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We develop a theory of plasmon-assisted tunneling in graphene-insulator-graphene heterostructures and
reveal the manifestations of such process in current-voltage curves, plasmon emission spectra, and junction
electroluminescence. We present a unified framework for evaluation of tunneling due to carrier-carrier Coulomb
scattering and due to emission of plasmons; the latter mechanism generally dominates the full inelastic current.
Moreover, the plasmon-assisted current and plasmon emission rates possess resonant peaks at voltages providing
equal energies, momenta, and group velocities of collective and single-particle interlayer excitations. This
resonance is unique to the tunnel-coupled 2d systems of massless electrons and is deeply related to strong
interactions between collinear carriers in graphene. The predicted effect can be used for design of efficient
nanoscale voltage-tunable sources of photons and surface plasmons.
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I. INTRODUCTION

Van der Waals heterostructures composed of graphene
and related 2d materials [1] provide a new platform for
both fundamental studies of solid state [2–4] and novel
optoelectronic devices [5–8]. A basic building block of these
structures is the graphene-insulator-graphene (GIG) sandwich
which, despite its apparent simplicity, keeps on demonstrating
intriguing properties. The two layers in a GIG structure act as
gates for each other enabling the voltage control of electronic
and optical [9,10] properties. As the layers are placed closer,
the Coulomb interaction between remote electrons comes
into play, enabling interlayer drag [11]. This effect still
puzzles researchers with anomalies at the charge neutrality
point [12–14] which still lack an established explanation.
Further progress in formation of ultrathin high-quality
barrier layers has enabled the observation of chiral electron
resonant tunneling [15], selective valley injection [2],
and electrical tuning of carrier thermalization [4] in GIG
structures.

The experimental data on electron tunneling in GIG
structures [16–18] were for a long time described by a single-
electron picture [19–21], with a minor revision due to electron-
phonon interaction [22,23]. However, recent experiments have
revealed the gate-controlled electroluminescence of graphene
tunnel junctions correlating with negative differential
resistance in the current-voltage [I (V )] curves [24]. A
common scenario of electroluminescence in tunnel junctions
involves the excitation of plasmons upon tunneling followed
by their radiative decay [25–27]. Thus, the graphene junction
luminescence hints at the possibility of plasmon-assisted
tunneling. Though the properties of plasmons in graphene
double layers are well established [10,28–31], and various
tunneling mechanisms have been addressed (elastic including
the interaction corrections [32], phonon- [23] and photon-
assisted [33]), no theory is available for plasmon-assisted
tunneling.

We develop such a theory in the present paper. In contrast
to a common model which treats tunneling due to zero-
point and thermal fluctuations of electric field in plasmon
modes [34–36], we start with tunneling due to carrier-carrier

scattering (Fig. 1). The dynamic screening of the Coulomb
interaction resonantly enhances the probability of scattering-
assisted tunneling if the transferred energy and momentum
coincide with those of surface plasmons. The plasmon-pole
contribution to scattering-aided current coincides with that
obtained using the “fluctuation” approach in the limit of weak
electromagnetic dissipation. However, our approach allows a
consistent treatment of plasmon damping and gives the full
inelastic current as an added benefit.

In ordinary tunnel junctions, the onset of plasmon-assisted
tunneling is marked by a cusp in the differential conductivity
dI/dV at the offset eVth equal to the plasmon energy h̄ωp ∝
n1/2, where n is the carrier density [37]. One can expect
a similar picture, but with eVth ∝ n1/4, for GIG junctions
[22]. Here, we show that the situation is very different.
First, the threshold voltages for plasmon-assisted tunneling
in graphene depend on carrier densities even more weakly
due to the softness of plasmon dispersion in two dimensions.
Second, and most importantly, the plasmon-assisted tunneling
results not only in cusps in the dI/dV curves but also
in the full-scale resonances in the I (V ) dependence. These
resonances correspond to the energy, momentum, and group
velocity matching between plasmons and interlayer single-
particle excitations. In some sense, this effect is similar to the
formation of plasmarons in a single graphene layer due to the
consonance between plasmon and electron motion [38]; for
this reason, we call it plasmaronic resonance. The strength of
resonance is sensitive to plasmon lifetime and interlayer twist,
and in misoriented graphene layers the inelastic current above
the threshold voltage represents an unstructured background.
Conversely, in aligned layers the inelastic scattering-assisted
resonant current can dominate over the elastic one, and the
role of carrier scattering is not limited to the broadening of the
main elastic resonance [32].

The resonance in plasmon-assisted current for aligned
layers will be accompanied by a peak in plasmon emission
rate. This resonant emission can set the principle of electrically
switchable plasmon sources, which remain the only missing
element in the chain “generation, guiding [3], detection [39]”
required for plasmonic interconnects. As the plasmons can
couple to photons, the junction electroluminescence in aligned
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FIG. 1. Band diagram of a graphene-insulator-graphene tunnel
junction and a schematic view of electron tunneling accompanied
by electron-electron scattering. eV is the applied voltage, � is the
interlayer band offset, and εF± are the Fermi energies in the top (+)
and bottom (−) layers.

layers will also be resonant. We estimate the radiative decay
rate of surface plasmons in GIG junctions and show that the
efficiency of plasmon-to-photon conversion can tend to unity if
the junction is properly coupled to an antenna [27]. Therefore,
the mechanism of tunneling under study looks prospective
for the realization of ultracompact electrically tunable light
sources.

The paper is organized as follows. In Sec. II A we develop a
microscopic model of tunneling due to dynamically screened
Coulomb interaction, and extract the contribution due to plas-
mon emission. In Sec. II B we show that the plasmon-assisted
component of the current can be obtained by considering
electron interactions with fluctuating electric fields. In
Sec. III we discuss possible experimental manifestations of
plasmon-assisted tunneling, including plasmaronic resonance
(Sec. III A), the threshold structure of current-voltage curves
(Sec. III B), and resonant electroluminescence (Sec. III C).
In Sec. IV we discuss possible extensions of our model and
draw the main conclusions. The details of the calculations are
presented in the Appendices.

II. THEORY OF MANY-PARTICLE AND
PLASMON-ASSISTED TUNNELING

Electron states in aligned tunnel-coupled graphene layers
can be labeled by in-plane momentum p, the band index
s = ±1, and the index l = ±1 governing the vertical localiza-
tion of the electron wave function [21]. The respective energies
are εls

p = spv + l
√

�2/4 + �2, where v is the Fermi velocity,
� is the voltage-induced shift of bands in neighboring layers
(band offset; see Fig. 1), and � is the tunnel splitting. For
strong bias and/or weak tunneling, � � �, the state l = +1
can be regarded as belonging to the top layer and l = −1
– to the bottom one. The Fermi energies in the layers εF±
and the band offset � are related to the interlayer voltage via
eV = � + εF+ − εF− (Fig. 1). In principle, these quantities
can be tuned independently with extra gates.

A. Scattering-assisted tunneling

The Coulomb interaction couples the states in neighboring
layers and induces inelastic tunneling current. The current
from the forward-biased (top) layer can be expressed through
the golden rule transition probability Wf i between two-particle
states |+ps,lp1s1〉 and |−p′s ′,l′p′

1s
′
1〉 and occupation numbers

f ls
p of these states:

It→b = eg2
∑
pp1q

lss1s
′s ′

1

Wf if
+s
p

[
1 − f −s ′

p′
]
f ls1

p1

[
1 − f

ls ′
1

p′
1

]
; (1)

here g = 4 is the spin-valley degeneracy factor. The full
current including the reverse component is I = It→b[1 −
e−eV/kT ], where V is the interlayer voltage. A sequence of
transformations common in the theory of Coulomb scattering
phenomena [40,41] allows one to express the current in terms
of the imaginary part of polarizability �′′

ll′ (we set h̄ ≡ 1):

It→b = 2e

π

∫ +∞

−∞
dω

∑
q,l

�′′
+−(q,ω)�′′

ll(q,ω)

× |V+l,−l |2Nω−eV [Nω + 1], (2)

where Nω = [eω/T − 1]−1 is the Bose distribution and �ll′

is the intra- (l = l′) or interlayer (l 
= l′) polarizability in the
random phase approximation [42,43]:

�ll′ = g

A

∑
pss′

p′ = p + q

∣∣uss ′
pp′

∣∣2 f ls
p − f l′s ′

p′

ω + iδ − εls
p + εl′s ′

p′
; (3)

|uss ′
pp′ |2 = (1 + ss ′ cos θpp′)/2 is the overlap of chiral wave

functions in graphene, and A is the sample area. The amplitude
V+l,−l describes the tunneling of electrons from the top to
bottom layer upon Coulomb interaction with a carrier in the
lth layer. Its evaluation requires knowledge of electron wave
functions in the vertical direction ψl(z) and the full dynamic
Coulomb interaction between two electrons Vqω(z,z′):

V+l,−l =
∫ +∞

−∞
|ψl(z

′)|2ψ+(z)Vqω(z,z′)ψ−(z)dzdz′. (4)

The full Coulomb interaction is due to the bare charge and
induced charges in both layers,

Vqω(z,z′) = V0(q)e−q|z−z′ | +
∑
l=±1

V
(S)
lqω(zl − z), (5)

where V0(q) = 2πe2/κ|q|, κ is the background dielectric
constant, and the potential V

(S)
lqω(zl − z) is due to screening

by the dynamically induced density δnlqω in the lth layer.
The latter is related to the potential at the same layer via its
polarizability �ll(q,ω).

Equations (2)–(5) are, in principle, sufficient to calculate the
scattering-assisted current. Unluckily, the spatial structure of
electron wave functions in Eq. (4) for van der Waals structures
is not known. Considerable progress can be made if (1) one
assumes the scattered electron to be well localized in its own
layer and (2) considers the Coulomb potential in the dipole
approximation. With these assumptions, all information about
tunneling is neatly absorbed into the dipole matrix element z±,
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while the transition amplitude becomes

V+l,−l = V0(q)

ε(q,ω)

z±
d

(1 − e−qd )

× [1 − V0(q)�−l−l(q,ω)(1 + e−qd )]; (6)

here ε(q,ω) is the dynamic screening function of the double
layer [28]:

ε(q,ω) = [1 − V0(q)�++(q,ω)][1 − V0(q)�−−(q,ω)]

−V 2
0 (q)e−2qd�++(q,ω)�−−(q,ω). (7)

With Eq. (6) it becomes clear that the unscreened Coulomb
interaction is inefficient for excitation of the tunneling tran-
sitions. This is elucidated by the appearance of prefactor
1 − e−qd which makes the full amplitude small unless the
transferred momentum exceeds the inverse interlayer dis-
tance. Physically, this term captures the long-range nature of
Coulomb interaction: despite that the potential created by a
trial electron can be large, the potential difference between
two layers is small unless the layers are distant. A similar
cancellation of Coulomb scattering can lead to the narrowing
of tunnel resonances in doped double quantum wells [44] and
superlattices [45].

The situation changes radically due to the screening, which
is seen from the resonant enhancement of matrix elements
at ε(q,ω) → 0. This is nothing but tunneling accompanied
by emission of surface plasmons. To extract the plasmonic
contribution, one can expand the dielectric function in the
vicinity of plasmon poles ε(q,ω) ≈ [∂ε′/∂ω](ω − ω

p
q ) + iε′′

[here p = +1 (−1) corresponds to optical (acoustic) modes;
for details see Appendix A]. Assuming the electromagnetic
dissipation to be small, |ε′′/ε′| � 1, we arrive at the expression
for the plasmon-assisted component of the net tunneling
current I

pl
t→b. This can be conveniently split into the emission

(I pl,em
t→b ) and absorption (I pl,abs

t→b ) contributions

I
pl
t→b = I

pl,em
t→b + I

pl,abs
t→b , (8)

I
pl,em
t→b = 2πe

∑
qp

∣∣∣∣∣eϕ
p
q±

2

∣∣∣∣∣
2

�′′
+−

(
q,ωp

q

)[
Nω

p
q
+ 1

]
Nω

p
q −eV .

(9)

The quantity eϕ
p
q± can be considered as a matrix element of

electron-plasmon interaction:(
eϕ

p
q
)2

(±)

2
= V0(q)

∣∣∣z±
d

∣∣∣2
(1 − e−qd )2

×
[
1 − V0(q)�′

++
(
q,ω

p
q

)
(1 + e−qd )

]2

∂ε′
∂ω

p
q

∣∣1 − V0(q)�′++
(
q,ω

p
q

)
(1 − e−2qd )

∣∣ . (10)

Interestingly, this matrix element turns to zero for interactions
with optical plasmon modes in equally doped layers. This
fact stems from zero average field in the optical mode and
vanishing tunnel coupling in the dipole approximation. A slight
asymmetry in layer doping and/or unequal dielectric constants
of the substrate and barrier layer leads to mixing of optical
and acoustic modes. Therefore, both modes in asymmetric
structures contribute to tunneling.

B. Tunneling due to electric field fluctuations

Equation (9) for tunneling current can be derived using the
golden rule for electron-plasmon interactions. This approach
provides us only with the part of the tunneling current
arising from collective excitations, while the tunneling due
to single-particle excitations is neglected. It also neglects the
exchange effects in electron scattering, which are unimportant
in graphene due to large spin-valley degeneracy. Finally, it
implies that plasmons are well-defined; i.e., their damping is
much less than the eigenfrequency. Despite all limitations,
this approach is useful as the plasmon-aided current makes a
considerable fraction of the full current, as we show below.
Denoting the tunneling matrix element for electron-plasmon
interaction as eϕ

p
q±, we can write the current from the top to

bottom layer due to plasmon emission

I
pl,em

t→b = 2πe
∑

pqss ′p

f +s
p

(
1 − f −s ′

p−q

)∣∣eϕp
q±

∣∣2∣∣uss ′
pp−q

∣∣2

× [
Nω

p
q
+ 1

]
δ
(
ε+s

p − ε−s ′
p−q − ωq

)
(11)

and plasmon absorption

I
pl,abs
t→b = 2πe

∑
pqss ′p

f +s
p

(
1 − f −s ′

p+q

)∣∣eϕp
q±

∣∣2∣∣uss ′
pp−q

∣∣2

×Nω
p
q
δ
(
ε+s

p − ε−s ′
p+q + ωq

)
. (12)

The speed of plasmons in 2d systems is generally well
below the speed of light, which allows one to treat the plasmon
field as a potential one. In this approximation, the tunneling
matrix element takes on the form

eϕ
p
q± =

∫ +∞

−∞
dzψ∗

+(z)eϕp
q (z)ψ−(z), (13)

where ϕ
p
q (z) describes the distribution of plasmon potential

in the direction normal to the layers (see Appendix B). The
amplitude of electric field fluctuations eϕ

p
q (z) in the plasmonic

modes is established with a second-quantization procedure,
where the classical mode energy w is equated to ω

p
q [34].

The classical energy of electromagnetic field is given by the
Brillouin formula

w =
∫

d3r
κEE∗

16π
− A

4

∑
l=±

∂σ ′′
l

∂ω

∣∣∣∣
ω

p
q

E||E∗
||
∣∣
z=ld/2

, (14)

where E = (E||,Ez) = −(iq,∂z)ϕ
p
q (z) is the electric field, A is

the sample area, and σl is the conductivity of the lth layer. A
set of lengthy transformations (Appendix B) leads us to the
expression for the tunneling current in the form (8) with the
matrix element (10).

The coincidence between the two approaches to plasmon-
assisted tunneling is not accidental. It was shown already
for classical plasmas that electron-electron collisions can be
treated as electron scattering by longitudinal field fluctuations,
their magnitude dictated by the fluctuation-dissipation theorem
[46]. In nonequilibrium systems, the plasmonic occupation
numbers in Eqs. (11) and (12) can be determined from the rate
equations for plasmons.
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III. MANIFESTATIONS OF PLASMON-ASSISTED
TUNNELING

With the general formalism of the calculations developed,
we start discussing the possible experimental manifestations
of plasmon-assisted tunneling. We consider three such effects:
(1) resonant enhancement of the tunnel current due to group
velocity coincidence between plasmons and interlayer single-
particle excitations, which we call plasmaronic resonance,
(2) fine structure of the low-temperature I (V ) curves due to
onset of the plasmon emission, and (3) electroluminescence of
graphene tunnel junctions.

A. Plasmaronic resonance in tunnel current

To analyze the resonant structure of the tunnel current,
Eq. (2), we note that the inter- [31] and intralayer [42,43] po-
larizabilities possess square-root singularities at the threshold
of inter- and intralayer single-particle excitations, respectively.
Particularly, the imaginary part of interlayer polarizability can
be presented as

�′′
+−(q,ω) = �̃′′

+−(q,ω)√
±[q2v2 − (ω − �)2]

, (15)

where �̃ is the smooth part, and the plus and minus signs
should be used for intra- and interband transitions, respec-
tively [47] (for details see Appendix C). This square-root
singularity can be explained as resulting from prolonged
interlayer interaction between electron and hole with collinear
momenta and, hence, equal velocities. Similar singularities
exist in the polarizability of a single graphene layer [42]
�′′

ll(q,ω) ∝ |q2v2 − ω2|−1/2. The most pronounced effect of
“collinear singularities” is that the plasmon phase velocity
always exceeds the Fermi velocity, which preserves graphene
plasmons from Landau damping [48,49].

The group velocity of plasmons can be, however, equal
to or below the Fermi velocity. When the line of interlayer
tunneling singularities ω = � + qv approaches the tangent
with plasmon dispersion, as shown in Fig. 2(b), the plasmon-
assisted tunneling current is resonantly enhanced. The resonant
interlayer band offset �∗ is determined from

�∗ + qv = ωp
q , ∂ωp

q /∂q = v. (16)

In the vicinity of resonance the plasmon-assisted contribution
grows as

I
pl,em
t→b (�) ≈ I0 ln

∣∣∣∣q2∂2ωq/∂q2

2(� − �∗)

∣∣∣∣∣∣∣∣
q=q∗

, (17)

where the large logarithm is evaluated at q = q∗ which is
the momentum of plasmons in resonance with interlayer
excitations. The characteristic current in Eq. (17) is

I0 =
∣∣∣∣∣eϕ

p
q±

2

∣∣∣∣∣
2
eq3(Nω + 1)Nω−eV �̃±(q,ω)

2π
√

qv∂2ωq/∂q2

∣∣∣∣∣ q = q∗
ω = ωq∗

. (18)

Both large logarithm and prefactor are growing functions of
the plasmon dispersion curvature ∂2ωq/∂q2. Indeed, when the
curvature is low a wide range of plasmon wave vectors satisfies
the resonant condition with single-particle excitations.
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FIG. 2. (a) Calculated inelastic tunnel current (normalized by
z2

±/d2) vs band offset � at fixed Fermi energies in graphene layers
(red solid εF+ = 0.6 eV, εF− = −0.2 eV; blue solid εF+ = 0.5
eV, εF− = −0.1 eV; green solid εF+ = 0.4 eV, εF− = 0.1 eV).
Red dashed curve represents the plasmon-assisted current calculated
with Eq. (8). Interlayer distance d = 38 Å, κ = 5, temperature
T = 300 K. Peaks A and B correspond to plasmaronic resonances
due to acoustic and optical modes, respectively. (b) Loss function
−Im[ε−1(q,ω)] of the double-layer structure for the same parameters
as for the red curve. Resonant peaks in the current correspond to the
tangent of the interlayer excitations’ dispersion ω = � + qv (dashed
line) and dispersion of surface plasmons (bright peaks in the loss
function). The dot-dashed line is the boundary of interband absorption
ω = 2 min{εF+,εF−} − qv.

The logarithmic growth of the current at the resonance
is limited by plasmon damping. Using the many-particle
formalism, Eq. (2), it is possible to show that the damping-
limited resonant value of the current is approximately

I
pl,em
t→b (�∗) ≈ I0 ln

∣∣∣∣q2∂2ωq/∂q2

ε′′/[∂ε′/∂ω]

∣∣∣∣∣∣∣∣
q=q∗

; (19)

the quantity in the denominator of the large logarithm is
nothing but the plasmon decay rate.

The strength and width of plasmaronic resonances are not
directly affected by temperature, contrary to the case of fine
structures in I (V ) curves due to phonon-assisted tunneling
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that require sharp Fermi edges [22,50]. However, the plasmon
decay rate limiting the resonance strength can increase at
elevated temperature. If plasmon damping is governed by
the interband absorption and plasmon energy is far below
the Fermi energy, then ε′′(q,ω) ∝ e(ω+qv−2εF )/2T , and the
maximum current is inversely proportional to the temperature.

A direct numerical evaluation of tunnel current with Eq. (2),
Fig. 2, shows that the plasmaronic resonances can persist up
to the room temperature. The two peaks in Fig. 2 correspond
to the plasmaronic resonances on acoustic and optical modes.
The dashed line shows the inelastic current in the plasmon-pole
approximation, Eqs. (8) and (9). The latter correctly captures
the peak positions and the magnitude of the acoustic peak
but underestimates the net current due to the neglect of
nonresonant transitions with ω 
= ωq .

The plasmon-assisted current is proportional to a small
parameter z2

±/d2 that contains all information about barrier
material properties. It is possible to show (Appendix E) that
z±/d ≈ �/� ≈ (2U0/�)e−�d , where U0 is the band offset
between graphene and barrier material, and � = √

2m∗U0 is
the inverse decay length of the electron wave function. The
same prefactor enters the expression for elastic current away
from the resonance, Iel = (2πeγ )(�/�)2(n+ + p−), where γ

is the resonance broadening factor, and n+ and p− are the
electron and hole densities in the respective layers. Therefore,
the ratio of plasmon-assisted and elastic currents is roughly
independent of barrier layer parameters. In Fig. 7 we compare
these currents for d = 3.8 nm of boron nitride and see that
the resonant contribution due to acoustic plasmon emission
exceeds the tail of the elastic current by nearly a factor of 3.

The inelastic tunneling resonances are highly sensitive to
the rotational misalignment of graphene layers [17]. With
the neglect of emerging weak tunneling between dissimilar
sublattices, the general expression for inelastic current (2)
still holds, but the interlayer polarizability is now angle-
dependent. Denoting the wave vectors connecting the K points
in the neighboring layers as Qi (i = 1 . . . 3), we can write
the polarizability in the presence of twist �

(T )
+−(q,ω) =

1
3

∑
i=1...3 �+−(q + Qi ,ω). When the twist wave vector is

small compared to the plasmon wave vector at the resonance,
Q � q∗, the twist-limited contribution to the tunnel current
can be estimated as

I
pl,em
t→b (�∗) ≈ I0

2π

√
q2∂2ω/∂q2

vQ
ln

∣∣∣∣q2
c ∂

2ωq/∂q2

8vQ

∣∣∣∣, (20)

where qc is the momentum cutoff associated with interband
damping of plasmons.

Due to the complicated structure of plasmon dispersion
near the critical wave vector q∗, the existence condition for
plasmaronic resonance in twisted layers can be presented
only in a very rough manner. In most realistic situations, the
coupling constant in graphene αc = e2/κv is on the order of
unity; hence the numerator of the large logarithm is on the
order of the Fermi wave vector kF . Thus, the Fermi wave
vector should be far above the twist vector Q, while the twist
angle should satisfy �θ � kF /KD where KD is the distance
between the � and K points in graphene. For a typical value
of Fermi energy of 200 meV this yields �θ � 1◦; due to the

FIG. 3. Calculated dependence of plasmon-assisted tunnel cur-
rent at fixed carrier densities in the layers (εF+ = 225 meV, εF− =
250 meV) vs band offset � at T = 0 and perfect alignment. The
offsets �ac and �op correspond to the switch-on of plasmon-aided
tunneling with emission of acoustic and optical plasmons, respec-
tively. An inset shows the diagram for geometrical determination
of threshold voltage: the intraband tunneling with acoustic (optical)
plasmon emission becomes possible when the blue (red) dot appears
below the Pauli blocking line ω = eV . For the conditions shown in
the inset, only the emission of acoustic plasmons is possible.

weakness of logarithmic singularity, the strong inequality (�)
is essential.

B. Fine structure of the low-temperature I(V ) curves

Among more common manifestations of plasmon-assisted
tunneling in graphene-based junctions there stands the emer-
gence of the threshold structure in I (V ) curves. At low
temperatures, the tunneling with plasmon absorption is frozen
out, while emission-aided tunneling is possible only for
ωq < eV by virtue of Pauli blocking. The combination of the
Pauli principle and energy-momentum conservation results in
suppression of inelastic current for low voltages V < Vth and
band offsets � < �th. These threshold quantities are found
from

eVth = ωq, ωq = �th − v(q + Q). (21)

A simple geometrical interpretation of the latter system is
shown in the inset of Fig. 3. The minimal frequency of
plasmons in the domain of intraband tunneling |ω − �| <

v(q + Q) (dot at the boundary of orange filled region) should
lie below the line of Pauli blocking ω = eV , i.e., in blue filled
region. From this analysis we also see that finite interlayer twist
Q reduces the threshold of plasmon emission upon tunneling.

For acoustic plasmons in the graphene double layer with
linear dispersion ω = sq, the threshold condition (21) can be
solved analytically to yield

eVth = � − vQ

1 + v/s
. (22)

If the band offset � is fixed, the threshold voltage (22) weakly
depends on carrier density because the plasmon velocity s

saturates to the Fermi velocity at small interlayer distance
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FIG. 4. Dependence of plasmon generation rate (normalized by
exponential tunneling factor z2

±/d2) on the offset between Dirac
points for the parameters corresponding to the red curve in Fig. 2(a).

d [31,49,51]. This contrasts to the case of plasmon-assisted
tunneling in bulk metal-insulator-metal junctions [25] where
the threshold voltage equals the plasmon energy, the latter
being proportional to the square root of density.

If the carrier densities in graphene layers are fixed while
band offset is swept, the threshold condition can be presented
in an alternative form:

�th =
(

1 + s

v

)
(εF− − εF+) − sQ. (23)

The steplike switch-on of the tunnel current upon increase
in band offset � is shown in Fig. 3 for fixed carrier densities
and zero temperature. These cusps in the I (V ) curves become
broadened very quickly with rising temperature, as the broad-
ening is governed both by smearing of Fermi distributions and
interband damping of graphene plasmons.

C. Plasmon emission and junction electroluminescence

The emission of surface plasmons upon resonant tunneling
can be detected not only by analyzing the features of
inelastic current. Recent advances in near-field microscopy
and nanoscale electromagnetic sensing [3,39] allow a direct
measurement of plasmon generation rates. This generation
rate, Gpl, is obtained by a simple rearrangement of terms in
the expression for plasmon-assisted tunnel current:

Gpl = 1

e

[
I

pl,em
t→b + I

pl,em
b→t − I

pl,abs
t→b − I

pl,abs
b→t

]
. (24)

Naturally, the bias dependence of the integrated plasmon emis-
sion rate inherits all resonant features of the plasmon-assisted
current. This is shown in Fig. 4, where the characteristic
peaks are the plasmaronic resonances discussed above. The
peak emission rate for the resonance with acoustic modes is
3 × 1027 cm−2 s−1 timed by a barrier-dependent tunneling
exponent (z±/s)2. The barrier-independent part exceeds the
typical plasmon generation rate upon interband recombination
in population-inverted graphene, which is ∼1026 cm−2 s−1

at the same carrier density [52]. Due to the smallness of the

(a)

(b)
( )с

FIG. 5. Illustration of various radiative decay channels for plas-
mons in confined double layers and estimates of the respective
radiative decay rates: (a) emission of vertical dipoles for acoustic
plasmon modes, (b) emission of lateral dipoles for optical modes,
and (c) emission of antenna-coupled modes. Wavy lines in (a) and
(b) show the distribution of charge density in plasmon modes; arrows
show the direction of the dipole moment. Dots correspond to different
eigenmodes of the structures. For all curves L = 80 nm, W = 1 μm,
Fermi energies εF+ = εF− = 250 meV.

tunneling exponent [(z±/d)2 ≈ 8 × 10−7 for 2.5 nm of hBN
barrier, 5 × 10−2 for 2.5 nm WS2 barrier at � = 50 meV],
the real generation rate is smaller. However, compared to
plasmonic oscillators based on pumped graphene [52,53], the
tunneling devices are not prone to strong Auger recombination
and heating.

The tunneling emission of plasmons can be also implicitly
studied via analysis of tunnel junction electroluminescence
that was recently observed in a sample with a pronounced
interlayer twist [24]. Such electroluminescence is commonly
a two-step process [25,26] including the excitation of surface
plasmons upon inelastic tunneling and its subsequent radiative
decay into free-space modes [54]. The fate of plasmons emitted
upon tunneling is determined by competition of radiative decay
(with the characteristic rate γrad) and in-plane absorption due
to the Drude or interband mechanism (having the rate γsc).
When both rates are smaller than the plasmon frequency, the
number of emitted photons can be presented as

Gph = γrad

γrad + γsc
Gpl. (25)

The radiative decay depends on the plasmon-to-photon
coupling scheme. The plasmons in confined double-layer
structures possess a nonzero dipole moment which can be
directed either in-plane or normally to the layers; in either
case this leads to the dipole radiation. The decay rate can be
estimated as γrad = Prad/w, where Prad = 4ω4|dω|2/c3 is the
radiation power, w is the classical mode energy, and dω is the
mode dipole moment.

The acoustic modes are prone to radiative decay via emis-
sion of vertical dipoles, shown in Fig. 5(a). The corresponding
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decay rate can be shown to be (see Appendix G)

γ
�
rad = 64ω

3

(qd)2(s/c)(σ ′′/c)2(W/L)
κ

4π
[1 + coth(qd/2)] − q dσ ′′

dω

∣∣∣∣∣q = πn
L

ω = ω−
q

, (26)

where W is the GIG structure width and σ ′′ is the imaginary
part of the in-plane conductivity (for simplicity, we assume
both layers to have equal carrier density). Apparently, this
process is inefficient due to the smallness of plasmon phase
velocity s compared to the velocity of light, the smallness of
interlayer distance, and finally, the large value of mode energy
in the long-wavelength limit [large denominator in Eq. (26)].
For Fermi energies εF+ = εF− = 250 meV and structure
length L = 80 nm we obtain the energy of the lowest acoustic
mode ω = 33 meV and the decay rate γ

�
rad ≈ 8 × 107 s−1; it

can become somewhat larger for higher modes (green curve in
Fig. 5). This is four orders of magnitude below the scattering
rate in moderate-quality samples, γsc ≈ 1012 s−1.

The radiation is strongly intensified for modes possessing
lateral dipole moment, shown in Fig. 5(b). For a purely optical
mode in a double layer with equal in-plane conductivities, a
similar estimate leads us to

γ ↔
rad = 64ω

3

(qL)2(ω/cq)(σ ′′/c)2(W/L)
κ

4π
[1 + tanh(qd/2)] − q dσ ′′

dω

∣∣∣∣∣q = πn
L

ω = ω+
q

. (27)

This differs from the estimate for vertical dipoles of the
acoustic mode by a large factor (L/d)2 which comes from
the difference of dipole lengths and by the smallness of the
energy denominator in the q → 0 limit. These two factors
lead to an elevated decay rate of γ ↔

rad ≈ 5 × 1011 s−1; the
corresponding plasmon energy is ω ≈ 100 meV. The radiative
decay rate of this mode is comparable to the scattering rate;
hence, the excitation of these modes by tunneling is readily
seen in luminescence.

Probably the highest plasmon-to-photon conversion effi-
ciency is achieved by coupling a GIG tunnel junction to a
nanoantenna [27,55] [Fig. 5(c) and the blue curve]. If the
antenna impedance Zrad is matched to the impedance of the
double-layer structure [Zradσ

′′(ωq)W/L ∼ 1], the plasmon
decay rate becomes comparable to the plasma frequency. The
estimates for a junction coupled to a resistive load Zrad yield
γrad, max ≈ 0.04ω for the lowest plasmon mode, independently
of geometrical dimensions and carrier densities in the layers
(for details see Appendix H). Therefore, near-unity plasmon-
to-photon conversion efficiency looks possible in optimized
structures.

IV. DISCUSSION AND CONCLUSIONS

We have theoretically identified several manifestations
of plasmon-assisted tunneling in graphene-insulator-graphene
junctions, the most striking of them being the plasmaronic
resonance in tunnel current. The origin of this resonance is the
enhanced interaction between plasmons and interlayer single-
particle excitations due to the group velocity matching. The
relation between the discussed resonance and the formation of
plasmarons in a single graphene layer is elucidated as follows.
Plasmarons are formed off the mass shell εp = pv at some
energy separation δε equal to the energy of plasmon quantum

ωq . Contrary to 3d systems, the plasmons in two dimensions
have a soft spectrum with energy tending to zero at long
wavelength. A natural question arises: Which plasmon wave
vector q∗ provides the strongest interaction with electrons?
The answer is that such a plasmon should have group velocity
equal to the carrier velocity [38]. In the case of interlayer
tunneling, we are dealing essentially with on-shell electrons;
however, the energy of interlayer single-particle excitations is
tuned by interlayer bias �. At some bias �∗, the energies,
momenta, and group velocities of interlayer excitations and
plasmons coincide. This bias corresponds to the resonantly
large generation of surface plasmons by interlayer tunneling.

The mentioned resonance is closely related to the square-
root singularities in the joint density of states (JDOS) for the
GIG structures, as discussed in Appendix D. Such singularities
are inherited from the linear carrier dispersion [42] and are
absent in coupled systems with parabolic bands [56]. Experi-
mentally, the plasmonic peaks in inelastic current for coupled
massive layers were observed at very specific conditions [35],
e.g., at the anticrossing of intersubband plasmon dispersions
[57]. The replacement of one of graphene layers with a bilayer
leads to weak (logarithmic) JDOS singularities and thus finite
net plasmon emission rate and inelastic current at any bias �.

The singularities in graphene polarizability can be modified
by electron-electron corrections to carrier dispersion and/or
by vertex corrections [58]. Though our original derivation of
inelastic current was based on the scattering of noninteracting
particles, the interaction effects can be conveniently included
in the transformed equation (2) by replacing the bare polariz-
abilities �ll′ with interacting ones; a similar situation occurs
in the theory of Coulomb drag [59]. Therefore, the expression
for scattering-assisted current (2) would be valid in the vicinity
of the Dirac point, where the carrier interactions are crucial.
However, no plasmaronic resonances are expected in this case
due to strong interband plasmon absorption. In doped samples,
the interactions just enhance the band velocity under the Fermi
surface [60] and the plasmaronic resonances are expected to
persist.

In the present calculation, we assumed the interlayer
tunneling to be weak, so that the dielectric function of
the double layer was not renormalized by tunneling. Such
renormalization can be done [31], and it would enhance the
plasmon-assisted current. The reason for enhancement is the
partial plasmon loss compensation by stimulated plasmon
emission upon tunneling under interlayer population inversion.
A similar stimulated tunneling process represents the principle
of a quantum cascade laser [45] and was also proposed for
amplification of plasmons [31,61]. At some critical strength
of tunneling, corresponding to the complete undamping of
plasmon modes, the current (2) would diverge. The divergence
would signal the onset of surface plasmon lasing; at this point
one has to solve the coupled kinetic equations for electrons
and plasmons for evaluation of tunnel current.

The present theory demonstrates the prospect of graphene
heterostructures for resonant and voltage tunable light emis-
sion in the far infrared. Compared to the light sources based
on carrier injection and recombination (in transition metal
dichalcogenides [7] and graphene quantum dots [62]), the
proposed structures offer voltage tunability of the emission
spectrum, and can be integrated in photonic [9] and plasmonic
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[63] waveguides. The proposed process of plasmon and
photon generation is different from interband recombination
of electrons injected upon resonant tunneling considered in
[64]. The difference between these processes is the same
as the difference of quantum-cascade lasing with vertical
and diagonal radiative transitions. Importantly, the emission
spectrum for interband recombination of injected carriers is
smooth, following the interband JDOS spectrum.

In conclusion, we have developed a theoretical formalism
for the calculation of tunneling current accompanied by
carrier-carrier scattering in graphene-insulator-graphene het-
erostructures. Our calculation shows that the main contribution
to inelastic scattering-assisted current comes from emission
of surface plasmons. The plasmon-assisted current can be
resonantly enhanced if the energy, momentum, and group
velocity of interlayer excitations and plasmons coincide. This
effect, which we call plasmaronic resonance, can also manifest
itself in enhanced plasmon emission and electroluminescence
of graphene-based junctions.
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APPENDIX A: PLASMON POLES IN
SCATTERING-ASSISTED TUNNELING

The current accompanied by emission of plasmons can be
derived by extracting the contribution to the integral (2) due
to the poles of the screening function ε−1(q,ω). Assuming
the dissipation of electromagnetic energy to be small, one can
determine the plasmon frequency ω

p
q from

ε′(q,ωp
q

) = 0. (A1)

If the frequency ω and momentum q satisfy the dispersion
relation (A1), the transition amplitudes V++,−+ and V+−,−−
are related as follows:

V++,−+ = V+−,−−e−qd/S−. (A2)

With the help of Eqs. (A1) and (A2) we can write down the
tunneling current [Eq. (2) of the main text] as follows (keeping
in mind ω ≈ ωq):

It→b = 2e

π

∫ +∞

−∞
dω

∑
q,l

�′′
+−(q,ω)Nω−eV (Nω + 1)

× |V+−,−−|2
|S−| [−ε′′(q,ω)]. (A3)

When the damping rate of plasmons is small (i.e., |ε′′/ε′| � 1)
one can single out the plasmon-assisted contribution

ε′′(q,ω)

|ε(q,ω)|2 ≈ 2π
∑

p=±1

δ
(
ω − ω

p
q

) + δ
(
ω + ω

p
q

)
|∂ε′/∂ω|ωp

q

(A4)

in Eq. (A3). Then, Coulomb interaction between two electrons
is reduced to |V+−.−−| = V0(q)|Sq(z)/ε(q,ω

p
q )| and we obtain

the resulting expression for the tunneling current:

It→b = 4e
∑

q,p=±1

V0(q)|Sq(z)|2
|S−∂ε′/∂ω|ωp

q

× [
�′′

+−
(
q,ωp

q

)
Nω

p
q −eV

(
Nω

p
q
+ 1

)
+�′′

−+
(
q,ωp

q

)
Nω

p
q

(
Nω

p
q +eV + 1

)]
. (A5)

The first term in square brackets of Eq. (A5) is nothing but the
tunneling accompanied by emission of plasmons (11) and the
second one by absorption (12).

APPENDIX B: ENERGY OF FIELD IN
PLASMONIC MODES

In this section we find the energy of electromagnetic field in
the plasmon modes coupled to the graphene double layer. The
distribution of the electric potential is harmonic with respect
to in-plane coordinates r‖:

ϕ(r‖,z) = 1

2

∑
q

ϕq(z)eiqr‖−iωt + c.c. (B1)

The Fourier components ϕq(z) satisfy the Poisson equation

∂2ϕq

∂z2
− q2ϕq = −4πe[ρ+δ(z − d/2) + ρ−δ(z + d/2)],

(B2)

where ρ± are the induced charge densities in the top and bottom
layers. We supplement Eq. (B2) with the relation between
induced charge density and potential:

ρ± = e2�±(q,ω)ϕq(z = ±d/2). (B3)

The solution for guided modes is parametrized as ϕq(z) =
ϕ0Sq(z), while the spatial dependence is given by

Sq(z) =

⎧⎪⎪⎨⎪⎪⎩
S+e−q(z−d/2), z > d/2,

S+ sinh
[
q

(
z+ d

2

)]
−S− sinh

[
q

(
z− d

2

)]
sinh qd

, |z| � d/2,

S−eq(z+d/2), z < −d/2,

(B4)

with S+ = e−qd , S− = 1 − V0(q)�++(q,ω)(1 − e−2qd ). Plug-
ging Eq. (B4) into the Brillouin formula (14), we find the
energy stored in the plasmon mode:

w = Aϕ2
0qωqS−
8π

∂ε

∂ω

∣∣∣∣
ω=ω

p
q

. (B5)

Equating this energy to ωq , we find the zero-point amplitude
of the electric potential:(eϕ0

2

)2
= V0(q)

AS− ∂ε′/∂ω|ω=ω
p
q

. (B6)

APPENDIX C: SINGULAR STRUCTURE OF
POLARIZABILITY AND PLASMARONIC RESONANCE

In this section, we discuss how the singular structure of
interlayer polarizability is related to the resonant features of
inelastic current. Extracting the imaginary part of polarizabil-
ity [Eq. (3)] with the aid of the Sokhotski theorem, one can
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obtain the following expression:

�′′
+−(q,ω) = πgq2

2(2π )2

∑
s=±1

[
θ (vq − |ω − �|)√
(vq)2 − (ω − �)2

J1,s + θ (|ω − �| − vq)√
(ω − �)2 − (vq)2

J2,s

]

≡ q2

2π

[
�̃±,1(q,ω)√

(vq)2 − (ω − �)2
+ �̃±,2(q,ω)√

(ω − �)2 − (vq)2

]
. (C1)

The first term in the square brackets is due to intraband and the second one to the interband tunneling. The last line is the definition
of the nonsingular part of the polarizability �̃±. The integrals I1,s and I2,s involve electron distribution functions in the opposite
layers:

J1,s =
∫ +∞

1
dx

√
x2 − 1

[
f +

(
svqx + ω − �

2

)
− f −

(
svqx − ω + �

2

)]
,

J2,s =
∫ 1

0
dx

√
1 − x2

[
f +

(
ω − � − svqx

2

)
− f −

(−ω − � − svqx

2

)]
.

Now we show how the presence of square-root singularities in Eq. (C1) results in resonance in the plasmon-assisted tunneling
current (17). We assume that band offset is in the vicinity of the value �∗ = vq∗ + ω

p
q∗ and � < �∗. Then, we come to the

following formula for the current:

I
pl

t→b = 2πe

∫ +∞

0

qdq

2π

∣∣∣∣∣eϕ
p
q±

2

∣∣∣∣∣
2[

Nω
p
q
+ 1

]
Nω

p
q −eV

q2

2π

�̃±,1
(
q,ω

p
q
)√

(vq)2 − (
ω

p
q − �

)2
. (C2)

We expand the plasmon dispersion in the vicinity of q = q∗ that corresponds to the tangent of the dispersion curve and
single-particle excitation threshold, ωq ≈ ωq∗ + v(q − q∗) + ∂2ωq/∂q2(q − q∗)2/2. Evaluating the nonsingular terms at q = q∗,
ω = ωq∗ , we find the leading behavior of the plasmon-assisted current:

I
pl

t→b ≈
∣∣∣eϕq±

2

∣∣∣2 eq3[Nω + 1]Nω−eV �̃±,1(q,ω)

2π
√

vq∂2ωq/∂q2

∫ x0

−x0

dx√
1 + x2

≈
∣∣∣eϕq±

2

∣∣∣2 eq3[Nω + 1]Nω−eV �̃±,1(q,ω)

2π
√

vq∂2ωq/∂q2
ln x2

0 , (C3)

where

x2
0 = q2∂2ωq/∂q2

2(� − �∗)
. (C4)

APPENDIX D: JOINT DENSITY OF STATES AND
ANOMALIES IN TUNNELING SPECTRA

The singular structure of the tunneling spectra can be
analyzed by calculating the joint density of states (JDOS)
for optical transitions between two coupled layers. Indeed,
the singularity in the interlayer polarizability (C1) is nothing
but the singularity in the JDOS occurring at ω = � + qv. In
general, the JDOS can be introduced for optical transitions
between two-dimensional systems with carrier dispersions ε+

p

and ε−
p :

D(q,ω) =
∑

p

δ(ε+
p + � − ω − ε−

p−q), (D1)

where the summation is carried over all occupied states in the
top (+) layer and unoccupied states in the bottom (−) one. It
is easy to see that for coupled single layers of graphene ε+

p =
ε−

p = pv, and the JDOS acquires a square-root singularity
D(q,ω) ∝ [(qv)2 − (� − ω)2].

It is possible to consider the spectrum of inelastic tunneling
between the single graphene layer and two-dimensional system
with parabolic bands, ε−

p = p2/2m∗. The latter spectrum
describes the electron states in the graphene bilayer in the

absence of transverse electric field. Integrating over the angle
between p and q we arrive at the following expression for the
JDOS:

D(q,ω) ∝
∫

pdp√
F (p)

, (D2)

F (p) = [2pq]2 − [2m∗(pv + � − ω) − (p2 + q2)]2. (D3)

An anomaly in the JDOS can occur provided � − ω <

m∗v2/2. In this regime there exist two roots of the equation
F (p) = 0,

p± = m∗v − q ±
√

2m(� − ω − qv) − m2v2, (D4)

merging at qv → mv2/2 + � − ω. The anomaly in the JDOS
at such momentum transfer is logarithmic. The result of
the numerical calculation of the JDOS with Eq. (D2) is
shown in Fig. 6 for three different values of band offset
� − ω and effective mass appropriate to the graphene bilayer,
mv2 ≈ 200 meV.

Though the logarithmic singularities in JDOS between
single layer and bilayer graphene can be observed in the energy
spectra of emitted plasmons, the net plasmon emission rate
(and net elastic current) remain finite and smooth functions of
the band offset �. The reason is that singularity in the JDOS
in such a system is only logarithmic, and its integration over
wave vectors of emitted plasmons q would lead to finite net
emission.
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FIG. 6. Joint density of states for tunneling transitions between
single-layer graphene and 2d electron system with parabolic disper-
sion at various band offsets �. Singularities in the red and green
curves occur at qv = mv2/2 + � − ω.

Using a similar method, it is possible to show that the
JDOS for tunneling between two massive two-dimensional
electron systems has no singularities except for the case of
photon-assisted tunneling (q = 0).

APPENDIX E: TUNNELING MATRIX ELEMENTS

Electron states in coupled graphene layers with small
interlayer twist can be described using the Hamiltonian

Ĥ0 =
(

ĤG+ T̂
T̂ ∗ ĤG−

)
, (E1)

where the blocks ĤG± describe isolated graphene layers, and
T̂ describes tunnel hopping:

T̂ = �

3

∑
j=0,1,2

e−iQj r

(
1 e−i

2πj

3

ei
2πj

3 1

)
. (E2)

Here � is the tunneling overlap integral and Qj are the
wave vectors connecting the respective edges of the hexagonal
Brillouin zones in the layers. In the absence of the interlayer
twist (Qj = 0), the tunneling matrix is diagonal, T̂ = �Î ,
where Î is the identity matrix. In this case, the band and layer
degrees of freedom are decoupled.

We proceed now to the evaluation of matrix element �. The
physical meaning of � is half the energy splitting between
electron states in coupled graphene layers, as can be seen from
diagonalization of Hamiltonian (E1). On the other hand, this
splitting can be estimated from a continuum model, where
each graphene layer is represented by a delta well [31]. The
delta-well potential is

U (z) = 2

√
h̄2U0

2m∗ [δ(z − d/2) + δ(z + d/2)], (E3)

where U0 is the work function from graphene to the barrier
material, and m∗ is the effective mass in the barrier. For boron

nitride, U0 ≈ 1.5 eV and m∗ ≈ 0.5m0. The eigenfunctions
in this potential are symmetric and antisymmetric ones. The
energy difference between these states is

E+ − E− = 2� = 4U0e
−�d, (E4)

where � = √
2m∗U0/h̄ is the decay constant of the electron

wave function.
The plasmon-assisted current is proportional to the matrix

element of electric potential energy eϕ±. Its evaluation
generally requires the knowledge of the electron wave function
inside the barrier layer. This evaluation can be, however,
simplified in the dipole approximation. We write the potential
distribution in the plasmon mode as ϕq(z) = ϕ̄ + (ϕ+ −
ϕ−)z/d, thus the potential matrix element becomes

eϕ± ≈ (ϕ+ − ϕ−)
z±
d

. (E5)

It appears that the coordinate matrix element z± and the
tunnel splitting � are bound by a simple relation. We consider
two methods for calculation of current between states |+〉
and |−〉. On one hand, this can be expressed through velocity
operator in the transverse direction:

j± = (vz)±
d

= z±
h̄d

(ε+ − ε−) = z±
h̄d

√
�2 + 4�2. (E6)

On the other hand, it can be found by evaluating the derivative
of the particle number in the state |+〉,

j± = dN+
dt

= − i

h̄
[N̂+,Ĥ0] = �

h̄
. (E7)

Comparing these two expressions, we find

z± = d
�√

�2 + 4�2
. (E8)

APPENDIX F: COMPARISON OF ELASTIC AND
INELASTIC CURRENTS

The elastic current can be evaluated by considering the
tunneling matrix elements in Hamiltonian (E1) as small
perturbations. This leads to the following formula [20]:

I el = ge

h̄

∑
kss ′

∫ +∞

−∞

dE

2π

∣∣∣�+s,−s ′
k,k+Q

∣∣∣2

×A+s(k,E)A−s ′ (k + Q,E)[f (E) − f (E − eV )];

(F1)

here Als(k,E) = −2ImGR
ls(k,E) is the spectral function in the

lth layer and sth band, and GR
ls(k,E) is the retarded Green’s

function in graphene in the band representation:

GR
ls(k,E) = [

E − εls
k − �ls(k,E) + iδ

]−1
; (F2)

�ls(k,E) is the electron self-energy. In the simplest ap-
proximation, the self-energy can be treated as a constant
�ls(k,E) ≈ γ . In this case, one can approximate

I el ≈ 2πge

h̄

∑
kss ′

∣∣�+s,−s ′
k,k+Q

∣∣2
δγ

(
ε+s

k −ε−s ′
k+Q

)[
f +s

k − f −s ′
k+Q

]
,

(F3)
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FIG. 7. Dependence of absolute values of tunnel currents on
band offset at εF,+ = 0.6 eV, εF,− = −0.2 eV, d = 38 Å. We use
broadening γ = 10 meV for the elastic current.

where δγ (x) = (γ /π )/(γ 2 + x2) is the “broadened” delta
function. If, in addition, the layers are aligned (Q → 0), the
integration is performed trivially yielding the electron (n) and
hole (p) densities in the layers:

I el ≈ 2πe

h̄
|�|2δγ (�)[(n+ − p+) − (n− − p−)]. (F4)

The comparison of elastic and inelastic currents in aligned
layers is shown in Fig. 7, where the red solid curve is obtained
using Eq. (2) for scattering-aided tunneling and the red dashed
curve in the plasmon pole approximation. Both elastic and
inelastic components go to zero with increasing band offset,
the latter due to reduction in the dipole matrix element at
large level spacing, z± ≈ d�/�. Despite this fact, both optical
and acoustic peaks are clearly visible, while the inelastic
component exceeds the elastic at the resonance by a factor of 3.
Figure 7 is obtained for interlayer spacing of 3.8 nm, but we
do not expect significant changes at other barrier thicknesses
as both components of the current have the same tunneling
smallness factor (�/�)2.

APPENDIX G: RADIATIVE DECAY OF PLASMON MODES

The present section is aimed at the estimate of plasmon-
to-photon conversion efficiency. The plasmon emitted upon
tunneling can decay either radiatively (with the rate γrad) or it
can be reabsorbed due to the Drude or intraband absorption in a
single layer (the corresponding rate is γsc). Considering these
competing channels of plasmon decay, we can estimate the
plasmon-to-photon conversion probability as γrad/(γrad + γsc).

The radiative decay rate of plasmon γrad can be estimated
as

γrad = Prad

w
, (G1)

where Prad = (4ω4/3c3)|dω|2 is the power of dipole radiation,
and w is the mode energy calculated previously [Eq. (14)].
We consider a double graphene layer sample of length L and
width W , so that L corresponds to the fundamental plasmon

mode qL = π . In a general situation when the conductivities
of top and bottom layers are not equal, one can evaluate the
power emitted by vertical dipoles as

P
�
rad = 4ω2

3c3
ϕ2

0(qdW )2

[
σ ′′

+Sq

(
d

2

)
− σ ′′

−Sq

(
−d

2

)]2

, (G2)

where the dimensionless potential profile Sq(z) was introduced
in Eq. (B4). Similarly, for lateral dipoles we find

P ↔
rad = 4ω2

3c3
ϕ2

0(qLW )2

[
σ ′′

+Sq

(
d

2

)
+ σ ′′

−Sq

(
−d

2

)]2

. (G3)

Combining the expressions for the radiated power (G2) and
(G3) with the expression for mode energy (14), we find the
radiative decay rates of the respective modes (26) and (27).

APPENDIX H: ANTENNA COUPLING OF PLASMONS

The plasmon-to-photon conversion efficiency can be
markedly increased if the double-layer device is loaded with
an antenna. To model the plasmon decay in this situation, we
consider the two graphene layers connected via the radiative
resistance Zrad. We shall solve the dispersion equation for
plasmons in this structure and find their decay rate due to
radiation. An electric potential is sought for as a superposition
of forward and backward optical and acoustic waves:

ϕ± = aeiq+x + be−iq+x ± ceiq−x ± de−iq−x, (H1)

where q− and q+ are the wave vectors of acoustic and optical
modes. The boundary conditions for the schematic in Fig. 5(c)
are

∂ϕ+
∂x

∣∣∣∣
L/2

= ∂ϕ−
∂x

∣∣∣∣
−L/2

= 0, (H2)

ϕ+|−L/2 = −ϕ−|L/2 = 1
2IZrad, (H3)

where I is the current induced in external circuit. Solving
Eq. (H1) with boundary conditions (H2), we obtain the
following dispersion relation:

1 + cos q+L cos q−L − 1

2

[
q+
q−

+ q−
q+

]
sin q−L sin q+L

= σZrad
W

L

[
q−
q+

sin q+L sin q−L − sin2 q−L

2
sin2 q+L

2

]
.

(H4)

It is possible to estimate the solutions analytically in the
limit q+/q− � 1; i.e., when the wavelength of the optical
plasmon much exceeds that of the acoustic one. This is gen-
erally fulfilled as the acoustic plasmons have linear dispersion
while the optical have a square-root one [see also Fig. 2(b)]. In
this limit, the general dispersion equation (H4) is decoupled
into two, neither depending on q+:

cos
q−L

2
= 0, (H5)

q−L

2
tan

q−L

2
= 1

1 + 2σZradW/L
. (H6)

Only the solutions of the second equations are affected by
the radiative decay. It is convenient to rewrite it introducing
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FIG. 8. Radiative decay rate of plasmon modes supported by the
double graphene layer vs antenna radiative resistance Zrad (measured
in units of h̄/e2). Channel length L = 2 μm, channel width W = L,
interlayer distance d = 2.5 nm, Fermi energy εF+ = εF− = 75 meV,
T = 300 K.

the dimensionless frequency u = q−L/2 = ωL/2s, and the
dimensionless radiative resistance

Z̃ = Zrad
W

L

e2

h̄

εF

h̄ωpl

, (H7)

where ωpl = πs/L. The dispersion equation becomes

u tan u = 1

1 − iZ̃/u
. (H8)

A general feature of its solutions is that the imaginary part
of the frequency has an extremum as a function of Z̃. This is
illustrated in Fig. 8 which shows the decay rate of five lowest
plasmon modes vs radiative resistance Zrad calculated with
numerical solution of Eq. (H6).

There exists an optimal value of antenna resistance pro-
viding the maximum radiative decay rate. Decoupling the
solutions into real and imaginary parts, u = u′ + iu′′, we find
that the maximum of the decay rate is achieved if

Z̃ = u′, (H9)

u′′ ≈ cos2 u′

2u′ . (H10)

For the two lowest modes we have obtained u′ = 3.4,
u′′ = −0.14 and u′ = 6.4, u′′ = −0.08, respectively. We note

FIG. 9. Comparison of radiative (γrad) and scattering (γsc) decay
channels for plasmons supported by the double layer (structure
parameters as in Fig. 8) at different Fermi energies. γrad is calculated
for antenna resistance Zrad providing the maximum radiative decay.
The scattering rate γsc is limited by graphene acoustic phonons and
residual charge impurities with density Ni = 1011 cm−2. Dashed lines
are a guide for the eye.

that the condition of maximum radiative decay Z̃ = u′ ∼ 1
represents the matching of antenna impedance and impedance
of the graphene layer at the resonant plasmon frequency. For
the lowest mode, the maximum decay rate is γrad ≈ 0.04ω.
This greatly exceeds the decay rate due to dipole radiation into
free space.

Finally, we estimate the rate of plasmon absorption due to
the Drude loss. It is worthwhile noting that γsc is not just
the inverse of the electron momentum relaxation rate due
to the non-negligible spatial dispersion of conductivity [65].
To account for the spatial dispersion and electron scattering
simultaneously, one can solve the kinetic equation for electrons
with the particle-conserving collision integral [31]. This leads

FIG. 10. Probability of plasmon decay into free space modes
γrad/(γrad + γsc) vs frequency for different Fermi energies in the
layers. Dashed lines are a guide for the eye.
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to the following expression for in-plane conductivity:

σ = i
g

2π

e2

h̄

εF

qv
x

{
x/

√
x2 − 1 − 1

1 − (iν/ω)[x/
√

x2 − 1 − 1]

}
, (H11)

where x = (ω + iν)/qv, and ν is the electron scattering
rate. Considering electron-phonon and electron-impurity col-
lisions as the dominant scattering sources, we evaluate ν

as [66,67]

ν = εF

T

D2T 2

4ρc2
s v

2
+ π

16

v2Ni

εF

J (αc). (H12)

Here D ≈ 30 eV is the deformation potential in graphene,
ρ = 7.6 × 10−7 kg/m2 is its mass density, cs = 2 × 104 m/s

is the sound velocity, Ni is the impurity density, and J (αc) is
the dimensionless integral

J (αc) =
∫ 2π

0

dθ (1 − cos2 θ )

[1 + (2αc)−1 sin(θ/2)]2
. (H13)

The results of the scattering rate and conversion efficiency
calculations are shown in Figs. 9 and 10, respectively. An
increase in scattering rate with reducing the Fermi energy in
Fig. 9 is due to the impurity scattering contribution to plasmon
damping which scales as ε−1

F . At lower impurity density, the
scattering will be dominated by phonons and an increase in
Fermi energy would increase the scattering rates.
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