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The radiative properties of most structures are intimately connected to the way in which their constituents
are ordered on the nanoscale. We have proposed a new representation for radiative heat transfer formalism
in many-body systems. In this representation, we explain why collective effects depend on the morphology
of structures, and how the arrangement of nanoparticles and their material affects the thermal properties in
many-body systems. We investigated the radiative heat transfer problem in fractal (i.e., scale invariant) structures.
In order to show the effect of the structure morphology on the collective properties, the radiative heat transfer
and radiative cooling are studied and the results are compared for fractal and nonfractal structures. It is shown
that fractal arranged nanoparticles display complex radiative behavior related to their scaling properties. We
showed that, in contrast to nonfractal structures, heat flux in fractals is not of large-range character. By using the
fractal dimension as a means to describe the structure morphology, we present a universal scaling behavior that
quantitatively links the structure radiative cooling to the structure gyration radius.
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I. INTRODUCTION

The field of radiative heat transfer is of considerable interest
due to its promise for noncontact modulation of heat transfer.
In the past years, several efforts have been made to understand
and analyze the radiative heat transfer at the nanoscale. It is
well-known that the radiative transfer between two objects
depends drastically on their separation distance, and at small
separation distances compared to thermal wavelength, the
flux is several orders of magnitude larger than the value
predicted by the Stefan-Boltzmann law [1]. A major advance
in the field was made by Polder and Van-Hove in the use of
Rytovs theory of fluctuational electrodynamics for describing
radiative heat transfer at the nanoscale [2]. During the past few
years, significant attention has been paid on the influences of
size [3–5], shape and relative orientation [6,7], and materials
[8–10], on the radiative heat transfer and thermal evolution
[11,12], in two or three-body systems. These studies show
that the significant enhancement in the heat transfer at small
separation distances is due to the feature of the near-fields at
this scale.

The rapid growth of physical analysis methods and nanofab-
rication techniques [13,14] provides researchers with the
necessary tools for designing and predicting setups in order to
manipulate the radiative heat flux at larger systems. Bringing
close to each other more than two objects at small distances
changes the radiative properties due to many-body effects
[15–18]. This fact arises from the multiple scattering of the
radiation field by the objects in a system, which is accompanied
by new modes participating in heat transfer [7,19]. Accord-
ingly, the arrangement of nanoparticles in many-body systems
has an important role on the system’s radiative properties.
When these objects are widely separated, they can be regarded
to scatter the radiation field independently. At higher volume
fractions, or in case where fractal/periodic arrangement takes
place, closer packing of nanoparticles influences the scattering
of individual particles, which can not be regarded to scatter
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the heat flux independently any more [20,21]. In spite of
major efforts, most of the theoretical considerations in the
collective effects are restricted to few-body systems. There are
very few studies on the heat transfer problem in larger systems
with ordered or disordered structure, including ballistic and
diffusive heat transfer in a chain of nanoparticles [19,22,23],
energy and momentum transfer [18] and the ballistic regime of
heat transfer [24] in many-body planar systems, heat transfer
between clusters of nanoparticles [25], and heat transfer in
many-body dipolar systems with magnetic fields [26].

The majority of structures existing in nature turn out
to be fractal [27]. In contrast to ordered or disordered
structures, fractal structures do not possess transnational
invariance, accordingly, they can not transmit running waves
[28]. In contrast, the coupling between nanoparticles is of
long range in structures with lattice translation symmetry, e.g.,
structures whose constituents are arranged in a highly ordered
microscopic structure in one, two, or three dimensions. For the
description of amorphous structures in terms of a limited set
of parameters, a major improvement has been the introduction
of fractal concepts by Mandelbort [29]. The fractal dimension
reflects the internal morphology of the structure and depends
on the rule which is used in building the fractal structure.
Today, many scientists are using the ideas of fractal geometry
in a variety of applications, including engineering, medicine,
electronics, predicting stock market prices, and modeling
surface roughness [30–33]. The diffusion limited aggregation
(DLA) modeled by Witten and Sander [34] and cluster-cluster
aggregation (CCA) modeled by Meakin [35] are examples of
the use of the concept of fractal in simulations. These models
involve growth of the structure by allowing nanoparticles (and
subclusters) to diffuse and stick to the growing structures.
Presently, various deterministic fractal structures can be
artificially created due to a rapid progress in nanotechnologies.
It is generally known that fractality has a strong influence on
the optical properties of structures [28,36,37] (specially in the
case of nobel metal fractals), and is mainly accompanied by
inhomogeneous localization and a strong enhancement field
at some parts of these structures [21,38,39]. Similar to optical
responses, the radiative characteristics of fractal structures are
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expected to be different from those of ordered or disordered
structures.

In this paper, we present a novel approach for the analysis of
the radiative heat transfer problem in an ensemble of nanopar-
ticles, which allows one to describe how new behavior in
thermal properties emerges from many-body interactions. The
proposed formalism is based on the representation of the heat
transfer and radiative cooling of structures in terms of radiative
modes (thermal excitations). This representation is used to
analyze the transmission coefficient between nanoparticles in
fractal and nonfractal structures. The calculations for fractals
are restricted to the fractal structures based on the Vicsek
model [40]. Moreover, silver nanoparticles, which support
surface plasmons are used as a typical material. We also restrict
ourselves to the dipolar regime (the separation distances are
large compared to the nanoparticle sizes) in calculating heat
flux, in part because multipolar interactions do not alter the
qualitative feature of the phenomena. It is shown that the
thermal conductance can be large even for far apart particles
in structures showing a transnational symmetry. In particular,
we have demonstrated that in contrast to nonfractal structures,
the collective modes tend to be localized in fractal structures.
Based on the transnational/scaling symmetries, it is shown
that there exist maximum scale lengths in which radiation
can flow in fractal/ordered structures. Owing to this confined
radiative diffusion area, we showed that the radiative cooling
of structures possesses universal scaling properties.

The structure of the paper is as follow. The formalism is
developed in Sec. II, where transmission coefficients, cooling
coefficients, and conductance are derived in terms of the
eigenvalues and eigenvectors of the interaction matrix. In
Sec. III, we briefly introduce the Viscek fractal and its scaling
properties. The radiative heat transfer in fractal and nonfractal
structures is discussed in Sec. IV. Based on the interaction ma-
trix representation, we calculated the transmission coefficient
and mutual conductance between particles in Sec. IV A. The
same technique is applied for calculating radiative cooling
of structures, and the influence of the structure size on the
cooling rate is investigated in Sec. IV B. Finally, our work is
summarized in Sec. V.

II. MANY-BODY RADIATIVE HEAT TRANSFER
FORMALISM: GEOMETRIC APPROACH

Let us describe the basic ingredients of theoretical for-
malism we used to describe the radiative heat flux in many-
body systems. The system under consideration consists of an
ensemble of N distinct nanoparticles located at points r i =
(xi,yi,zi), i = 1, . . . ,N inside a thermal bath at temperature
Tb. For the sake of simplicity, nanoparticles are assumed
to be identical spheres with radius R. Nanoparticles have
temperatures Ti and they are assigned a fluctuating dipole
Pf

i representing their thermal radiation. Each nanoparticle
receives the direct energy radiated by other dipoles as well
as the radiation energy scattered between particles in the
system. In the case of identical temperatures, i.e., T1 =
T2 = · · · = TN = T , the net power exchange between two
arbitrary particles in an ensemble would vanish. Moreover,
the magnitude of the interaction of nanoparticles with external
bath (which is always present and occurs in far-field regime) is

much smaller than the near-field interaction, which takes place
inside the structure. Accordingly, by neglecting the thermal
bath effect (i.e., Tb = 0), the temperature evolution of the
system is decided by the total power loss by all nanoparticles in
an ensemble. Nanoparticles exchange energy through dipolar
interaction and the local electric field for a nanoparticle,
located at r i in the system, is determined by

Ei =
N∑

j=1

Ĝij Pj , (1)

where Ĝij is a free space dyadic Green’s tensor, which gives
the dipolar intraction between particles i and j ,

Ĝij = k3

4π

[
f (krij )1 + g(krij )

rij ⊗ rij

r2
ij

]
,

f (x) = [x−1 + ix−2 − x−3] exp(ix), (2)

g(x) = [−x−1 − 3ix−2 + 3x−3] exp(ix),

where k = ω/c, and rij = |ri − rj | is the distance between
ith and j th nanoparticles located at points ri and rj ,
respectively. The Green’s function has the contribution of
near-, intermediate- and far-zone terms, ∝ r−3, r−2, and r−1,
respectively. The term Ĝij Pj in Eq. (1) gives the dipolar
radiation (scattered and radiated) by particle j with dipole
moments Pj at the point ri . The complex 3 × 3 matrices Ĝij are
symmetric, i.e., Ĝij,αβ = Ĝij,βα , where Greek indices stand for
the components. Moreover, Ĝij = Ĝji . The dipole moments
can be represented in terms of the fluctuating and induced
parts,

Pi = PI
i + Pf

i , (3)

where PI
i is the induced dipole moment and related to the local

field through the relation

PI
i = α

N∑
j �=i

Ĝij Pj , (4)

where α is the dressed polarizability tensor [12,41]

α = α0

1 − G◦α0
, (5a)

α0 = 3v
(ε − εh)

(ε + 2εh)
. (5b)

Here, v = (4π/3)R3 is the volume of nanoparticles, ε (εh)
is the dielectric function of the nanoparticle material (back-
ground medium), and G◦ = i(k3/6π ). We have checked that
the radiative correction in Eq. (5a) to the polarizability α0, is
negligible for nanoparticles in the Wien frequency range under
consideration. Radiative corrections are negligible around the
Wiens frequency at ambient temperature for nanoparticles. By
using a linear complex vector space C3N , Eq. (3) can be written
in a more compact notation:

|P〉 = |Pi〉 + |Pf 〉, (6)

where |P〉 = (P1,P2, · · · ,PN ) represents a 3N -dimensional
vector of dipole moments. As an arbitrary vector in this space,
|U〉 denotes a column vector and 〈U| denotes a row vector with
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the complex conjugated elements. Moreover, 〈Ū| represents a
row vector with exactly the same elements as |U〉, and |Ū〉
represents a column vector like |U〉 with complex conjugated
elements. The Cartesian components of the ith individual of an
arbitrary vector |U〉 can be expressed as Uiα = 〈iα|U〉. Here,
the greek indexes stand for the Cartesian components (i.e.,
α,β = x,y,z) and 〈·|·〉 denotes the standard inner product on
C3N . Moreover, an orthogonal standard basis set {|iα〉} can be
defined as

{|iα〉} =

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

1
0
...
0

⎤
⎥⎥⎦,

⎡
⎢⎢⎣

0
1
...
0

⎤
⎥⎥⎦, · · · ,

⎡
⎢⎢⎣

0
0
...
1

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

, (7)

with property

〈iα|jβ〉 = δij δαβ(i,j = 1,2, . . . ,N ). (8)

Rewriting Eq. (4) in the introduced complex vector/matrix
space C3N and inserting in Eq. (6) gives

Z|P〉 − Ŵ|P〉 = Z|Pf 〉, (9)

where Ŵ is a 3N × 3N block matrix, representing the dipolar
interaction between nanoparticles. This complex-symmetric
matrix, namely, the interaction matrix, is

Ŵ =

⎡
⎢⎢⎢⎣

0̂ Ĝ12 · · · Ĝ1N

Ĝ21 0̂ · · · Ĝ2N

...
...

. . .
...

ĜN1 ĜN2 · · · 0̂

⎤
⎥⎥⎥⎦ (10)

and we adopted the spectral variable [42]

Z(ω) ≡ 1/α(ω) = −[X(ω) + iδ(ω)]. (11)

Using Eq. (5b), we obtain

X(ω) = −v−1

3

(
1 + 3εh

ε′ − εh

|ε − εh|2
)

, (12a)

δ(ω) = v−1 εhε
′′

|ε − εh|2 + ImG◦. (12b)

The variable X(ω) can be used as a frequency parameter,
which shows the proximity of ω to the resonance frequency of
nanoparticles. For the special case of spherical nanoparticles,
X ∼ 0 occurs for ε ∼ −2εh. The variable δ(ω) is the dielectric
loss and can be used to calculate the resonance quality factor,
which is proportional to δ−1.

The interaction matrix is symmetric Wij = Wji , and the
blocks are the dyadic Green’s functions Wij = Ĝij , which are
3 × 3 complex symmetric matrices. As we should know by
now, while the specific expressions for the interaction matrix
elements are basis-dependent, the symmetry properties of the
matrix and the blocks are basis-independent. Because Ŵ is

complex-symmetric, we have Ŵ �= Ŵ
†
, which implies that the

eigenvectors are not orthogonal in general. However, it can be
shown that the eigenvectors are linearly independent. This is in
accordance with the special case of quasistatic approximation
where the interaction matrix is purely real and so is Hermitian.
Suppose wn is an eigenvalue of the interaction matrix Ŵ,

and |n〉 is a corresponding normalized eigenvector in a linear
complex vector space C3N . We have

Ŵ|n〉 = wn|n〉 n = 1,2, . . . ,3N, (13)

where wn is complex in general. We denote the eigenvalues
spectrum by a nonempty finite set σ (Ŵ), which at most
contains 3N distinct elements and from Eq. (10) we have
Tr(Ŵ) = ∑

n wn = 0. The spectral radius of Ŵ is defined
by ρ(Ŵ) = max{|wn| : wn ∈ σ (Ŵ)}, which implies that every
eigenvalue in a set σ (Ŵ) lies in the closed bounded disk
{z ∈ C : |z| � ρ(Ŵ)} in the complex plain. The spectrum and
spectral radius of the interaction matrix are essential features
which are independent of the choice of basis. While these
features sensitively depend on the geometrical arrangement
of nanoparticles, they do not depend on the nanoparticle
composition material. An important issue to be noted is that
the complex symmetry of the interaction matrix is a purely
algebraic property, and has no effect on the spectrum of the
matrix by itself. However, any regulation in the nanoparticle
arrangement may result in a block-structured interaction
matrix. By a block-structured interaction matrix, we typically
mean an interaction matrix whose blocks have formulaic
relationship, regulation, and similarity. Such regularities in
the blocks directly influence the eigenvalues and might be
accompanied by degeneracy, scaling behavior, and regulation
in the spectrum, which might also affect the spectral radius
and spectrum bound. On the other side, the eigenvectors of
the interaction matrix are linearly independent and form a
complete vector space. From the biorthogonality principle for
complex-symmetric matrix, we have [43]

〈m̄|n〉 = 0 if m �= n, (14)

where 〈m̄| is a left eigenvector associated with an eigenvalue
wm of Ŵ such that 〈m̄|Ŵ = 〈m̄|wm. This allows us to
introduce the identity operator in terms of the interaction
matrix eigenvectors as

1 =
3N∑
n=1

|n〉〈n̄|
〈n̄|n〉 . (15)

We assume that the eigenvectors are normalized, i.e., 〈n|n〉=1,
however, 〈n̄|n〉, in general, is a complex quantity. One should
not conceive left eigenvectors as merely a parallel theoretical
alternative to right eigenvectors. Each type of eigenvector
can supply different information about the interaction matrix.
Using the eigenvectors of the interaction matrix as a basis,
Eq. (9) can be solved to calculate the dipole moments in terms
of fluctuating dipoles:

|P〉 =
3N∑
n=1

Z

Z − wn

|n〉〈n̄|Pf〉
〈n̄|n〉 , (16)

where the summation runs over all eigenpairs {wn,|n〉} of
the interaction matrix. Moreover, we have used the unity
operator in the basis |n〉. This expression connects the total
dipole moment at the position of each nanoparticle to the
fluctuating dipoles. After multiplication on both sides with
〈iα|, making use of the identity operator of standard basis
1 = ∑

jβ |jβ〉〈jβ|, the Cartesian components of the dipole
moment of the ith nanoparticle are related to the fluctuating
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dipoles according to

Piα = 〈iα|P〉 =
3N∑
n=1

∑
jβ

Z

Z − wn

〈iα|n〉〈n̄|jβ〉
〈n̄|n〉 〈jβ|Pf〉. (17)

A similar procedure can be used for calculating the local
fields in terms of the fluctuating dipoles. To this end, we start
by writing Eq. (1) in a compact notation,

|E〉 = Ĝ|P〉, (18)

where |E〉 = (E1,E2, · · · ,EN ) represent a 3N -dimensional
vector of local fields and Ĝ = G◦1 + Ŵ. Since Ĝ and
Ŵ commute, it follows that Ĝ|m〉 = (G◦ + wm)|m〉. In the
interaction matrix basis, the solution of Eq. (18) acquires the
form

|E〉 =
3N∑

m=1

Z(G◦ + wm)

Z − wm

|m〉〈m̄|Pf〉
〈m̄|m〉 . (19)

The expression for the Cartesian components of the local field
at the position of ith nanoparticle is

Eiα = 〈iα|E〉

=
3N∑

m=1

∑
j ′β ′

Z(G◦ + wm)

Z − wm

〈iα|m〉〈m̄|j ′β ′〉
〈m̄|m〉 〈j ′β ′|Pf〉.

(20)

The dipole moment of the ith particle, Pi , interacts with the
local field Ei such that the total power dissipated in it is given
by [15,16]

Pi = [E∗
i (t) · Ṗi(t)]

= 2
∫ ∞

0
ω

dω

4π2
Im[E∗

i (ω) · Pi(ω)], (21)

where [· · · ] represents the ensemble average. In the basis of
the interaction matrix, this average becomes

Im[E∗
i (ω) · Pi(ω)] = Im

∑
α

〈E|iα〉〈iα|P〉. (22)

Inserting Eqs. (17) and (20) into Eq. (21) and using Eq. (22),
the power dissipated in ith nanoparticle can be split into two
parts as

Pi = Fii +
∑
j �=i

Fij , (23)

where Fii is associated with the power lost by ith nanoparticle
due to radiation and Fij is the power it gains due to radiation
of j th nanoparticle:

Fi =
∫ ∞

0

dω

2π
Tii(ω)
(ω,Ti), (24a)

Fij =
∫ ∞

0

dω

2π
Tij (ω)
(ω,Tj ). (24b)

Here, 
(ω,T ) is the mean energy of Planck oscillator at
frequency ω and at the temperature T and

Tii(ω) = 4|Z|2Im(χ )

[
Im(χ )

∑
αβ

|fii(α,β)|2

−Im
∑

α

fii(α,α)

Z

]
, (25a)

Tij (ω) = 4|Z|2[Im(χ )]2
∑
αβ

|fij (α,β)|2. (25b)

Here, Tii and Tij (= Tji) are the monochromatic cooling
and transmission coefficients, respectively (see Appendix for
details). Moreover, we have defined a 3N × 3N block matrix

f̂ = Z(Z − Ŵ)−1 (26)

with elements

fij (α,β) = 〈iα| f̂ |jβ〉 =
3N∑
l=1

Z

(Z − wl)

〈iα|l〉〈l̄|jβ〉
〈l̄|l〉 , (27)

which is completely symmetrical, i.e., f ij = f ji and
fij (α,β) = fij (β,α). Moreover, wl and |l〉 are eigenpairs of
the interaction matrix Ŵ.

Equations (25) and (27) allow us to express the cooling
coefficients and transmission coefficients in terms of the
eigenfunctions and eigenfrequencies of the interaction matrix.
The cooling coefficients then can be inserted in Eq. (24a) to
calculate the radiative cooling of each particle and summation
over all particles gives the cooling rate of the structure. On
the other side, the transmission coefficients can be used to
calculate the net power exchanged between each pair of
particles (say i and j ) in the system from the expression

Hij = |Fij − Fji |. (28)

With the use of Eq. (24), we can introduce the self-conductance
Gi(T ) ≡ ∂Fi

∂T
and mutual-conductance Gij (T ) ≡ ∂Fij

∂T
at tem-

perature T . While the mutual conductance represents the rate
at which heat flows between particles for small perturbation
in temperatures, the self-conductance represents the rate of
radiative cooling. All these equations are general, in the sense
that they place no restriction on the geometrical arrangement
of particles. In order to apply this formalism to an ensemble of
particles, we require that R be smaller than both the thermal
wavelength λT = ch̄/(KBT ) and the intraparticle distances d

to substantiate the dipole approximation.
Equations (25a) and (25b) contain complete information

on the transmission and cooling coefficient dependence on
the nanoparticle characteristics and geometric configuration.
It is clear from these equations that the imaginary part of
the susceptibility tensor of particles (corresponding to their
absorption) are presented in both the cooling and transmission
coefficients. In the case of composite structures we expect that
the polarizability mismatch influences the heat flow. However,
in case where all nanoparticles are the same, the arrangement
of nanoparticles plays an important role. The cooling and
transmission coefficients can show resonance due to the
Z − wl term appeared in the denominator of Eq. (27). The
radiative properties of the system would have features arising
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from these resonances, such as localization or delocalization
of these modes over the structure. These modes will come
into resonance whenever the denominator of f tends to zero,
which results in heat flux and radiative cooling enhancement.
The resonant frequencies (eigenmodes) satisfy Z − wl → 0,
where wl’s are the eigenfunctions of the interaction matrix
and Z is the spectral variable. For an arbitrary collection of
N interacting nanoparticles with volume v = (4π/3)R3, there
exist at most 3N number of such modes that contribute to the
resultant heat exchange between particles (and also radiative
cooling of particles) in the system. The resonance frequencies
of these modes can be tuned by varying arrangement, size, and
composition of nanoparticles.

While the resonance frequencies of these modes depend on
the arrangement of particles through wl’s, the influence of size
and material composition is accounted by the spectral variable
Z = Z(R,ω). It is also clear from Eq. (27) that the presence
of an additional particle to the system, adds 3 numbers of such
modes that alter the heat transfer property and particle radiative
cooling in the system. Moreover, for a given distribution of
nanoparticles, the resonance frequencies of these modes are
identical for all particle cooling rates and also the heat flux
between each pair of particles in the system. Due to the
structural characteristics, both the modes and their weights
depend sensitively on the presence or absence of any symmetry
in the structure like transnational or scaling properties.

III. FRACTAL STRUCTURES

In the previous section, we introduced the formalism of
radiative heat transfer in a many-body system. From Eqs. (25)
and (27), it follows that the radiative properties in a collection
of N nanoparticles can be described in terms of the excitation
modes. The contribution of each of these modes to the heat
exchange between nanoparticles or radiative cooling/heating
of structure depends on the structure characteristics. The
volume filling fraction p is a common way of expressing
the concentration of nanoparticles in a system. However, as
discussed earlier, the collective properties of heat transfer in
many-body systems strongly depend on the spatial arrange-
ment of nanoparticles in the system. As maintained earlier, the
fractal dimension is another measure of spatial arrangement
of nanoparticles in a structure which can be applied to both
fractal and nonfractal structures.

A fractal structure can be build by arranging nanoparticles
in one-, two-, or three-dimensional Euclidean space that dis-
plays self-similarity on all scales. The self-similarity (scaling
behavior) is the result of the simple strategy for an initial con-
figuration of nanoparticles that is repeated over and over in an
ongoing feedback loop. For the sake of simplicity, we choose
a Vicsek fractal [40] with different functionality F as a typical
fractals as depicted in Fig. 1. Similarly to two-dimensional
(three-dimensional) fractals, Vicsek fractals have zero area
(volume). These fractals are made of N identical nanoparticles
with radius R. The nanoparticles nearest separation distance in
the initial configuration of each fractal is d. The functionality
of each fractal F defines the number of nearest neighbors in the
branching site of the middle particle in the initial configuration.
Moreover, the separation between arbitrary pairs of particles
in a fractal is denoted by r . As we can see, the same type of

FIG. 1. Schematic illustration of Vicsek fractals (composed of
the same nanoparticles, say, N sphere of the same radius R = 5 nm)
of functionality F (i.e., number of nearest neighbors of the branching
sites): (a) F = 2 (VF2); (b) F = 4 (VF4); (c) two-dimensional Vicsek
fractal with F = 6 (VF6); and (d) three-dimensional Vicsek fractal
with F = 6 (3D-VF6). The growing fractals formed by repeated
addition of copies of the initial configuration of nanoparticles.
Moreover, d = 3R is the separation between nearest neighbors and r

is the typical separation between each pair of particles.

pattern appears on all scales for each fractal. The number of
nanoparticles (i.e., the size) in a fractal aggregate scales with
the radius of gyration, Rg , as follows [27]:

N ∼ R
Df

g , (29)

where Df is the fractal dimension and, in general, is a
noninteger value and less than the dimension of the embedding
space D, i.e., (Df < D). The radius of gyration (for a given
fractal of size N ) is the average distance between points
(nanoparticles) of the fractal and its center of mass:

Rg = 1

N

N∑
i=1

|r i − RCM|. (30)

Here, r i is the position of the ith nanoparticle in the structure,
and RCM is the center of mass coordinate, where the total mass
of the structure is supposed to be concentrated.

Figure 2 show a log-log plot of N versus Rg/d for Vicsek
fractals, where d is a typical smallest separation between
neighbor particles. In accordance with our definition, the slope
of the fitted line yields the fractal dimension Df for each
fractal. For the special case of Vicsek fractals, the function-
ality, F , determines Df through Df = ln(F + 1)/ ln 3. As
expected, the structure with F = 2, which corresponds to a
linear chain of nanoparticles, results in an integer value for
fractal dimension (and hence nonfractal structure) with Df =
D = 1. For the case of F = 4 (VF4), the fractal dimension is
increased, which implies that the average number of neighbors
increased for any particle in the fractal in comparison to
VF2. It is clear from the figure that the data for Vicsek
fractals collapse into a single curve for both 2D-VF6 and
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FIG. 2. Double logarithmic plot of the radius of gyration for the
Vicsek fractals of N particles with functionality: F = 2 (VF2), 4
(VF4), and 6 (VF6 for both 2D-VF6 and 3D-VF6). The dashed lines
represent the asymptotic behavior of curves for large fractal sizes
(N > 100) and the scaling exponents. The fractal dimensions are
Df = 1,1.4649,1.77 for F = 2,4,6, respectively.

3D-VF6 fractals, showing that the fractal dimension for VF6
embedded in two and three dimension (2D-VF6 and 3D-VF6,
respectively) are essentially the same, i.e., Df = 1.77. It
should be emphasized that, while 2D-VF6 and 3D-VF6 have
the same fractal dimension, the geometrical arrangement of
nanoparticles is totally different in these fractals. In order to
distinguish between these structures, one can calculate the
density-density correlation function. The probability of finding
two particles in the structure with separation distance r , is
proportional to the density-density correlation function, C(r),
which has the power-law dependency on r as [27]

C(r) ∼ rγ , (31)

with γ = Df − D. This probability becomes constant for
periodic arrangements of nanoparticles (e.g., the VF2 fractal)
or even in random distribution of nanoparticles. On the other
side, the density-density correlation function is a rapidly
decreasing function of r for fractal structures. It is clear that the
probability of finding two particles in 3D-VF6 as a function of
separation r decreases much faster than that in 2D-VF6 fractal.
We also note from Eq. (29) that p → 0 for sufficiently large
fractals, i.e., Rg → ∞. However, there is a high probability of
finding a particle in a close vicinity of any given particle in a
fractal. This is obvious, since from Eq. (31) the pair correlation
function is large for small distances r in fractals. In the case
of random distribution of particles (RGP), p is very small as
in fractals, however, the pair correlation function is distance
independent.

FIG. 3. Eigenvalue histogram (a) and small piece of the histogram
(b) of the interaction matrices W for Vicsek fractals (VF2, VF4,
and VF6) and random gas of particles (RGP) consisting N = 1000
nanoparticles with d = 3R. Blue vertical lines denoting eigenvalues
and red curves represent the eigenvalue density distribution for each
configuration.

IV. HEAT FLUX IN FRACTAL AND NONFRACTAL
STRUCTURES

In Sec. II, we introduced a theoretical approach to de-
scribing the radiative heat transfer in an arbitrary ensemble
of nanoparticles. From Eq. (23) to (27), it is clear that the
radiative properties of many-body systems depend sensitively
on the distribution of the eigenvalues of interaction matrix.
In particular, the spectral radius of eigenvalues of the inter-
action matrix determines the width of the frequency band
where the transmission probability is maximum. As a typical
example, the distribution of the real parts of the interaction
matrix eigenvalues are shown in Fig. 3 for Vicsek fractals
introduced in Sec. III. The eigenvalues are calculated at typical
frequency ω = 58 × 1014 rad/s for structures consisting N =
1000 nanoparticles with d = 3R = 15 nm. The whole part
of the eigenvalue distributions are shown by blue vertical
lines in Fig. 3(a). It can be seen that the eigenvalues of
the interaction matrix filling up the range ∼ ±10−4 around
ω′

l = 0 and both the distribution and order of degeneracy of
eigenvalues depend on the morphology of the structure. It
is clear from this figure that the nondegenerate part of the
spectrum approximately distributes uniformly in this range for
a linear chain of nanoparticles (VF2). However, the twofold
degenerate eigenvalues are confined to a narrower bound
around ω′

l = 0. The red curve in this figure shows the density
of eigen modes [or the eigenvalue density distribution n(wl)].
Depending on the nanoparticle arrangement, the structure may
support localized or delocalized modes. In the case of linear
chain of nanoparticles, the distribution shows sharp peaks at
certain characteristic values of wl and modes are delocalized,
i.e., they are spread over the whole structure.

The eigenvalues of fractal structures (VF4, 2D-VF6, or
3D-VF6) seem to be filling up this range not uniformly and
broadened for higher order degenerate modes. The striking
feature is that the spectra look completely different from
that of VF2. It is clear that there exist spectral windows for
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fractal structures which we expect to influence the resonance
frequencies of transmission (and cooling) coefficients. We
should remark that the number of distinct eigenvalues of the
interaction matrix is still much smaller than 3N (as in VF2)
due to the symmetric nature of the fractal structures we are
considering. This degeneracy can easily be wiped out by the
small displacement in nanoparticle positions to form a random
fractal. Moreover, the scaling property in these structures,
which induced several localized modes in the eigenvalue
distribution, leads to a reduction in the radiative heat transfer in
fractals compared with periodic structures. In order to compare
the results with that of the random distribution of particles, the
eigenvalue distribution of a random gas of particles (RGP) is
shown in the last row in Fig. 3(a). The RGP was generated by
a random distribution of particles in a spherical volume with
the same volume fraction of 3D-VF6 structure. The spectrum
shows remarkable symmetries and localization around ω′

l = 0.
One can see that the eigenvalue density distribution in this
case is localized to a narrow range which is much smaller than
that of fractal structures. Figure 3(b) shows a small piece of
the eigenvalue spectrum. It can be seen that the eigenvalue
statistics is extended to even smaller scales. However, the
eigenvalues always localized around ω′

l = 0 in the case of RGP.
While any symmetry in geometric arrangement of nanopar-

ticles (e.g., periodic arrangement or deterministic on-lattice
fractals) may be accompanied by an increasing number of
degenerate eigenmodes, the number of distinct modes involved
in the heat exchange and radiative cooling depends sensitively
on the separation distance d and frequency ω. The width of
the spectrum decreases by increasing d due to weak coupling
between particles at large distances, however, it does not
depend sensitively on ω. The crucial point to be noted is that
the weight with which a mode contributes to the resultant
transmission coefficient and cooling rates depends on the
numerator of Eq. (27), and thus on the symmetries in the
eigenvectors |l〉 of the interaction matrix and the intensity of
these radiative modes 〈iα|l〉2 at the position of each particle.

A. Mutual conductance in fractals

In this section, we discuss the influence of the fractality
on heat transfer for an ensemble of particles. We consider
an ensemble made up of N = 1000 small spherical silver
nanoparticles with radius R = 5 nm and lattice space d = 3R.
For the complex dielectric function ε(ω) of silver, we used the
Lorentz-Drude model [44]

ε(ω) = 1 − �2
p

ω(ω − i�0)
+

k∑
j=1

fjω
2
j(

ω2
j − ω2

) + iω�j

, (32)

where �p = √
f0ωp is the plasma frequency associated

with intraband transitions with oscillator strength f0 =
0.845 and damping constant �0 = 0.048 eV. Moreover, f1 =
0.065, �1 = 3.886 eV, ω1 = 0.816 eV, f2 = 0.124, �2 =
0.452 eV, ω2 = 4.481 eV, f3 = 0.011, �3 = 0.065 eV, ω3 =
8.185 eV, f4 = 0.840, �4 = 0.914 eV, ω4 = 9.083 eV, f5 =
5.646, �5 = 2.419 eV, and ω5 = 20.29 eV.

Equation (25b) is the basic equation that can be used to eval-
uate the transmission coefficient between each pair of particles
(say ith and j th) in an ensemble of N nanoparticles. In the case
of an isolated dimer (i.e., two-body system where N = 2),

FIG. 4. Transmission coefficient between two Ag nanoparticles
with R = 5 nm in (a) a two-body system, (b) inside a random
gas of particles, as a function of separation distance r and spectral
variable X.

the transmission coefficient between particles as a function of
the separation distance r and spectral variable X is shown in
Fig. 4(a). It can be seen that the transmission coefficient is
localized around X = 0 where the surface plasmon resonance
modes is dominant for isolated nanoparticles. Moreover, the
rapid decrease in the transmission probability by increasing
distance is responsible for the decreasing form of the near-field
heat transfer, i.e., ∼r−6 at small separation distances.

We expect a change in the transmission coefficient between
particles when they are not isolated-pairs but placed inside
a collection of N nanoparticles. To assess radiative transport
through the structure, we evaluate the average transmission
coefficient and also the average mutual conductance over
particles with same separation distance. For this purpose, we
introduced the average transmission coefficient as

〈T (r,X)〉 = 1

n

N∑
i=1,j>i

Tij δ(rij − r)H (Rc − |r i |), (33)

where H (x) is the Heaviside step function, n = ∑N
i=1 
(Rc −

|r i |), and Rc = Rg/4 is a cutoff distance from the reference
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particle, which is used to avoid boundary effects. On the
other hand, the calculation of mean transmission coefficient
is performed for those pairs of particles whose one component
is positioned within a sphere of radius Rc around the reference
particles. Notice here that the ensemble average is not required
for deterministic fractals. However, one may need to calculate
the ensemble average of the mean transmission coefficient in
case of random fractals or RGP.

The mean transmission coefficient between particles in a
random gas of particles (dilute RGP) is shown in Fig. 4(b).
The striking feature is that the results look very nearly the
same to that of a two-body system. The resonance frequencies
in such cases congregate to the resonance of susceptibility of an
individual particles [surface modes: Z → 0, i.e., X(ω) ≈ 0],
occurring for a spherical particle at ε(ω) = −2εh (where, εh

and ε are the complex dielectric function of the background
medium and particle, respectively).

Figure 5 shows the average transmission coefficient be-
tween nanoparticles inside a Vicsek fractals in terms of the
separation distance r and spectral variable X. As clearly seen
in the figure, the spectral width of the transmission coefficients
broadened in comparison with that of isolated two-body
system. The broadening of the transmission coefficient around
X(ω) = 0 arises from the participation of collective modes
(i.e., plasmons) in heat transport which is the special character
of many-body systems. From Fig. 5(a), it is evident that
this broadening is approximately homogeneous for linear
chain of nanoparticles (i.e., VF2). This feature is due to the
translation symmetry in VF2 structure. On the other hand,
thermal excitations 〈iα|l〉 are not localized in small areas of the
chain and can come into resonance simultaneously. Moreover,
the transmission coefficient in a linear chain of particles
decays slower as r increased in comparison with two-body
system. Thus, as expected, the heat transfer would be of long-
range character in periodic arrangement of nanoparticles. The
increase in the transmission coefficient at long wavelength can
be related to excitation of zero modes, where X(ω) → X0 =

1
4πR3 . When the separation between nanoparticles decrease,
d → 2R, heat transfer is primarily due to excitation of these
modes and is large because of its resonance character. In the
case of dilute RGP, there would be no transmission resonance
in this parts of the spectrum [see Fig. 4(b)], and consequently
the collective effects is small in these structures.

The transmission coefficient in fractal structures (VF4,
2D-VF6, and 3D-VF6) are shown in Figs. 5(b)–5(d). The first
striking feature is that the transmission spectra are broadened
as in VF2. However, the broadening is inhomogeneous and
redshifted in comparison to that of VF2. This inhomogeneity
is the result of local anisotropy in particle arrangements in
these structures and is in agreement with frequency selective
windows discussed in previous section. On the other hand,
thermal excitations are localized in small areas of fractal
structures and come into resonance at different frequencies.
Moreover, the transmission coefficient is a rapidly decreasing
function of distance in comparison to VF2. Thus, even though
collective modes participate in the transmission coefficient,
the heat transport is expected to be of small-range character
in fractals. In order to illustrate this property, in Fig. 6, we
show the average mutual conductance of dimers inside the
collection of particles for different structures. The calculation

FIG. 5. Color map of average transmission coefficient between a
pair of particles in a Vicsek fractal as a function of pair separation
distance r and spectral variable X for (a) VF2, (b) VF4, (c) 2D-VF6,
and (d) 3D-VF6.

is performed at temperature T = 300 K and results for each
distance are normalized to the thermal conductance of an
isolated dimer with same interparticle distance. This figure
shows that the mutual conductance is enhanced at almost all
separation distances in comparison with the two-body system.
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FIG. 6. Average mutual conductance in collection of Ag nanopar-
ticles at temperature T = 300 K as a function intraparticle distance r .
The result at each distance is normalized to the conductance between
two isolate nanoparticles at same distance. Each configuration
consists N = 1000 spherical nanoparticle with R = 5 nm.

The origin of this enhancement is the existence of collective
modes participating in heat transfer and is a criterion, which
can be used to classify the range of effective heat flux in these
structures. It can be seen that the thermal conductance in VF2
is large in comparison to the other type of Vicsek fractals. It is
clear, since the pair correlation function is constant in VF2, i.e.,
γ = 0. On the other side, the exponent γ of the pair correlation
function, in Eq. (31), is −0.2288 and −0.5359 for 2D-VF6 and
VF4, respectively, which decreases to −1.2288 for 3D-VF6
fractal. This indicates that the 3D-VF6 has the smallest
effective range for heat transfer among these structures.

B. Radiative cooling of fractal structures

In this section, we will investigate the influence of nanopar-
ticle arrangement on the radiative cooling of the structure.
In the absence of thermal bath, i.e., Tb = 0, the structure
self-conductance is responsible for a radiative cooling of the
structure and determines how fast an ensemble of particles
cools down due to radiation. This argument almost holds for the
case in which Tb �= 0, because the magnitude of the interaction
with thermal bath is much smaller than the interaction, which
takes place inside the structure. On the other hand, the latter
occur in the near-field regime while the former occur in the
far-field regime.

We apply the collective model developed earlier to calculate
the cooling coefficient of each particle in a structure. The
self-conductance of a nanoparticleGi(T ) determines the power
it looses when it is placed inside an ensemble of N − 1
nanoparticles. It is clear that this value for the self-conductance
would be different from that of an isolated nanoparticle. By
calculating the self-conductance of all particles in a structure,
we define the structure cooling conductance as

GN (T ) =
N∑

i=1

Gi(T ) = N〈G〉, (34)

FIG. 7. (a) Average conductance of particles in a structure as
a function of structure size N for Vicsek fractal of functionality
F = 2,4,6 and periodic arrangement of nanoparticles in two (2D-P)
and three (3D-P) dimensions. (b) The structure self-conductance
as a function of normalized gyration radius for both fractal and
nonfractal structures. (c) Structure conductance for VF4 fractals of
polar materials (SiC and SiO2) at temperature T = 300 and 350 K as
a function of normalized gyration radius.

where 〈G〉 is the particle self-conductance averaged over all
particles in the structure, namely, the self-conductance per
particle. As mentioned earlier, 3N families of modes are
participating in the radiative cooling of a given structure, so,
the structure conductance and average self-conductance are
expected to depend on the structure size N .

In Fig. 7(a), we present an average of particles self-
conductance as a size of the structure for several geometrical
arrangements. It is clear that, independent of the type of
arrangement, the average self-conductance is enhanced by
increasing the structure size and saturated for large structure
sizes. This implies that there exists a certain characteristic
length at which particles could exchange energy with each
other in beyond this length, the coupling is ignitable. On
the other hand, further increase in the structure size does
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not influence the radiative cooling of nanoparticles which can
be regarded as a screening effect. The saturation of average
self-conductance occurs for smaller sizes in fractals (VF4,
VF6) in comparison to periodic structures (VF2). Moreover,
one can see from this figure that for a given structure size, the
conductance per particle is smaller in fractal structures. This
result is in agreement with the long-range character of heat
flux in VF2 structure. In order to compare the results with the
periodic configuration at higher dimensions, the calculation is
performed for two-dimensional an three-dimensional periodic
arrangements of nanoparticles. The 2D-P (3D-P) structure
is made by a periodic arrangement of nanoparticles on a
cubic lattice with lattice constant d in a circle (spherical)
region. For 2D-P and 3D-P, the same behavior as for VF2
is observed. Once again, we notice that the saturation size
is larger for 2D-P and 3D-P in comparison to fractals. This
difference is not surprising, since in contrast to ordered media,
the plasmon modes are localized in fractal structures and
does not resonate simultaneously, which causes the average
self-conductance to be smaller in fractal structures. The log-log
plot of the structure self-conductance as a function of its
gyration radius is shown in Fig. 7(b). Inspection of results
shows that the structure total conductance increases in power
law form ∼R

Df

g . This confirms that the fractal dimension
Df of the structure plays a fundamental role on radiative
properties. The dashed lines in Fig. 7(b) represent a power-law
fit for large cluster sizes. The computed exponent is exactly
the same as the fractal dimensions we have calculated from
Eq. (29). As it is clear, the exponents for 2D-P and 3D-P are
the dimension of the embedding space of theses structures,
which are D = 2 and D = 3, respectively. It should be
emphasized that this scaling behavior is a universal property of
radiative cooling in many-body systems and does not depend
on nanoparticle characteristics, such as size and material
composition. To confirm this universality, we calculated the
structure conductance for polar materials. We used SiC and
SiO2 as typical materials and the calculations of structure
conductance are performed at two temperatures T = 300 and

350 K. In Fig. 7(c), we only present the results of the structure
conductance for VF4 fractals. It is clear from this figure that
there is a power law relation between structure conductance
and the radius of gyration for polar materials. Moreover, one
notices that while the scaling behavior does not depend on
nanoparticle characteristics, it does not depend on the structure
temperature either.

V. CONCLUSION

We studied the implications of the structure morphology
on the radiative properties. For this purpose, we proposed a
new representation for the radiative heat transfer formalism in
many-body systems. The formalism is applied to fractal and
nonfractal structures, and thermal properties of these structures
are investigated. The main conclusions from the study are as
follows: (1) The introduced approach can explicitly feature
the contribution of the nanoparticles characteristics as well
as their geometric arrangement on the heat flux in many-
body systems. (2) The radiative heat transfer in system of
nanoparticles could be addressed in terms of thermal excitation
modes. We discussed the way that the strongly localized
modes in fractal structures as well as the delocalized modes
in periodic structures, show up in the heat transfer and
radiative cooling of these structures. (3) It is shown that the
radiative heat transfer in highly branched fractal structures
is of small range character which differs significantly from
that of periodic arrangement of nanoparticles. Based on the
scaling/transnational symmetries, it is shown qualitatively that
there exists maximum scale lengths, which thermal radiation
could effectively flow in fractal/ordered structures. (4) Finally,
we showed that there exists a universal scaling behavior in
structure self-conductance, which holds for both fractal and
nonfractal structures.
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APPENDIX

1. Thermal modes

To describe the thermal properties of the structure in terms of thermal excitation modes, we consider a system of N identical
nanoparticles of identical radius R. Nanoparticles are located at points r i ,i = 1, . . . ,N in structure and maintained at temperatures
Ti inside a thermal bath at temperature Tb. The power dissipated in the ith particle is given by

Pi = [E∗
i (t) · Ṗi(t)] = 2

∫ ∞

0
ω

dω

4π2
Im[E∗

i (ω) · Pi(ω)]. (A1)

Putting Eqs. (17) and (20) into Eq. (22), the functional in Eq. (A1) would be

E∗
i (ω) · Pi(ω) =

∑
mn

∑
α

∑
j ′β ′

∑
jβ

(G∗
◦ + w∗

m)Z∗Z
(Z∗ − w∗

m)(Z − wn)

〈iα|n〉〈n̄|jβ〉〈m|iα〉〈j ′β ′|m̄〉
〈n̄|n〉〈m|m̄〉 〈jβ|Pf〉〈Pf |j′β ′〉. (A2)

The last term in Eq. (A2) is the correlation between fluctuating dipoles and from fluctuation electrodynamics it can be written as

〈jβ|Pf〉〈Pf |j′β ′〉 = 2πh̄δjj ′δββ ′[1 + 2n(ω,Tj )]Im(χj ), (A3)

with n(ω,T ) = [exp( h̄ω
kBT

) − 1]−1 the Bose-Einstein energy distribution function of a quantum oscillator at temperature T . The
χ = α + αG∗

0α
∗ is the susceptibility of nanoparticles, which is defined non-negatively to give a correct direction for the heat
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flux between particles. Using Eq. (11), the susceptibility can be written in terms of the spectral variable Z as

ZZ∗χ − Z∗ = G∗
◦. (A4)

Substituting Eq. (A3) and (A4) into Eq. (A2) and taking the imaginary part yields

Im[E∗
i (ω) · Pi(ω)] = 4π

ω
Im(χ )

∑
j

⎧⎨
⎩Im

∑
mn

∑
αβ

(G∗
◦ + w∗

m)Z∗Z
(Z∗ − w∗

m)(Z − wn)

〈m|iα〉〈m|jβ〉
〈m|m̄〉

〈iα|n〉〈jβ|n〉
〈n̄|n〉 
(ω,Tj )

⎫⎬
⎭. (A5)

With 
(ω,Tj ) = h̄ω[ 1
2 + n(ω,Tj )]. The first summation takes over all particles in the system, i.e., j = 1,2, . . . ,N and accounts

the total power dissipated in the ith nanoparticles. The summands in which j �= i are related to the radiative heating of ith
nanoparticle due to the radiation of the j th particle with temperature Tj . Similarly, the term j = i is related to the power it lost
by radiation (i.e., radiative cooling). In case where j �= i, the summand reads

Im[E∗
i (ω) · Pi(ω)]|j �=i = 4π |Z|2

ω

(ω,Tj )Im(χ )Im

∑
mn

∑
αβ

G∗
◦ + w∗

m

(Z∗ − w∗
m)(Z − wn)

〈m|iα〉〈m|jβ〉
〈m|m̄〉

〈iα|n〉〈jβ|n〉
〈n̄|n〉 , (A6)

where |Z|2 = ZZ∗. Using G∗
◦ + w∗

m = |Z|2χ − (Z∗ − w∗
m), it is straightforward to show that the above equation can be written

as

Im[E∗
i (ω) · Pi(ω)]|j �=i = 4π |Z|2

ω

(ω,Tj )Im(χ )Im

⎛
⎝χ

∑
αβ

∑
m

Z∗

(Z∗ − w∗
m)

〈iα|m̄〉〈m|jβ〉
〈m|m̄〉

∑
n

Z

(Z − wn)

〈iα|n〉〈n̄|jβ〉
〈n̄|n〉

−
∑
αβ

∑
n

1

(Z − wn)

〈iα|n〉〈n̄|jβ〉
〈n̄|n〉

∑
m

〈iα|m̄〉〈m|jβ〉
〈m|m̄〉

⎞
⎠. (A7)

Here, we have used 〈jβ|n〉 = 〈n̄|jβ〉 and 〈m|iα〉 = 〈iα|m̄〉. The last summand in the second term of Eq. (A7) reduces to

∑
m

〈iα|m̄〉〈m|jβ〉
〈m|m̄〉 = 〈iα|

( ∑
m

|m̄〉〈m|
〈m|m̄〉

)
|jβ〉 = δij δαβ. (A8)

However, by assumption j �= i, from which it follows that 〈iα|jβ〉 = 0. As a result, Eq. (A7) will be reduced to

Im[E∗
i (ω) · Pi(ω)]|j �=i = 4π |Z|2

ω

(ω,Tj )[Im(χ )]2

∑
αβ

|fij (α,β)|2, (A9)

where

fij (α,β) =
3N∑
l=1

Z

(Z − wl)

〈iα|l〉〈l̄|jβ〉
〈l̄|l〉 . (A10)

The summation is taken over all elements of eigenvalues spectrum. It should be emphasized here that 〈iα|l〉 can be regarded as
the αth component of lth thermal mode on ith nanoparticle. Substituting Eq. (A9) into Eq. (A1), the radiative heating of the ith
particle by the j th one would be

Fij =
∫ ∞

0

dω

2π
Tij (ω)
(ω,Tj ) (A11)

with transmission coefficient

Tij (ω) = 4|Z|2[Im(χ )]2
∑
αβ

|fij (α,β)|2. (A12)

We now draw our attention to the radiative cooling of the nanoparticle. Starting from Eq. (A6), and setting j = i, the only
difference compared with Eq. (A7) is the last term will not vanish any more and we get

Im[E∗
i (ω) · Pi(ω)]|j=i = 4π |Z|2

ω

(ω,Tj )Im(χ )

[
Im(χ )

∑
αβ

|fii(α,β)|2 − Im
∑

α

fii(α,α)

Z

]
. (A13)

Subsititing Eq. (A13) into Eq. (A1), the radiative cooling of the ith particle would be

Fi =
∫ ∞

0

dω

2π
Tii(ω)
(ω,Ti) (A14)
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with cooling coefficient

Tii(ω) = 4|Z|2Im(χ )

[
Im(χ )

∑
αβ

|fii(α,β)|2 − Im
∑

α

fii(α,α)

Z

]
. (A15)

Equations (A12) and (A15) allow us to interpret the heat transfer and radiative cooling as a summation over dipolar excitation.
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