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Signatures of a 4π-periodic supercurrent in the voltage response of capacitively
shunted topological Josephson junctions
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We investigate theoretical aspects of the detection of Majorana bound states in Josephson junctions using
the semiclassical resistively capacitively shunted junction (RCSJ) model of junction dynamics. The influence
of a 4π -periodic supercurrent contribution can be detected through its effect on the width of the Shapiro steps
and the Fourier spectrum of the voltage signal. We explain how the inclusion of a capacitance term results
in a strong quenching of the first step when the junction is underdamped, while the higher odd steps are
less affected. Remarkably, this feature has been observed experimentally. We examine the emission spectrum
of phase-locked solutions, showing that the presence of period doubling may make the measurement of the
4π -periodic contribution from the Fourier spectrum difficult. Finally, we study the voltage response in the
quasiperiodic regime and indicate how the Fourier spectra and the first-return maps in this regime reflect the
change of periodicity in the supercurrent in the presence of Majorana bound states.
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I. INTRODUCTION

Topological states in quantum systems are the subject of
active research, both for their fascinating fundamental physical
properties and for the possibility of using them as a platform for
topological quantum computation [1–4]. Topological phases
of superconductors which support Majorana bound states
(MBS) [5,6] can be implemented in hybrid solid-state setups
presenting both spin-orbit coupling and superconductivity.
Different experimental configurations to detect MBS have
been proposed [7–10]. In particular, MBS can be detected
in Josephson junctions [11–13], through either zero-bias con-
ductance peaks [14] or its effect on the current-phase relation
in the dc Josephson effect [15]. Recently, the current-phase
relation in a Josephson junction formed by one-dimensional
nanowires featuring MBS has been observed experimentally
through the vanishing of the odd Shapiro steps in ac-biased
Josephson junctions [16–19], showing that this setup can be
used to effectively detect MBS.

The appearance of Shapiro steps is one example of non-
linear phenomena in mesoscopic systems [20–23]. Nonlinear
transport in different solid state systems has been analyzed
in the past [24–27], showing interesting regimes, such as
quasiperiodicity [28,29], frequency locking [30,31] and differ-
ent routes to chaos [32–35]. In that direction, one promising
area of research focuses on the relationship between topology
and nonlinearity. For example, the interplay between topology
and instabilities has been recently analyzed in bosonic systems
under ac driving [36] and junction arrays mimicking the Su-
Schrieffer-Heeger (SSH) model [37]. The Shapiro experiment
in a topological Josephson junction has been theoretically
analyzed by means of a semiclassical resistively shunted
junction (RSJ) model [38–40], and with a finite capacitance
but considering only the high ac-bias limit [41].

In this work, we investigate both the phase-locked (PL)
and the quasiperiodic (QP) regimes of a capacitively shunted
Josephson junction driven by an ac current, in the presence of a
4π -periodic supercurrent contribution. This paper is organized
as follows. In Sec. II, we introduce the resistively capacitively

shunted junction (RCSJ) model to describe such a system. In
Sec. III, we study the influence of a 4π -periodic contribution
on the width of the Shapiro steps and indicate the parameter
regions where the junction is strongly affected by the change in
the periodicity of the supercurrent. In Sec. IV, we consider the
possibility of measuring the emission spectrum of the junction
from both the phase-locked and quasiperiodic regimes in order
to detect MBS.

II. THEORETICAL MODEL

The study of the current-driven Josephson junction is a dif-
ficult task from the microscopic point of view. It does not only
involve out-of-equilibrium processes but also strong Coulomb
interactions and dissipation. The problem becomes drastically
simplified in the semiclassical limit, yielding the resistively
capacitively shunted junction (RCSJ) model [42], represented
schematically in Fig. 1(b). This model describes the evolution
of the superconducting phase difference ϕ by means of the
equation of motion CdV/dt + V/R + Isc(ϕ) = Idr(τ ), which
results from equating the external current bias, which we take
as Idr(τ ) = I0 + I1sin(�acτ ), to a circuit consisting of three
parallel channels: capacitive (C), resistive (R), and supercur-
rent Isc(ϕ) channels. We can eliminate V in favor of ϕ by using
the Josephson equation V (τ ) = (2e/h̄)dϕ/dτ , yielding

d2ϕ

dt2
+ σ

dϕ

dt
+ isc(ϕ) = i0 + i1sin(ωact), (1)

where ik ≡ Ik/Ic, k = 0,1,sc, and Ic = max[Isc(ϕ)] is the
critical value of the supercurrent. This expression has been
written in dimensionless units by defining a dimensionless time
t = ωcτ and referring to the ac bias frequency ωac = �ac/ωc

in units of the plasma frequency ωc ≡ √
2eIc/h̄C. We have

also introduced the damping parameter σ ≡
√

h̄/2eIcR2C,
which gives the relative importance of the capacitive and
resistive channels. For σ � 1, the system is overdamped and
the effect of capacitance is negligible. For σ � 1, the junction
is underdamped and the capacitance cannot be neglected.
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FIG. 1. (a) I0 − 〈V 〉 curve showing Shapiro steps corresponding
to the phase-locked regime (PL) and a linear I0 − 〈V 〉 section for
the quasiperiodic regime (QP). For a 4π -supercurrent amplitude
of I4π = 0.3I2π , the odd steps are shown in black (the green part
corresponding to I4π = 0). The even steps are shown in red (the
black part corresponding to I4π = 0). (b) Top: scheme of a topological
Josephson junction. Superconductivity is induced into a topological
insulator (TI, blue) through the proximity effect by a superconductor
(SC, green). Bottom: circuit representation of the junction in the RCSJ
model, with elements corresponding to the resistive (R), capacitive
(C), and the ordinary (I2π ) and 4π -periodic (I4π ) supercurrent
channels. [(c), (d)] Fourier spectra obtained from a PL solution in
the first Shapiro step and from a QP solution, respectively. The peaks
in cyan are a result of the 4π -periodic supercurrent contribution.

In the presence of MBS, the supercurrent can be roughly de-
scribed by the sum of two contributions, isc(ϕ) = i2π sin(ϕ) +
i4π sin(ϕ/2), where the first term corresponds to the usual
2π -periodic supercurrent and the second term is a 4π -periodic
contribution (4πSC), which arises in the presence of MBS.
Henceforth, we will characterize the junction by the ratio
x ≡ i4π/i2π . Note that by writing i2π and i4π as constant
coefficients we neglect finite-size effects [12,43] and all
possible transitions toward the quasicontinuum [44,45].

The solution to Eq. (1) yields the induced voltage v(t) ≡
(IcσR)−1dϕ/dt . In the absence of an ac bias, i.e., i1 = 0,
the voltage is a periodic function with frequency ω0 = 〈v(t)〉,
where 〈 · · · 〉 denotes time averaging. For i1 �= 0, the voltage is
in general a quasiperiodic function of frequencies ω0 and ωac.
When ω0 and ωac are commensurate, the system is said to be in
phase lock, and the average voltage is a multiple of the ac bias
frequency, i.e., 〈v(t)〉 = nωac, n = 0,1,2, . . .. In Fig. 1(a), we
have represented the average voltage 〈v(t)〉 as a function of i0

for σ = 1, ωac = 0.3 and i1 = 0.75. For a finite value of the
ac bias amplitude i1, the induced voltage develops plateaus
called Shapiro steps, at integer multiples of ωac. Inside these
plateaus, the voltage is phase locked to the ac bias. Shapiro

FIG. 2. Calculated Shapiro step amplitudes as a function of i1 for
σωac = 0.1 and x = 0.2. The step amplitudes are normalized to the
amplitude of the zeroth step at i1 = 0. The dashed curves correspond
to the RSJ model (C = 0) and the solid curves to the RCSJ model
with σ = 1.

steps can be used to discriminate the presence of MBS, because
in the case of a pure 4π -periodic supercurrent, one would
expect to observe only the Shapiro steps for n even. We will
show below how a finite capacitance can give rise to a more
involved Shapiro step picture, where odd steps may appear
at i2π = 0. Quasiperiodic solutions correspond roughly to the
linear sections [46] of the curve at high i0. Alternatively, the
periodicity can be studied directly from the Fourier spectrum
of the signal. For the phase-locked regime, the spectrum is
changed according to the step, as noted in Appendix A. For
the quasiperiodic regime, the presence of a 4πSC induces
new Fourier components at ω0/2. As an example, we show in
Figs. 1(c) and 1(d) the Fourier spectra for the two regimes.

III. SHAPIRO STEP WIDTHS

Loosely speaking, the width of the nth Shapiro step as
a function of the ac bias i1 follows the shape of the nth
Bessel function [47]. However, in the presence of both 2π -
and 4π -periodic contributions to the supercurrent, this profile
is qualitatively modified [38]. For the RSJ model, (C = 0), in
the low-ac-bias-amplitude regime (i1 � 1), the odd steps are
suppressed provided that i1 � i4π and σωac = h̄�ac/2eIcR �
i4π [40]. Furthermore, in the high-ac-bias-amplitude regime
(i1 � 1) the even steps show a beating pattern coming from
the contribution of both supercurrent terms. This high-ac-bias-
amplitude behavior persists for intermediate values of the ca-
pacitance. This is the case of Fig. 2, where we show the Shapiro
step width as a function of the ac bias amplitude i1 for σ = 1.

The presence of a finite capacitance modifies the Shapiro
step widths drastically as the junction is taken into the
underdamped regime, σ � 1, as noted in Appendixes B and C.
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FIG. 3. (a) Odd step widths, n = 1 (blue) and n = 3 (cyan) as
a function of the damping parameter σ for ωac = 0.3, i1 = 0.75.
(b) Step widths as a function of x = i4π/i2π for σ = 0.65.
(c) Schematic phase diagram for the parameters σ and ωac in
logarithmic scale. The dashed lines correspond to ĩ4π = 0.1 and
ĩ4π = 10 (see text below) for i4π = 1. The yellow area corresponds
to the 4π -periodic regime. The blue area corresponds to the Bessel
regime. The green area corresponds to the intermediate regime.

In this regime, the range of frequencies where we observe
only even steps has to be reconsidered. In addition to the
condition σωac = h̄�ac/2eIcR � i4π , we also require that
ω2

ac = h̄�2
acC/2eIc � i4π . These conditions have been derived

in Appendix D from the effect of a 4πSC on the voltage output.
Remarkably, the presence of capacitance extends considerably
the condition i1 � i4π , valid for the RSJ model. In Fig. 2, we
have represented the width of the first five Shapiro steps for
x = 0.2 and ωac = 0.1 for both the RCSJ model with σ = 1
(solid curves) and the RSJ model (dashed curves). For σ = 1,
the first step vanishes for ac bias amplitudes up to i1 � 1.2,
much larger than the amplitude of the 4πSC, i4π = 0.175.
Hence, the underdamped junction is a useful platform for
detecting MBS even when the 4πSC is a small fraction of the
total supercurrent. In contrast to the RSJ model, the quenching
of the odd steps depends on the step number: The third and
fifth steps vanish only up to i1 � 0.5. This occurs because,
at higher voltages, the resistive term, which is proportional to
the voltage, is of greater importance than the capacitive one.
Hence, for higher steps, the results for σ = 1 and σ → ∞
become more similar. These new conditions obtained from the
RCSJ model have to be considered when estimating i4π from
the disappearance of the odd Shapiro steps in experiments.

In order to understand how the capacitance modifies the
odd step widths, we show in Fig. 3(a) the step width of the
first and third steps as a function of the damping parameter σ

for a value of the ac bias i1 = 0.75 larger than the amplitude
of the 4πSC, i4π = 0.175. We see how decreasing σ results in

the suppression of the first step, while the third step vanishes
for a smaller value of σ . In Fig. 3(b), we have represented the
step width as a function of the ratio x = i4π/i2π . The first step
vanishes for x � 0.25 while the third step requires x � 0.65
to be suppressed.

On the other hand, when these conditions are not satisfied,
the presence of a finite 4πSC is not enough to suppress the
odd steps. In Appendix E, we obtain that for high-ac-bias
amplitudes, such that

ĩ1 � ω−4
ac , ĩ1 � ω−2

ac σ−2, (2)

where ĩ1 = i1(ωac

√
ω2

ac + σ 2)−1, the junction is weakly af-
fected by the change in the periodicity of the supercurrent.
Even for low-ac-bias amplitudes, if σωac � 1 or ω2

ac � 1 most
of the current will flow through the resistive and capacitive
channels and the effect of the 4πSC on the odd steps will
be minimal. If any of these four conditions is met, the
junction is said to be in the Bessel regime. In this regime, the
Shapiro step widths can be obtained analytically, as noted in
Appendix B.

In Fig. 3(c), we have represented an schematic phase
diagram for the RCSJ model with a 4πSC as a function of
the parameters σ and ωac. The yellow region corresponds to
the regime where we expect the 4πSC to have a strong effect
on the junction behavior, the 4π -periodic regime. The blue
region corresponds to the Bessel regime and the green region
corresponds to the intermediate phase, where the odd steps are
suppressed only for low-ac-bias amplitude. The approximate
phase boundaries are determined by ĩ4π = 0.1 and ĩ4π = 10,

where we have defined ĩ4π = i4π [ωac

√
ω2

ac + σ 2]
−1

.
Another consequence of the presence of a finite capacitance

is that the odd steps do not necessarily disappear even if
i2π = 0, as illustrated by the results of Fig. 4. Odd steps
may still appear as a consequence of subharmonic phase
locking. Subharmonic steps, such as in Fig. 4, are always
of smaller width than the corresponding harmonic steps [31].
This type of behavior is known to happen in the RCSJ equation
as a consequence of symmetry breaking in the nonlinear
supercurrent term. This possibility is shown explicitly to
happen in the high-ac-bias regime in Appendix E. In the
RSJ limit, i.e., C = 0, subharmonic phase lock is rigorously
forbidden [48]. Moreover, in the presence of strong step
overlap, numerical results indicate that subharmonic steps are
strongly quenched. Since step overlap occurs predominantly
when σωac � ĩ2

1 [30], subharmonic steps seldom appear in the
4π -periodic regime as defined above.

IV. EMISSION SPECTRUM ANALYSIS

The periodicity of the response can be studied through
the frequency spectra, Sω = |v(ω)|, where v(ω) is the Fourier
transform of the signal obtained in a Shapiro experiment. The
emission spectrum of the voltage was obtained in Ref. [19]
from experiments on a topological junction, in order to probe
the phase-dependent periodicity of the junction as a function
of the dc-current bias, i0. Below, we will analyze in detail the
Fourier spectrum of the voltage in the presence of both dc
and ac bias: idr(t) = i0 + i1sin(ωact). We consider the Fourier
spectrum of both phase-locked and quasiperiodic solutions.
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FIG. 4. Shapiro step curve for i2π = 0 and i4π = 1 (x → ∞).
Insets: Fourier spectrum obtained numerically at the first and
second steps. The Fourier spectrum in the first step consists only
of half-harmonic components plus a component at ωac, while the
Fourier spectrum at the second step consists only of components at
integer multiples of ωac, in accordance with the analytical results of
Appendix E. Parameters considered: ωac = 1.6, σ = 0.3, ĩ1 = 10.

A. Shapiro steps: Period doubling

The typical voltage response in the phase-locked regime
of a topologically trivial Josephson junction exhibits peaks
at integer values of the ac bias frequency, that is, at ω =
kωac, k∈Z. However, for a finite 4πSC, the voltage response
inside a given odd step is necessarily 4π periodic, as shown
in Appendix A, while the even steps remain unaltered. This is
shown, for example, in the insets of Fig. 4. The time evolution
of the voltage on the nth odd Shapiro step can be expressed as
a Fourier series,

v(t) =
∞∑
l=0

vle
i(l/2)ωact , (3)

where v0 = nωac. Then, the periodicity of the voltage can
be extracted from the emission spectrum. However, in a
capacitively shunted junction, the nonlinear dynamics can
break the symmetry of the RCSJ equation of motion. Then,
even in the absence of 4πSC, i.e., x = 0, the steps may
develop spontaneously a subharmonic response at half the ac
bias frequency, and thus the Fourier spectrum shows peaks at
integer multiples of ωac/2. This phenomenon is called period
doubling. It has been studied in the past [49,50] in the context
of the onset of chaos in the RCSJ model [51].

In Figs. 5(a) and 5(b), we illustrate the Fourier spectrum
v(ω) as a function of i0 for x = 0 and x �= 0. In the interval
i0∈[0.15,0.32], we observe a set of resonances placed at
integer multiples of the frequency ωac (ωac/2) for x = 0 (x �=
0). In contrast, for i0 > 0.32, the system becomes unstable

FIG. 5. (a) Density plot of the Fourier transform of the volt-
age signal v(ω) for σ = 0.3, ωac = 0.6, x = 0 and (b) x = 0.1.
(c) Bifurcation diagram for σ = 0.3, ωac = 0.6, and x = 0 and
(d) x = 0.1. Period doubling results in the appearance of a subhar-
monic response even when i4π = 0, which may hide the presence of
a 4πSC. It appears as a pitchfork bifurcation at i0 � 0.32 in panel
(c). The point at which this occurs has been marked with a dashed
magenta line.

and the response becomes 4π periodic even for x = 0, as the
system enters in a resonance at half the plasma frequency of
the junction [49].

The period doubling of a phase-locked solution manifests
itself as a pitchfork bifurcation inside the steps, whereas for
a junction with i4π �= 0 the whole step is 4π periodic. This is
represented in Figs. 5(c) and 5(d), where we have plotted for
each value of i0 the voltage at different periods; that is, for each
i0, we have plotted the set {v(ti)}, where ti+1 = ti + 2π/ωac.
For a 2π -periodic signal, to each i0 corresponds a single value
v(ti), whereas for a 4π -periodic signal, to each i0 corresponds
two values {v(ti),v(ti + 2π/ωac)}. The dense black portions
of the diagram correspond to aperiodic solutions. For x �= 0,
the whole step is 4π periodic, whereas for x = 0, the step is
4π periodic starting at the resonance at i0 = 0.32. Then, the
experimental distinction between x = 0 and x �= 0 requires
determining whether or not there is a peak in the Fourier
spectrum at 3ωac/2 in the region i0∈[0.15,0.32].

In Ref. [30], the authors propose a condition for avoiding
period doubling, namely that the ac bias amplitude is large
enough that ĩ1 � ω−4

ac . Since this corresponds to the Bessel
regime, where we do not expect a large 4π -periodic response,
the possibility of period doubling cannot be neglected in the
parameter regions where the junction is strongly 4π periodic.
As period doubling would appear both for x = 0 and for
finite x, the presence of MBS cannot be directly inferred.
The quasiperiodic regime discussed in the next section can be
used instead.
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FIG. 6. [(a), (b)] Density plot of ln[Sω(i0)] for ωac = 0.3 and i1 = 0.58, with a 4π -periodic contribution of x = 0 and x = 0.3, respectively.
In both cases, the frequency axis is normalized to ω′

0, corresponding to the natural frequency, ω0, at the lowest value of the dc bias amplitude,
i0 = 2.82. (c) Fourier spectrum for the same parameters as in panel (a) without a 4πSC (up) and with a 4πSC of x = 0.3 (down), corresponding
to i0 = 3.62. The peaks corresponding to the natural frequency and half of the natural frequency have been indicated; the peaks originating
from the 4π -periodic contribution are marked in cyan. (d) First-return map (FRM) for the same parameters as in panel (c) with black indicating
the FRM for x = 0 and cyan indicating the FRM for x = 0.3.

B. Quasiperiodic regime

In order to explore other regimes, we may look instead at
quasiperiodic (QP) solutions appearing at i0 � ωacσ ĩ1 [30].
When the natural frequency of the junction ω0 = σ−1i0 and
the driving frequency ωac are incommensurate, the voltage
response is quasiperiodic. This is the case in the apparently
continuous, linear parts of the i0 − 〈v〉 curves, as indicated
in Fig. 1(a). The voltage response curve in the quasiperiodic
regime of a Josephson junction can be written as a generalized
Fourier series [52]

v(t) =
∞∑

k,l=0

vkle
i(kωac+lω0/2)t , (4)

where v00 = ω0. In the Fourier spectrum for x = 0, shown
in Fig. 6(a), there is a resonance at ωac, corresponding to
the ac bias, and another at ω0, corresponding to the intrinsic
frequency of the junction. Then, starting from ω0, another set
of peaks appears separated from ω0 an integer multiple of
ωac. The Fourier spectrum for the case x �= 0, represented in
Fig. 6(b), exhibits an extra resonance at ω0/2 plus a new set of
satellite peaks once again separated an integer multiple of ωac.

The presence of a 4πSC can also be observed through the
first-return maps (FRMs), as these are heavily modified by
change in the periodicity of the supercurrent terms. A FRM is
composed of pairs {v(ti+1),v(ti)}, where ti+1 = ti + 2π/ωac.
The FRMs are sensitive to the periodicity of the voltage
response, in a way similar to Poincaré maps [53]. The
FRMs, however, can be obtained from a time-resolved scalar
response, like the voltage signal of a typical Josephson junction
experiment. For a 2π -periodic voltage response, the FRMs
are ellipses. As the periodicity of the response shifts to 4π ,
however, the ellipses twist inward and self-crossings appear, as
represented in Fig. 6(d). This is in accordance with the scenario
observed in the FRMs of superlattice current self-oscillations
by Luo et al. [53].

The changes to both the Fourier spectra and FRMs of
quasiperiodic solutions due to a finite 4πSC are general

behaviors when sufficiently away from the steps and thus can
be used to discern the topological nature of the junction. Close
to the steps, the solutions may be heavily distorted, exhibiting
high subharmonic response or even fractal structure in their
FRMs [54,55].

V. CONCLUSIONS

We have explained theoretically the experimental features
observed in a Josephson junction in the presence of a 4πSC by
introducing a capacitance term in the semiclassical equation
of motion of the junction. Namely, we have shown that in the
underdamped regime, i.e., when the capacitive term is stronger
than the resistive one, the odd steps are suppressed even for
high-ac-bias amplitudes. Furthermore, we observe an uneven
quenching, with the first Shapiro step being more affected
by the presence of a 4πSC than the subsequent odd steps.
This behavior reproduces qualitatively the experimental results
published so far and indicates that for a correct estimation of
the 4πSC amplitude it is necessary to consider the presence of
a finite capacitance in the junction.

We also consider the possibility of studying the periodicity
of the junction through the Fourier spectrum of the voltage
response. We show how the appearance of period doubling
bifurcations in the regions where the 4π -periodic response is
at its largest may make this observation difficult in the phase-
locked regime, corresponding to the Shapiro steps. The Fourier
spectrum of quasiperiodic solutions also provides information
about the topology of the junction. While far from the step
regions, the quasiperiodic response is surprisingly stable and
shows the marks of a finite 4π -periodic response in its Fourier
components. The corresponding first-return maps are twisted,
compared to the ellipses found for the 2π -periodic case. This
may be used to discern the periodicity of the junction directly
from the voltage response.

Overall, we have analyzed both the phase-locked and the
quasiperiodic regimes of the topological RCSJ model, showing
how each may be used to help in the detection of Majorana
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bound states. Furthermore, the results shown here for the RCSJ
model may be useful to understand the process of periodicity
change in other nonlinear systems.
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APPENDIX A: SUBHARMONIC RESPONSE IN THE
4π -PERIODIC JOSEPHSON JUNCTION

Phase lock occurs when the phase advances by 2πl after m

periods T = 2π/ωac of the ac driving

ϕ(t + mT ) = ϕ(t) + 2πl (A1)

for integers l,m. The Josephson equations predicts for that
case 〈v〉 = 〈dϕ/dt〉 = (l/m)ωac. When m > 1 and l/m is not
an integer, the junction may develop subharmonic phase lock,
observed as steps corresponding to fractions of the ac bias
frequency. Subharmonic phase locking is forbidden in the RSJ
limit [48].

If the odd steps do not vanish completely, the voltage
response inside a given odd step will have twice the period
of the ac bias, that is, it will have m = 2 in Eq. (A1).
The voltage response corresponding to the first step may be
4π periodic and still contribute to the step, provided that
ϕ(t + 2T ) = ϕ(t) + 4π . In fact, as we will show now, the
response inside a given odd step must be 4π periodic.

Consider a 2π -periodic trial solution for the nth step of the
form

ϕ(t) = ϕ0 + nωact −
∞∑
l=1

ĩlsin(lωact + θl), (A2)

with n∈Z. By substituting Eq. (A2) into the RCSJ equation,
one obtains a complicated formula for the free parameters
ϕ0,{ĩl ,θl}. This can be solved in particular limits to yield
analytical expressions for these parameters, as detailed below.
Here, instead, we integrate all terms in the RCSJ equation over
one period of the ac bias, obtaining

i4π

∑
k

±2(∑
l lkl − n

2

)[ ∏
l

Jkl

(
ĩl

2

)]

× cos

[
±

(∑
l

lkl − n

2

)
π + ϕ0

2
−

∑
l

klθl

]

× sin

[(∑
l

lkl − n

2

)
π

]
= 0, (A3)

where Jn(x) is the nth-order Bessel function and k =
(k1,k2, . . .) is a vector of indices, each running from −∞ to ∞.

FIG. 7. Washboard potential for x = 0 (dashed lines) and x = 0.2
(full lines). The shape of the potential shifts its periodicity as the
4π -periodic contribution increases in importance. The result is two
subsets of wells, one consisting of shallow wells and another of deep
wells.

Note that the sine factor multiplying the left-hand side is

sin

[(∑
l

lkl − n

2

)
π

]
=

{
0 if n is even
±1 if n is odd . (A4)

Thus, Eq. (A3) indicates that in the odd steps the RCSJ
equation cannot be satisfied if the solution is 2π periodic even
on average over a period. In order to obtain a satisfactory
solution for the RCSJ equation on an odd step, we need to
take into account the possibility of a subharmonic response
and include terms at frequencies lωac/2, l∈Z.

This can be understood by using the mechanical analog of
the RCSJ equation, that is, by considering the RCSJ equation
as representing the motion of a massive particle under a
washboard potential

u(ϕ) = −i2πcos(ϕ) − 2i4π cos(ϕ/2) (A5)

with damping given by σdϕ/dt and both a constant force i0 and
a time-dependent force i1sin(ωact). The washboard potential
looks like a sequence of potential wells, as represented in
Fig. 7. For a small value of x, there are two types of wells
with different heights, so that a shallow well is followed by
a deep well and vice versa. For an odd step, the “particle”
traverses an odd number of wells each ac bias period. Hence,
after an ac bias period, it moves from a shallow well into a
deep well, and it takes it another period to move from a deep
well back into a shallow well. For a particle in an odd step,
the potential appears 4π periodic, since it takes two periods
to go back to the initial position. In the case of an even step,
where the particle traverses an even number of wells each ac
bias period, after a cycle it ends its movement in the same type
of well it started. For a particle in an even step, the potential
appears 2π periodic. The voltage response in an odd step will
develop a 4π -periodic voltage response, as it requires two ac
bias periods for the particle to turn back to the well where it
started. In that sense, the remainder in Eq. (A3) acts like an
impulse per ac bias period on the particle which will tend to
make its movement 4π periodic if the particle is in an odd step
and will have no effect if the particle is in an even step.

APPENDIX B: PHASE LOCK IN THE BESSEL REGIME

In this section, we obtain analytical expressions for the
step widths inside the Bessel regime. In that case, the voltage
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response to the applied current bias may be approximated
as linear v(t) = v0 − v1cos(ωact), with n∈Z. In that case,
one obtains a trial phase-locked solution ϕ(t) = ϕ0 + v0t −
ĩ1sin(ωact + θ1), where ĩ1 = v1/ωac. Note that, as explained
above, this solutions cannot be exact for an odd step, and a
4π -periodic term needs to be added. We will consider this
problem in Appendix E.

Starting from ϕ(t), one can calculate the amplitude of the
steps in the Bessel regime [30] by substituting ϕ(t) and solving
for ϕ0. To do so, we equate the constant terms at both sides
of the RCSJ equation with ϕ(t) substituted on it. Substitution
inside the supercurrent terms gives, according to the Jacobi-
Anger expansion,

isc(t) =
∞∑

l=−∞
Jl(ĩ1)sin[(v0 − lωac)t + ϕ0 − lθ1]

+
∞∑

l=−∞
Jl(ĩ1/2)sin[(v0/2 − lωac)t + ϕ0/2 − lθ1].

(B1)

If v0 �= nωac, with n an integer, the supercurrent has no
constant term. Equating the constant terms from the rest of the
RCSJ equation yields v0 = i0σ

−1, indicating that the voltage
follows the resistive line V = IR. However, if v0 = nωac (that
is, at the values that we expect Shapiro steps to appear), the
supercurrent term contributes to the average voltage. For a
Shapiro step corresponding to n odd, when v0 = nωac, we
obtain

nσω + i2πJn(ĩ1)sinϕn = i0, (B2)

where ϕn = ϕ0 − nθ1. This equation fixes the free parameter
ϕ0. The interesting aspect of this relation is that it is satisfied
for a range of i0 of

(	i0)odd
n = 2i2π |Jn(ĩ1)|, (B3)

resulting in the appearance of a step at height nωac, as observed
experimentally.

It remains to determine ĩ1 and θ1. To obtain expressions
for them, one looks at the Fourier components at a frequency
of ωac. Ignoring the contribution from the terms sin(ϕ) and
sin(ϕ/2), one obtains approximate expression for ĩ1 and θ1

ĩ1 = i1

ωac

√
ω2

ac + σ 2
, (B4)

θ1 = arctan(σ/ωac). (B5)

As explained below, the approximation of neglecting the
supercurrent is justified provided that we stay in the Bessel
regime. Even outside, these definitions provide a satisfactory
descriptions of the dependance of ĩ1 and θ1 on ωac and σ .

For the even steps, the analog of Eq. (B2) is

nωσ + i2πJn(ĩ1)sinϕn + i4πJ n
2

(
ĩ1

2

)
sin

(
1

2
ϕn

)
= i0

(B6)

and the step width of the even steps is

(	i0)even
n =2maxϕn

[
i2πJn(ĩ1)sinϕn+i4πJ n

2

(
ĩ1

2

)
sin

(
1

2
ϕn

)]
.

(B7)

Except for the renormalization of ĩ1, these results are
consistent with those obtained in Ref. [40] within the RSJ
model, suggesting that the effect of capacitance is not so
important within the Bessel regime. Equation (B3) indicates
that the odd steps disappear at i2π = 0, while, according to
Eq. (B7), the even steps do not vanish as the contribution
coming from the ∝ i4π term compensates for the decrease
in the contribution from the ∝ i2π term. However, this trial
solution neglects the fact that the voltage response in an odd
step has to be 4π periodic. In Appendix E, we will see that
in the correct description (i.e., with a 4π -periodic voltage
response) the odd steps have a finite width and hence do not
disappear completely.

APPENDIX C: OUTSIDE THE BESSEL REGIME:
STEP WIDTH

In this appendix, we extend the results of the previous
section to parameter regions far from the Bessel regime. Here
we cannot obtain analytical results except for certain limits,
but the trial function method can be used to gain insight on the
junction behavior.

In order to study these effects, we study a quasiperiodic
solution of the type

ϕ(t) = ϕ0 + v0t −
∞∑

j,l=−∞
ĩj lsin[ξjl t + θjl], (C1)

where ξjl = (jv0/2 + lωac). We also require that ĩj l = 0 if
ξjl = 0. Here, if i4π = 0 then j is restricted to even numbers.
This type of trial solution replicates correctly the numerical
results which show that the odd steps develop a half-harmonic
response (i.e., the voltage response is 4π periodic) whereas the
even steps only exhibit integer harmonics. We delay a proper
justification for this trial function until the end of this section.

After inserting ϕ(t) into the RCSJ equation, the supercur-
rent is given by

isc(t) =
∑

k

Jk(ĩ)sin[ϕ0 + (v0 − k · ξ )t − k · θ ]

+
∑

k

Jk(ĩ/2)sin[ϕ0/2 + (v0/2 − k · ξ )t − k · θ ],

(C2)
where

Jk(ĩ) =
∏
j,l

Jkjl
(ĩj l) (C3)

is a generalized Bessel function, k = (kij ) is a matrix of
indices, and the sum is over all possible k, with each kjl

going from −∞ to +∞. Similarly, ĩ = (ĩij ) is a matrix of
the Fourier amplitudes. We define in a similar way ξ and
θ . The dot indicates the Frobenius inner product of matrices
a · b = ∑

j l ajlbjl .
In a similar way to the Bessel regime, Shapiro steps appear

around certain values v0 of the average voltage, satisfying

v0 − 2κ · ξ = 0,

v0 − κ ′ · ξ = 0 (C4)

for a set of indices {κij } and {κ ′
ij } running from −∞ to +∞.

The first (second) equation appears as a result of the 2π
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periodic (4π -periodic) supercurrent element. In terms of the ac
bias frequency, steps appear at values v0 of the average voltage
given by

v0 = 2ωac

∑
j,l κjl l

2 − ∑
j,l κjlj

, (C5)

v0 = 2ωac

∑
j,l κ

′
j l l

1 − ∑
j,l κ

′
j lj

. (C6)

Note that the {κl,j } and {κ ′
l,j } coefficients must be the same

in both the denominator and the numerator. If i2π = 0, then
steps appear only at the values of v0 given by Eq. (C6). In that
case, there is no reason to expect the odd steps to disappear
for a trial solution like Eq. (C1). If 1 − ∑

j,l κ
′
j lj is even, then

Eq. (C6) indicates that there will be odd steps. This is the case
represented in Fig. 4.

The step width for a certain v0 is obtained by finding the
range of i0 for which there is a ϕ0 that satisfies

σv0 + i2π

∑
κ

Jκ (ĩ)sin[ϕ0 − κ · θ]

+ i4π

∑
κ ′

Jκ ′(ĩ/2)sin
[ϕ0

2
− κ ′ · θ

]
= i0, (C7)

with κ and κ ′ given by Eqs. (C5) and (C6).

APPENDIX D: OUTSIDE THE BESSEL REGIME:
FOURIER COMPONENTS

In this appendix, we take the results of the previous section
and focus on the response inside a given odd step. For an even
step, the trial solution in Eq. (C1) only has integer components.
For an odd step, the trial solution has integer and half-integer
harmonics, yielding

ϕ(t) = ϕ0 + nωact −
∞∑
l=1

ĩl/2sin

(
lωac

2
t + θl/2

)
. (D1)

Then, the RCSJ equation becomes a set of equations for
each pair of Fourier amplitudes and phases {ĩl/2,θl/2}. Then, the
previously defined k,ĩ,θ ,ξ are vectors in the index l, so that, for
example, k = (k1,k2, . . .) We need these Fourier coefficients
in order to obtain the step width from Eq. (C7). In particular,
for the Fourier component at the frequency mωac/2, there are
two equations:

i2π

∑
k̃,s1

s1Jk̃(ĩ)cos(ϕ0 − k̃ · θ)

+ i4π

∑
k̃′,s1

s1Jk̃′ (ĩ/2)cos(ϕ0/2 − k̃′ · θ )

+ m

2
ωacσ ĩm/2sin(θm/2)+m2

4
ω2

ac ĩm/2cos(θm/2)=i1δm,2,

(D2)

i2π

∑
k̃,s1

Jk̃(ĩ)sin(ϕ0 − k̃ · θ)

+i4π

∑
k̃′,s1

Jk̃′(ĩ/2) × sin(ϕ0/2 − k̃′ · θ)

−m

2
ωacσ ĩm/2cos(θm/2) + m2

4
ω2

ac ĩm/2sin(θm/2) = 0

(D3)

with the term i1δm,2 coming from the ac bias. Here s1 = ±1,
and the sum is over the values {k̃,k̃′} that satisfy

s1m +
∑

l

lk̃l = 2n,

s1m +
∑

l

lk̃′
l = n, (D4)

corresponding to the terms proportional to i2π and to i4π ,
respectively.

If we follow the prescription given in the definition of ĩ1

and θ1 in Appendix B, we would neglect the two sums coming
from the supercurrent terms, and then we would find the trivial
solution ĩm/2 = 0 for m �= 2 and we recover the expressions
for ĩ1 and θ1 inside the Bessel regime, Eqs. (B4) and (B5).
Since this prescription is not valid whenever ωacσ or ω2

ac are
comparable to i2π or i4π , and i2π + i4π � 1, we obtain the
previously stated result that the system responds linearly to
the applied bias whenever ω2

ac � 1 or ωac � 1/σ .
The 4π -periodic supercurrent term has a strong effect on

the step widths when the terms it generates in Eqs. (D2) and
(D3) are comparable to the rest of the terms. That is,

ωacσ � i4π , ω2
ac � i4π , (D5)

At this point we can justify the choice of trial solution,
Eq. (C1), and in particular the choice of the periodic part.
Other trial solutions are possible, such as transient solutions
which may be of importance for weak damping (σ � 1). For
that reason, the following reasoning rests on the assumption
that the nonperiodic part of Eq. (C1) is linear in time, resulting
in phase lock.

It is clear that the Fourier components included in the
trial solution have to include a component at frequency ωac

for any i1 �= 0. The first harmonic ĩ1sin(ωact + θ1), together
with the linear term v0t , leads to supercurrent terms of the
form of Eq. (B1). Then, consider Eqs. (D2) and (D3) for
an arbitrary frequency ωx and the related Fourier component
ĩxsin(ωxt + θx). They show that ĩx = 0 unless the supercurrent
terms include a Fourier component at frequency ωx . The
supercurrent terms can be written as a Fourier series with
components at frequencies v0 + lωac and v0/2 + lωac, l∈Z, so
the only nonzero Fourier components appear at these frequen-
cies. Repeating this process with these new components—
that is, taking a trial solution with the Fourier components
v0 + lωac and v0/2 + lωac and inserting it back into the
supercurrent terms—leads to a Fourier series with components
at jv0/2 + lωac, j,l∈Z, which again means that the only
nonzero ĩx correspond to these frequencies. Repeating this
process once again gives no new frequencies, justifying the
terms retained in Eq. (C1).

APPENDIX E: THE HIGH-AC-BIAS-AMPLITUDE LIMIT

In this section, we study the high-ac-bias-amplitude limit.
We derive conditions for the Bessel regime in terms of i1. Then,
we consider an extension of the Bessel regime to accommodate
a 4π -periodic response. We show that in that case the odd steps
do not vanish completely.
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We assume that the ĩl/2, l �= 2 are small. As a first approximation, we may neglect all terms O(ĩl/2 ĩl′/2), l,l′ �= 2. For x � 1,
the Bessel function can be approximated Jα(x) ∼ (x/2)α�−1(α + 1). Therefore, this amounts to neglecting the Bessel functions
of ĩl/2,l �= 2 at first order to obtain a self-consistent approximation in the sense that it is valid only if the ĩl/2,l �= 2 obtained in
this way are small, up to an error of order O(ĩl/2 ĩl′/2), l,l′ �= 2. In this way, Eqs. (D2) and (D3) become a linear system for the
ĩl/2,l �= 2, with ĩ1 as a parameter determined directly by i1. Then, the conditions of Eq. (D4) are

k̃2 = 2n − s2l − s1m; k̃l = 1, k̃j = 0, j �= 2,l,

k̃′
2 = n − s2l − s1m; k̃′

l = 1, k̃′
j = 0, j �= 2,l,

k̃1 = 2n − s1m, k̃j = 0,∀j �= 1,

k̃′
1 = n − s1m, k̃′

j = 0,∀j �= 1, (E1)

where s2 = ±1, yielding, for the mth Fourier component

i2π

∑
l,s1,s2

s1 ĩl/2J 2n−s2 l−s1m

2
(ĩ1) cos

[
ϕ0 − lθl/2 − 2n − s2l − s1m

2
θ1

]
+ i4π

2

∑
l,s1,s2

s1 ĩl/2J n−s2 l−s1m

2

(
ĩ1

2

)

× cos

[
1

2
ϕ0 − lθl/2 − n − s2l − s1m

2
θ1

]
+ mωacσ ĩm/2sin(θm/2) + m2

2
ω2

ac ĩm/2cos(θm/2)

= i2π

∑
s1

s1J 2n−s1m

2
(ĩ1) cos

[
ϕ0 − 2n − l − s1m

2
θ1

]
+ 2i1δm,2 + i4π

2

∑
s1

s1J n−s1m

2

(
ĩ1

2

)
cos

[
ϕ0

2
− n − l − s1m

2
θ1

]
, (E2)

i2π

∑
l,s1,s2

ĩl/2J 2n−s2 l−s1m

2
(ĩ1)sin

[
ϕ0 − lθl/2 − 2n − s2l − s1m

2
θ1

]
+ i4π

2

∑
l,s1,s2

ĩl/2J n−s2 l−s1m

2

(
ĩ1

2

)

×sin

[
1

2
ϕ0 − lθl/2 − n − s2l − s1m

2
θ1

]
− mωacσ ĩm/2cos(θm/2) + m2

2
ω2

ac ĩm/2sin(θm/2)

= i2π

∑
s1

J 2n−s1m

2
(ĩ1)sin

[
ϕ0 − 2n − l − s1m

2
θ1

]
+ i4π

2

∑
s1

J n−s1m

2

(
ĩ1

2

)
sin

[
ϕ0

2
− n − l − s1m

2
θ1

]
. (E3)

Note that the higher m harmonics are less affected by the
supercurrent channels, having an effective bias frequency of
mωac. Because the Bessel function of order k decreases as

ĩ
−1/2
1 for ĩ1 � k, the lower harmonics, other than m = 2, are

suppressed at high ac bias. Then, the supercurrent terms may
be neglected and the linear voltage response approximation is
again valid. In particular, provided that

ĩ1 � σ−2ω−2
ac , ĩ1 � ω−4

ac (E4)

are satisfied, the Bessel regime is recovered and Eqs. (B4)
and (B5) are valid. These results reproduce those obtained by
means of Lyapunov stability analysis in Ref. [30].

As noted above, the Bessel regime is not a satisfactory
description of the linear response, as it assumes that the voltage
response in the odd steps is 2π periodic. This discrepancy can
be solved by including the next order contributions. In that
regard, note that the terms in the right-hand side of Eqs. (E2)
and (E3) are of higher order than the other neglected terms.
That is, we may consider that the conditions of Eq. (E4) are
satisfied, but

ĩ2
m/2 ĩ1 ��σ−2ω−2

ac , ĩ2
m/2 ĩ1 ��ω−4

ac . (E5)

If the right-hand-side terms are kept as the next order
approximation, we see that the ∝ i2π terms in the right-hand
side are zero for m odd while the ∝ i4π terms are zero
for m even. Thus, for i2π = 0, the only harmonics are half-
harmonics, coming from the 4π -periodic contribution to the
supercurrent (apart, of course, from the ĩ1 term). Take i2π = 0.
Then, there are terms contributing to the odd nth step, which
satisfy

n − s1l − 2s2k̃2 = 0 (E6)

where si = ±1, i = 1,2. The next order contributions result in
an increase in the step width of the odd steps compared to the
purely 2π -periodic result. This means that in the corrected (i.e.,
with a 4π -periodic response) Bessel regime at high ac bias the
odd steps do not completely vanish, even at i2π = 0. The step
width of the odd steps is nonetheless small but not zero. This
is confirmed by numerical results, such as in Fig. 4, where
both the first and third steps have a finite width at i2π = 0.
As represented in the insets of Fig. 4, the Fourier spectrum
at the first step consists of a peak at ωac and components at
odd multiples of ωac/2, whereas the Fourier spectrum at the
second step consists of integer multiples of ωac, as obtained
analytically.
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