is conveniently expressed in the
polar decomposition [44], which in the case of time-reversal
symmetry takes the form

S =
(

uT
1 0

0 uT
2

)(−R T
T R

)(
u1 0
0 u2

)
. (A4)

R and T are diagonal reflexion and transmission submatrices,
while u1 and u2 are unitary matrices. The transmission
eigenmodes take the form [11]

�
(−)
1,ε,m(r) =

N∑
a=1

[u1]∗ma ϕ
(−)
1,ε,a(r), x < 0, (A5a)

�
(−)
2,ε,m(r) =

N∑
a=1

[u2]∗ma ϕ
(−)
2,ε,a(r), x > 0. (A5b)

Identifying (A2) and (A4), the transmission and reflexion
submatrices can be expressed as t = uT

2 T u1, t ′ = uT
1 T u2, r =

−uT
1 Ru1, and r ′ = uT

2 Ru2. Thus, t†t = u
†
1T 2u1 and t ′†t ′ =

u
†
2T 2u2.

Considering the vector of coefficients C1(2)m =
([u∗

1(2)]m1,[u∗
1(2)]m2,...)T of the transmission eigenmode

�
(−)
1,ε,m(r), one can write

t†tC1m = u
†
1T 2u1C1m = T 2

mC1m. (A6)

The second equality stems from the definition of C1m and
implies that C1m is an eigenvector of t†t with the eigenvalue
T 2

m . In the same way, one finds that C2m is an eigenvector of
t ′†t ′ with the same eigenvalue.

The scattering eigenstates in the region x > 0 for an
incoming transmission eigenmode �

(−)
1,ε,m(r) are obtained as

tC1m = uT
2 T u1C1m. Using again the definition of C1(2)m and

the unitarity of u1 we find

tC1m = TmC∗
2m, (A7)

and similarly,

rC1(2)m = ∓RmC∗
1(2)m. (A8)

Thus, the basis of scattering eigenfunctions is asymptotically
given by

χ1,ε,m(r) =
{

�
(−)
1,ε,m(r) − Rm �

(+)
1,ε,m(r), x < 0

Tm �
(+)
2,ε,m(r), x > 0

, (A9a)

χ2,ε,m(r) =
{
Tm �

(+)
1,ε,m(r), x < 0

�
(−)
2,ε,m(r) + Rm �

(+)
2,ε,m(r), x > 0

. (A9b)

The PLDOS (3), as well as the conductance corrections (7)
and (8), are conveniently discussed when expressed in the
basis of scattering eigenfunctions.

APPENDIX B: HILBERT TRANSFORM OF LDOS

In this Appendix the term of Eq. (8) containing the principal
part is related with the LDOS. For a δ-tip, we can write

Tr[RT U2l̄(εF,ε̄)U l̄1(ε̄,εF)] = ρl̄ε̄(rT)

2π
Tr[RT U21(εF,εF)],

(B1)

and therefore

−4π

v2
T

2∑
l=1

P
∫ ∞

ε
(t)
1

dε̄

ε̄ − εF
Im{Tr[RT U2l̄(εF,ε̄)U l̄1(ε̄,εF)]}

= g(1)(rT)

2

{
1

π
P

∫ ∞

ε
(t)
1

dε̄

εF − ε̄
ρε̄(rT)

}
. (B2)

Since the LDOS vanishes for ε̄ < ε
(t)
1 , the lower limit of

the integral can be taken as −∞. Given that the LDOS is
proportional to the imaginary part of the diagonal Green
function Gε(r,r), the curly bracket at the right-hand side
represents a Hilbert transform (with respect to the energy
variable) leading to the real part of Gε(r,r), as indicated in
the discussion following Eq. (21). The term (B2) contributing
to g(2) and fulfilling a Kramers-Kronig relation with the LDOS
is dominated by the contribution of the latter close to the Fermi
energy.

The emergence of the Hilbert transform of the LDOS
has been signaled for the first-order SGM correction of a
one-dimensional system [21]. In our case it appears in the
contribution (B2) to the second-order correction (8), and it is
not restricted to a one-dimensional setup. Such a contribution,
also proportional to the first-order correction g(1)(rT), is
necessarily very small when the QPC operates close to the
condition of conductance quantization.
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