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Majorana states in prismatic core-shell nanowires
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We consider core-shell nanowires with conductive shell and insulating core and with polygonal cross section.
We investigate the implications of this geometry on Majorana states expected in the presence of proximity-induced
superconductivity and an external magnetic field. A typical prismatic nanowire has a hexagonal profile, but square
and triangular shapes can also be obtained. The low-energy states are localized at the corners of the cross section,
i.e., along the prism edges, and are separated by a gap from higher energy states localized on the sides. The
corner localization depends on the details of the shell geometry, i.e., thickness, diameter, and sharpness of the
corners. We study systematically the low-energy spectrum of prismatic shells using numerical methods and
derive the topological phase diagram as a function of magnetic field and chemical potential for triangular, square,
and hexagonal geometries. A strong corner localization enhances the stability of Majorana modes to various
perturbations, including the orbital effect of the magnetic field, whereas a weaker localization favorizes orbital
effects and reduces the critical magnetic field. The prismatic geometry allows the Majorana zero-energy modes
to be accompanied by low-energy states, which we call pseudo Majorana, and which converge to real Majoranas
in the limit of small shell thickness. We include the Rashba spin-orbit coupling in a phenomenological manner,
assuming a radial electric field across the shell.
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I. INTRODUCTION

Zero-energy Majorana bound states, a concept borrowed
from particle physics, are at the center of an intense search
in condensed matter physics. Similar to the original Majorana
fermions, these (quasi)particles are identical to their antipar-
ticles but, unlike their long-predicted fermionic counterparts,
they are characterized by non-Abelian exchange properties.
Predicted to emerge in certain types of topologically-nontrivial
quantum phases [1–3], the zero-energy Majorana modes
benefit from the topological protection of the underlying phase
and, consequently, represent an appealing possible platform for
fault-tolerant quantum computation [1,4–6]. While topological
superconductors appear to be rather rare in nature, several
practical schemes for realizing topological superconductivity
and Majorana zero modes in solid state heterostructures have
been proposed in recent years [7–9]. The basic physics behind
these schemes has been discussed in detail in a number of
review papers [10–13]. So far, the most promising type of
hybrid system involves a semiconductor nanowire with strong
spin-orbit interaction proximity-coupled to a standard s-wave
superconductor and in the presence of a longitudinal magnetic
field [14,15]. When the magnetic field exceeds a certain critical
value, the system undergoes a topological quantum phase
transition to a topologically-nontrivial superconducting phase.
In this phase, the system is predicted to host Majorana modes as
pairs of zero-energy mid-gap states localized at the two ends of
the nanowire. These Majorana zero modes are topologically
protected in the sense that they are robust against any local
perturbation that does not close the superconducting gap.

Extensive experimental investigations of Majorana modes
in semiconductor nanowires have been performed in the

past few years. So far, the most promising experimental
signature consistent with the presence of Majorana modes
in semiconductor-superconductor hybrid structures consists
of zero-bias conductance peaks ubiquitously observed in
charge transport measurements [16–26]. The conductance
peak is produced by electron tunneling into the proximitized
semiconductor wire from conducting electrodes attached to its
end when a zero-energy Majorana bound state is localized in
that region. We note that this type of experiment gives only
a primary indication on the possible presence of Majorana
bound states and provides no direct evidence of a topological
quantum phase transition between the trivial to the topological
superconducting phases [11] and no signature associated
with the predicted non-Abelian exchange properties of the
Majorana zero modes.

In proximitized semiconductor nanowires, which are quasi-
one-dimensional systems in symmetry class D, the topological
superconducting phase that supports the Majorana zero modes
has aZ2 classification. We note that, while ideally the system is
one-dimensional, real wires are, of course, three-dimensional
and exhibit a variety of nonuniversal phenomena that can
affect the stability of the topological phase and, implicitly,
the Majorana zero modes. Multiband physics [27] is an
essential aspect of this phenomenology. Another example is
the orbital effect of a magnetic field applied parallel to the
nanowire, which has been shown [28] to be detrimental to the
stability of the Majorana states as it reduces the energy of
the low-momentum modes, thus reducing the gap that protects
the Majoranas.

The semiconductor nanowires used to realize and detect
Majorana bound states are typically grown by bottom-up
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methods and have a prismatic geometry, most often with
a hexagonal cross section, reflecting the underlying crystal
structure [29]. With two different concentric materials one
can also obtain a prismatic core-shell heterostructure, where
the shell is conductive and the core is insulating. Core-shell
nanowires have been recently considered for Majoranas based
on semiconductor holes, but as a 1D model only [30]. Seen
from a different angle, the polygonal shape of the shell may
be an advantage for Majorana states. In this geometry the
electronic states with the lowest energy are localized in the
corners of the shell and those with higher energies are localized
on the sides [31]. The corner localization was studied in the
1990s in bent nanowires [32,33]. In our case, the cross section
of a core-shell nanowire can be seen as a (sharply) bent and
closed channel forming a polygonal ring.

The energy separation between corner and side states is
large when the shell thickness is much smaller than the
radius of the nanowire and when the corners are sharp, i.e., it
increases when the number of corners decreases. Interestingly,
apart from the hexagonal shape, core-shell nanowires with
square [34] or triangular [35–39] cross section can also be
fabricated. In particular, the gap between corner and side
states for a triangular shell of 8–10 nm and radius 50 nm
can be in the range 50–100 meV [40], i.e., larger than many
detrimental perturbations for Majorana states, including the
orbital magnetic energy. In principle, a prismatic core-shell
nanowire could host several Majorana states at each end if
the corner states are completely isolated from each other,
which happens in the limit of a very narrow shell. Therefore
the core-shell nanowires can be an experimental system
with multichain ladders discussed in recent theoretical papers
[41–43]. To the best of our knowledge, the implications of the
corner localization in core-shell nanowires on the formation
and stability of Majorana bound states have not been explored
yet. The main purpose of this work is to fill this gap.

The paper is organized as follows. In Sec. II we introduce
the localization of electrons in polygonal rings, and in Sec. III
we describe the nanowires. In Sec. IV we explain the SOI
model. In Sec. V we present energy spectra of infinite
nanowires in the normal state, and in Sec. VI the Bogoliubov-
de Gennes spectra in the superconductor state. In Sec. VII
we show and discuss phase diagrams for the three polygonal
geometries. The conclusions are collected in Sec. VIII. Finally,
in the Appendix, we present a simplified (toy) model of
parallel chains which qualitatively reproduces the basic phase
diagrams.

II. POLYGONAL SHELLS

Below we review the properties of the low-energy states
in a polygonal ring, which is the cross section of a core-shell
nanowire. We performed the numerical diagonalization of the
Hamiltonian

Ht = − h̄2

2meff

(
∂2
x + ∂2

y

)
, (1)

where meff is the effective electron mass in the shell material
and the partial derivatives in the shell plane (x,y) are calculated
numerically within a finite-difference approximation scheme
on a grid, with Dirichlet boundary conditions at the edges

FIG. 1. Probability distributions of corner and side states of an
electron in a polygonal ring. The upper row illustrates the corner
states (including the ground state) and the lower row the side states: (a)
triangle, (b) square, (c) hexagon. All polygons have radius R = 50 nm
(center-to-corners) and side thickness t = 9 nm.

of the polygons [40,44]. To reach convergence the grid
included several thousands of points. In Fig. 1 we show
typical probability distributions of corner and side states for
a symmetric triangle, square, and hexagon, all with the same
side thickness t = 9 nm and circumference radius R = 50 nm,
for InSb parameters (see Sec. III). For each polygon there are
2N corner states, where N is the number of corners, followed
on the energy scale by 2N side states, the counts including the
spin.

For this aspect ratio, AR = t/R = 0.18, the corner states of
the triangle consist of nearly isolated peaks and quasidegener-
ate six energy levels, with a small dispersion γT = 0.027 meV,
separated from the side states by a gap �T = 70 meV, Fig. 2(a).
Next, for the square, the corner localization softens a little
bit, the eight corner states have a broader dispersion, γS =
1.4 meV, and the energy separation from the side states de-
creases to �S = 22 meV, Fig. 2(b). Further, for the hexagon, the
corner peaks drop more and have tails onto the polygon sides,
the corresponding twelve corner states have a considerable
dispersion, γH = 8 meV, comparable to the interval between
corner and side states �H = 10 meV, Fig. 2(c). Higher energy
states (not shown in the figures) have increasingly spread
localization. Apart of the spin degeneracy, the symmetries of
the polygons lead to orbital double degeneracies, such that the
degeneracy sequences are (24, 42,...), (242, 242,...), and (2442,
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FIG. 2. Low-energy spectra for the polygonal rings shown in
Fig. 1. The corner states are nearly degenerated for the triangle (a)
and have an increasing dispersion for the square (b) and hexagon (c).
The insets show the energy span of the corner states which is denoted
by γT,S,H. The gap between corner and side states, indicated as �T,S,H,
decreases in the same order. In the numerical calculations we used
meff = 0.014, as for InSb.
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2442,...), for triangle, square, and hexagon, respectively [40].
By decreasing the AR of the polygons the corner localization
becomes stronger, the probability distribution converges to
totally isolated peaks for each polygon, and the energy
separation between the highest corner state and the lowest
side state considerably increases [44].

III. MODELS OF CORE-SHELL NANOWIRES

We build the Hamiltonian of the nanowire, Hw, from several
terms,

Hw = Ht + H� + HZ + HSOI. (2)

We consider a magnetic field along the nanowire, i.e., along
the z axis, B = (0,0,B), and incorporate it in the transverse
Hamiltonian Ht via the canonical momentum pϕ + eAϕ , where
Aϕ = Br/2ϕ̂ is the vector potential in polar coordinates (ϕ,r)
transversal to the nanowire, and pϕ = (−ih̄/r)∂ϕ .

The second term of Eq. (2) corresponds to the longitudinal
degree of freedom, H� = p2

z/(2meff). For an infinite nanowire
its eigenstates are the plane waves |k〉 = exp(ikz)/

√
L, where

k is the wave vector, L → ∞ being the nanowire length. For a
finite length L we assume hard wall boundaries at z = ±L/2
and the eigenstates become |n〉 = √

2/L sin [n(z/L + 1/2)π ],
with n = 1,2,3,.... Next, the term HZ = −geffμBσB is the
spin Zeeman term, with geff the effective g factor in the shell
material, μB Bohr’s magneton, and σ = ±1 the spin quantum
number, and finally HSOI is the spin-orbit term, which will be
discussed in the next section.

In the calculations we use material parameter values
corresponding to (bulk) InSb, which is one of the most
interesting semiconductors for Majorana detection due to the
large g factor and strong SOI. We used meff = 0.014 and
geff = −51.6, i.e., the values known for the bulk material,
although they may be different for our thin shell structures. To
find them properly one needs to perform ab initio calculations
starting with the proper atomic structure in the prismatic
geometry. This is a complex problem which is beyond the
scope of our present work. We thus compute the electronic
states at a mesoscopic scale, i.e., by averaging over many unit
cells of the atomic lattice, such that the dominant effects are
due to the geometry. This approach has been able to describe
the relevant physics related to edge or side localization [31,35].
Still, the precise quantitative validity for core-shell nanowires
of simplifying approximations such as the use of piecewise
constant potentials and material parameters is something to
be confronted with more refined models in the future. The
intention of our present work is to predict several scenarios
of Majorana physics in shells of prismatic geometry, using
the bulk parameters as test values, i.e., midway between
a qualitative and a quantitative style, and to support each
scenario with plausible examples. The qualitative agreement
with a toy model (discussed in the Appendix) indicates a rather
robust physical behavior of the phase diagrams discussed
below.

IV. SPIN-ORBIT INTERACTION

In order to obtain Majorana states we need a Rashba-type
SOI model for the prismatic geometry. In heterostructures

FIG. 3. The effective Rashba electric field for a triangle and a
square in the prismatic SOI model. The corner areas span angular
intervals of 40◦.

where materials with different work functions are placed next
to each other interface electric fields are generated. For a planar
2D electron system created in a semiconductor heterostructure
the origin of SOI is the effective (net) electric field, normal to
the interface, associated with an asymmetric confinement. For
a core-shell heterostructure we assume similar intrinsic fields,
present at the core-shell and/or at the shell-vacuum interfaces,
perpendicular to the lateral surfaces of the prismatic shell, and
thus changing direction at the corners, as illustrated in Fig. 3.
In core-shell nanowires there is a geometric asymmetry in the
radial direction, inwards vs outwards, that lends plausibility
to an effective radial field. In principle such a field could also
be obtained or controlled with gates. In cylindrical coordinates
the field has radial and azimuthal components, E = (Eϕ,Er,0).
The SOI Hamiltonian can be calculated as [45,46]

HSOI = λ

h̄
σ (p × E), (3)

where λ is the SOI coupling constant and σ are the Pauli
matrices. We implement both Eϕ and Er as functions of
ϕ with two independent strength parameters. This is a
phenomenological model aimed at capturing the basic SOI
effect dictated by the geometry of the heterostructures, which is
necessary for the realization of topological superconductivity
and Majorana bound states. In reality the Rashba coupling, and
also the g factor, are expected to depend on the shell thickness
and, possibly, on the radius of the wire. To evaluate them
rigorously a computationally involved approach is necessary,
for example based on a multiband k · p model [45], taking
into account the core-shell materials and geometry. This is an
important task, but still outside our present focus.

In particular, for a cylindrical shell, following the same line
of arguments, the effective interface field should be radial and
constant, i.e., E = (0,E,0). In this case Eq. (3) gives

HSOI = α

h̄
(σϕpz − σzpϕ), (4)

where α = λE. We shall call (4) and (3) the cylindrical and
prismatic SOI models, respectively. The cylindrical model
can also be seen as a straightforward transformation of the
standard two-dimensional model where the planar Cartesian
coordinates are replaced by cylindrical coordinates [46,47].

For the prismatic nanowires, as long as we consider only
corner states in the shell, the SOI is restricted to the corner
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areas, where we can assume Eϕ ≈ 0 and a constant Er .
Therefore, by neglecting the presence of the electrons on
the sides of the polygonal shell, where the wave functions
exponentially vanish (Fig. 1), the cylindrical model should
still be reasonable and qualitatively correct. In the numerical
calculations we included the SOI using the cylindrical model,
with α = 50 meV nm (as for InSb). We also tested the energy
spectra with the prismatic SOI model (Fig. 3), and we obtained
similar results. In this context it is worth mentioning that the
cylindrical SOI model cannot lead to Majorana states for a
wire with circular symmetry [48]. As we shall see, this is no
longer true for the prismatic geometry.

V. ENERGY SPECTRA OF NANOWIRES IN
THE NORMAL STATE

In order to obtain the eigenstates of a nanowire we first
diagonalize the Hamiltonian of the polygonal cross section Ht

on the transverse grid. Then, we combine the N corner states,
which are the lowest-energy states of Ht , |a〉, a = 1,2,...,N ,
with the longitudinal modes, which are the eigenstates of
H�, |k〉 or |n〉, for the infinite or finite length, respectively.
By adding the spin we form a basis set in the total Hilbert
space, |g〉 = |akσ 〉 for the infinite wire and |g〉 = |anσ 〉 for
the wire of finite length. We use these bases to calculate
the matrix elements of the total Hamiltonian, 〈g|Hw|g′〉. The
matrices are diagonalized numerically to give the eigenstates
of the two models. For the infinite nanowire Hw is already
diagonal in k, and we calculate the eigenstates within the
subspace |aσ 〉 for an array of k values. For the case with finite
length we diagonalize a single but larger matrix including
the longitudinal modes |n〉. The basis set is truncated appro-
priately for convergence. We used only the corner states as
transverse modes |a〉 because the SOI and other perturbations
are too weak to mix them significantly with the side states.
By including the side states the largest correction, expected
for the highest corner states in the hexagonal shell, is at most
1 meV. For the nanowires with finite length we included all
longitudinal modes up to n = 200.

In Fig. 4 we display energy eigenvalues of Hw for infinite
nanowires with the three polygonal cross sections discussed:
triangular, square, and hexagonal. In the absence of SOI all
energies (or bands) are parabolic functions of k. With SOI
they remain even functions, but nonmonotonic for k > 0 or
k < 0. For symmetric polygons, i.e., with equal corner angles,
the energy bands are shown in Figs. 4(a)–4(c). In these cases
the eigenstates of Hw appear pairwise degenerate for each
fixed k, although the spin is not conserved. For the square and
the hexagon four and six bands, respectively, can be observed
in the figures, which in reality are eight and twelve, i.e., the
number of corners times spin. In the triangular case, due to
the absence of inversion symmetry, one degeneracy is lifted
for any k 
= 0, and only two degenerate bands are obtained,
and thus four energy curves are seen in Fig. 4(a). At k = 0 the
nondegenerate bands have the familiar crossing (where SOI
vanishes), and this is the only exact level crossing point in
Fig. 4.

For the purpose of our work the strictly symmetric poly-
gons should be regarded only as mathematical models. The
prismatic nanowires grown in labs are naturally not perfectly
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FIG. 4. Energy dispersions for the corner states of infinite
nanowires with polygonal shells including SOI within the cylindrical
model. The top row shows 2N bands for the three polygonal shapes:
(a) triangular, N = 3, (b) square, N = 4, (c) hexagonal, N = 6. Due
to the geometric symmetries all bands are degenerate, except one pair
for the triangle, crossing at k = 0, as shown in the zoomed inset.
The bottom plots show the results with a transverse electric field of
0.22 mV/R which perturbs the symmetry of each polygon, lifting
all spin degeneracies at k 
= 0. Here the radius R = 50 nm and side
thickness t = 9 nm. The material parameters are as for InSb.

symmetric even if the polygonal cross section is a result
of a specific lattice structure. In addition, in order to detect
Majorana states, the experimentalists use gates and contacts
that are expected to break the polygonal symmetry. Therefore,
in our model we perturb the polygonal symmetries by imposing
an electric field along one side of each type of polygon, which
generates a voltage of 0.22 mV across the length of one
radius. This perturbation lifts the orbital degeneracies of the
transversal modes of the nanowires (shown earlier in Fig. 2),
and all energy bands for each polygonal shape are now spin
split, as seen in Figs. 4(d)–4(f). Still, the splitting decreases
for large polygon angles, and it is not visible for all hexagon
bands in (f).

VI. MAJORANA STATES

The Majorana states are obtained using the Bogoliubov-de
Gennes Hamiltonian (BdG), HBdG, which we obtain with the
matrix elements of Hw and with the isospin quantum number
τ = ±1. For the infinite wire they can be written as

〈aστ |HBdG(k)|a′σ ′τ 〉
= τ Re〈aστ |Hw(τk)|a′σ ′τ 〉

+ i Im〈aστ |Hw(τk)|a′σ ′τ 〉 − τμδaa′δσσ ′, (5)

〈aστ |HBdG(k)|a′σ ′τ ′〉 = τσδσ,−σ ′δaa′
, τ 
= τ ′. (6)

Equations (5)–(6) define the diagonal and off-diagonal ele-
ments in the isospin space, respectively. μ is the chemical
potential, 2
 is the superconductivity gap, and δ denotes
the Kronecker symbol. Here the wave vector k is included
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FIG. 5. Triangular shell. BdG eigenenergies vs the wave vector
for a triangular shell of infinite length. The superconductor gap closes
and reopens depending on the values of the chemical potential μ and
magnetic field B. The nanowire radius R = 50 nm is fixed. The
shell thickness is t = 9 nm, i.e., AR = 0.18 for the cases (a)–(d).
Other parameters: (a) μ = 236.2 meV, B = 0, (b) μ = 234.6 meV,
B = 1.32 T, (c) μ = 234.7 meV, B = 1.32 T, (d) μ = 236.2 meV,
B = 1.32 T. Next, t = 12.5 nm, i.e., AR = 0.25, for (e) μ = 126.7
meV, B = 0.34 T, and (f) μ = 126.7 meV, B = 1.32 T.

in the Hamiltonian because it behaves like a parameter. For
the nanowire of finite length these equations are replaced by

〈gτ |HBdG|g′τ 〉 = τ Re〈gτ |Hw|g′τ 〉
+ i Im〈g|Hw|g′τ 〉 − τμδgg′ , (7)

〈gτ |HBdG|g′τ ′〉 = τσδσ,−σ ′δaa′δnn′
, τ 
= τ ′, (8)

where we used the previous notation |g〉 = |anσ 〉 for the basis
states of the nanowire in the normal state.

A. BdG spectra for nanowires of infinite length

In Fig. 5 we show several examples of BdG spectra for
a triangular nanowire of infinite length. We use the bare
superconductor energy parameter 
 = 0.5 meV. Only the
transversal corner states are considered in the calculations,
the mixing with the side states being completely negligible for
the chemical potentials and magnetic fields used. The spectra
are selected for the further discussion on the phase diagrams
with several representative values of the chemical potential
and magnetic field B. The triangular symmetry is broken by
the small electric bias discussed in the previous section. In
the first example, Fig. 5(a), the BdG states are obtained with
μ near the lowest intersection of the energy curves seen in
Fig. 4(d) and B = 0. This case corresponds to the trivial phase
of the proximity-induced superconductivity in the nanowire.
The spectra are particle-hole symmetric, but for clarity we
display a larger interval for particle than for hole states.

By varying the chemical potential and/or increasing the
magnetic field, and thus the Zeeman energy, the gap closes
first at k = 0, and then it opens again, and the system enters
into the topological phase. In Figs. 5(b) and 5(c) we show
two situations with B = 1.32 T, and a very small difference
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FIG. 6. Square shell. BdG energy spectra similar to those shown
in Fig. 5, for a nanowire of radius R = 50 nm. The shell thickness is
t = 9 nm, i.e., AR = 0.18 for the cases (a) μ = 277.6 meV, B = 0,
(b) μ = 277.6 meV, B = 0.33 T, (c) μ = 276.5 meV, B = 0.79 T,
(d) μ = 276.5 meV, B = 1.32 T. Next, t = 8 nm, i.e., AR = 0.16
for (e) μ = 346.4 meV, B = 0.66 T, and (f) μ = 347.3 meV,
B = 0.66 T.

between the chemical potentials, μ = 234.6 and 234.7 meV,
respectively, such that one can see a small gap at k = 0
reopening due to the repulsion of different corner states. In
Fig. 5(d), with the same magnetic field, and μ = 236.2 meV,
the gap at k = 0 is largely open. In these cases Majorana
states are expected, located at the ends of the nanowire, and
with zero energy, which we shall observe with the nanowire
model of finite length. Notice the smaller gaps at finite k in
Figs. 5(d)–5(f). They indicate orbital effects of the magnetic
field which may possibly forbid the formation of Majorana
states if such gaps become very small (much smaller than
2
) [28]. By increasing the thickness of the shell, from 9 to
12.5 nm, the energy separation between the corner states, and
hence between the bands shown grows, as seen in Figs. 5(e)
and 5(f). At the same time the corner localization weakens
and the orbital effects increase, so the Majorana suppression
at large magnetic fields becomes more likely, Fig. 5(e).

In Fig. 6, we show several cases with the square geometry,
with four corner states (not counting the spin), which lead to
more complicated spectra. The topologically trivial phase is
shown in Fig. 6(a), for a shell thickness of 9 nm. Figure 6(b),
with nearly closed gaps at finite k, and Fig. 6(c), with a larger
gap at a larger k, correspond to a topological phase. The
square geometry implies a larger energy separation between
the corner states compared to the triangular geometry with the
same AR, and thus the orbital effect may be more detrimental
for the square than for the triangular shell. By slightly reducing
the shell thickness from 9 to 8 nm we can obtain more robust
topological phases for the square geometry, Figs. 6(d)–6(f).

In Fig. 7, we show several spectra corresponding to the
hexagonal shell, now with six corner states involved. The
magnetic fields necessary to close the superconductor gap have
now lower values than for the other geometries, a tendency
that can also be observed for the square vs triangular case. The
reason is that the corner localization softens when the angles
of the polygons increase, and orbital effects of the magnetic
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FIG. 7. Hexagonal shell. BdG spectra, as in Figs. 5 and 6, for
a nanowire of radius R = 50 nm and shell thickness t = 9 nm,
i.e., AR = 0.18. (a) μ = 286.9 meV, B = 0, (b) μ = 286.9 meV,
B = 0.062 T, (c) μ = 286.9 meV, B = 0.26 T, (d) μ = 287.3 meV,
B = 0.039 T, (e) μ = 287.3 meV, B = 0.17 T, (f) μ = 287.3 meV,
B = 0.33 T.

field are more important. In other words, the split of the energy
bands occurs not only due to the spin Zeeman energy, but also
because of the orbital Zeeman energy. We shall refer to these
spectra later when we shall discuss the phase diagrams.

B. BdG spectra for nanowires of finite length

Next, we shall correlate the BdG spectra shown for infinite
nanowires with some results for nanowires of finite length
L = 200R = 10 000 nm, with triangular and square shells,
shown in Fig. 8. In the top row, Figs. 8(a)–8(c), we show three
possible situations obtained for the triangular geometry. One
pair of states at zero energy is interpreted as a pair of Majorana
(M) states, one at each end of the wire, like in Fig. 8(a). For the
infinite wire this situation is shown in Fig. 5(b). In this case the
M states are formed due to the particle-hole interaction within
a single corner state.

When two corner states are involved at the same time, two
particle-hole symmetric pairs of states may be created, one
pair with positive and another one with negative energies, and
both close to zero, as can be seen in Fig. 8(b). For the infinite
nanowire this situation corresponds to Fig. 5(c). We shall call
such states pseudo (P) Majorana, and we shall denote the
resulting combination of two P pairs as PP. We also notice
that the gap between the other particle and hole states is quite
small in Figs. 8(a) and 8(b), where one or two corner states
contribute to the low-energy states, respectively.

Figure 8(c) shows one M and two P states and a considerably
larger gap. We shall denote this combination as PMP. In this
case all three corner states mix together. The corresponding
spectra for the infinite wire have been shown in Fig. 5(d). For
a very thin shell, i.e., very low AR, the corner states would
become isolated from each other and each one would create
an independent M state. By slightly increasing the AR the
wave functions of different corner states develop a very small
exponential overlap along the sides of the polygonal shell,
not visible in Fig. 1(a), which is equivalent to an interaction
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FIG. 8. Examples of BdG energy spectra for a nanowire of 10 000
nm length and 50 nm radius for selected values of the chemical
potential and Zeeman energy and two shell geometries: triangular,
the top row, with thickness t = 9 nm and (a) μ = 234.6 meV, (b)
μ = 234.7 meV, (c) μ = 236.2 meV, all with B = 1.32 T; square,
the bottom row, with (d) t = 9 nm, μ = 277.6 meV B = 0.33 T, and
also t = 8 nm where (e) μ = 346.4 meV and (f) μ = 347.3 meV
both with B = 0.66 T.

between the corner states. This interaction lifts the degeneracy
of the three former M states, transforming two of them in P
states, but leaving one M at zero energy, hence giving a PMP
configuration. The energy of the P states can still be close
to zero if the energy separation between the corner states
γ is smaller that the superconductivity parameter 
 such
that the pairing interaction mixes all corner states, provided
the chemical potential is such that they are all populated.
For the triangular shell with t = 9 nm thickness we have
γT = 0.027 meV.

For the square geometry an M state exists in the situation
shown in Fig. 6(c) and a PP combination in that of Fig. 6(d).
The case of Fig. 6(b) with vanishing gap at kR ≈ 0.3 is shown
in Fig. 8(d). A kind of M precursor state can be observed,
eventually becoming a real M state for a nanowire longer that
10 000 nm. The PMP configuration of Fig. 8(e) corresponds to
Fig. 6(e). Finally, in Fig. 8(f) we obtain four pairs around zero
energy, to be called a 2PP combination, indicating four corner
states competing to create Majorana states. Again, like for the
triangular case, for a very low AR, the square shell yields four
independent or degenerate Majoranas at zero energy, whose
degeneracy is lifted at finite AR. But unlike the triangular case,
now, due to the particle-hole symmetry, no pure Majorana can
survive out of the former four, and the result is a 2PP group,
with energy dispersion smaller than the superconductor gap.

C. Semi-infinite nanowires

We have confirmed the above scenario of zero-energy (M)
and near-zero-energy (P) pairs of states in the limit of very
long wires directly studying the semi-infinite system. In this
limit, any longitudinal finite size effect due to interference
between opposite wire ends is totally removed and we can
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FIG. 9. Energy dependence of the lowest eigenvalue of matrixM
in a semi-infinite triangular wire. The zeros indicate the physically
acceptable energies for states attached to z = 0 while decaying for
increasing z. Panels (a) to (d) correspond to a PMP configuration
with increasing shell radius and fixed t = 40 nm and B = 0.73 T.
Panels (e) to (h) correspond to a fixed R = 110 nm and t = 37.5
nm, and decreasing magnetic fields, with configurations PMP (e),
PP (f), M (g), and trivial (h). Other parameters: μ = 22.7 meV, α =
50 meV nm, 
 = 0.5 meV.

unambiguously assign the fragmentation of the P pairs to the
interaction between the localized states along the edges of the
prism. The semi-infinite system has been described with the
complex-k approach in Ref. [49] for the case of 2D planar
wires. In this approach the existence of a state attached to the
semi-infinite system boundary is signaled by a zero eigenvalue
of a matrix Mkk′ , defined by the set of evanescent modes {k}
as labeled by their complex wave numbers.

In Fig. 9 we show the lowest eigenvalue of matrix M as
a function of the energy. Since the results are symmetric by
reverting the sign of E we only show the positive energies.
Figures 9(a)–9(d) show the evolution with increasing shell
radius R of the zeros of matrix M for a selected case. The
chosen parameters correspond to a PMP configuration in a
triangular wire, with an M zero exactly at zero energy and
two additional ones at finite energies (a corresponding zero
at negative energy is not shown). By increasing R the prism
edges become more and more independent, causing a collapse
towards zero energy of all three states. Figures 9(e)–9(h) show
the variation of the null eigenvalue for decreasing magnetic
field with a fixed radius. The chosen shell width is rather large
for a better separation of the split P modes. Increasing the
field the configurations in Fig. 9 are: trivial (h), M (g), PP (f),
PMP (e).

A characteristic density of an M mode is shown in Fig. 10.
The transverse-integrated density shows a shape similar to the
known behavior from purely 1D models, with a decay length
of around 1 μm for the chosen parameters. As anticipated,
the transverse pattern exhibits localization on the edges

FIG. 10. Density corresponding to the M state of Fig. 9(a) (at
zero energy). Dots show the z evolution of the 1D density integrated
in the transverse directions, while the inset shows in a color scale
the transverse pattern for z = 150 nm, near the maximum of the
integrated 1D density.

of the triangular wire, with sizable overlaps on the sides
representative of edge-edge interactions in small enough wires
(R = 110 nm).

VII. PHASE DIAGRAMS

In this section we show phase diagrams in the parameter
space μ-B obtained by calculating the minimum gap of the
BdG energy spectra for the infinite nanowire, at all k values.
At any chemical potential μ the phase transition from the
trivial (no Majorana) to the topological state (with Majorana)
is expected to occur when the magnetic field is strong enough
to close the superconductor gap at k = 0. In principle the
minimum or critical magnetic field necessary for closing the
superconductor gap corresponds to a spin Zeeman energy
EZ = 2
 = 1 meV. For our material parameters this means
B = 0.33 T. This result is however true as long as the main
effect of the magnetic field longitudinal to the nanowire is to
create only a spin splitting, and no orbital energy, e. g. for 1D
or 2D (flat) nanowires. For a prismatic core-shell nanowire this
can happen only if the corner states are almost isolated. In our
case this situation occurs for the narrow triangular shell.

In Fig. 11(a) we show the phase diagram for the triangular
symmetric nanowire, where the topological phase is shown
with the dark blue color and the trivial phase with yellow.
By breaking the symmetry of the triangle, with the weak
transversal electric field, the phase boundary splits into
three frontiers, each one generated by different corner states,
Fig. 11(b). The frontiers indicate the gap closed at k = 0. In
both cases the topological phase above all lines is a PMP type
presented in Fig. 8(c), with low-energy P states, implied by
the small energy dispersion of the corner states γT < 
.

In addition, for the asymmetric triangle, at any fixed
chemical potential, a succession of phases occurs when the
magnetic field is increased from zero. After crossing the first
frontier one enters a topological state of an M type, illustrated
in Fig. 8(a). Then, after crossing the second border a PP phase
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FIG. 11. Triangular shell with R = 50 nm. In panels (a)–(c) the
dark blue color indicates the topological Majorana phases and the
yellow color the trivial phases, the frontiers being defined by the gap
closed at k = 0. In (d) the colors indicate the minimum gap at all k

values, on the log10 scale. (a) Symmetric triangle with t = 9 nm, with
corner states almost threefold degenerated. (b) The same triangle in
the presence of the weak transverse electric field which removes the
degeneracy such that the phase boundary splits in three. (c),(d) A
thicker shell, with t = 12.5 nm.

is obtained, [Fig. 8(b)], which is in principle a topologically
trivial phase. However these low-energy P states are expected
to converge to two Majorana pairs in the limit of a very small
ratio t/R, and the phase to become topological.

Increasing now the thickness, to t = 12.5 nm, the energy
dispersion of the corner states increases to γT = 0.56 meV
and the three frontiers become more separated, as seen in
Fig. 11(c). The energy interval between the inner and outer
frontier is close to γT. Moreover, the orbital effects of the
magnetic field increase and the critical magnetic field slightly
reduces to B = 0.27 T. But, the gaps can possibly shrink
at nonzero k values, as shown in the example of Fig. 5(e),
corresponding to the bottom of the topological phase, for
μ = 126.7 meV and B = 0.34 T. Such small energy gaps
at k 
= 0 indicate the possible instability of the Majorana
states. Therefore, to incorporate that information, in Fig. 11(d)
we repeat the phase diagram on a color scale indicating the
minimum gap at any k. In this case the gaps are still reasonably
large in most of the regions such that the main topological
phase is still robust. One can see for example the BdG spectrum
corresponding to μ = 126.7 meV and B = 1.32 T shown in
Fig. 5(f). The spectrum for the finite wire is now qualitatively
like in Fig. 8(e), with a clear M state, but with the former
P states now with larger energy, that will further increase by
increasing the thickness of the shell.

For the square shell with thickness t = 9 nm the phase
diagrams are shown in Fig. 12. We see now four phase
boundaries, corresponding to the four corner states, separated
by an energy γS. At the bottom of the phase diagram we notice
a lower critical magnetic field than for the triangular shell, of

FIG. 12. Square shell with R = 50 nm. The topological (Ma-
jorana) and trivial phases are shown in dark blue and yellow,
respectively, with frontiers defined by the gap closed at k = 0,
whereas the smallest gap at all k values is shown with contin-
uous colors (on log10 scale), like before. (a),(b) t = 9 nm, (c),
(d) t = 8 nm.

about 0.1 T, a consequence of the increased orbital Zeeman
energy. But at the same time, in the topological phase, the gaps
at finite k values can be small. For example for the magnetic
field B = 0.33 T at μ = 277.6 meV the BdG spectrum for the
infinite wire is shown in Fig. 6(b) and indicates a very small gap
at kR ≈ 0.3. Still, in the version with finite length, Fig. 8(d),
we see two energies close to zero, which would become an M
state for a sufficiently long nanowire. Indeed, that phase region
is theoretically a topologically nontrivial one, and in other
regions the gap at finite k may increase. For example, slightly
to the left, for μ = 276.5 meV and B = 0.79 T, the spectrum is
shown in Fig. 6(c) and it has a finite length counterpart similar
to that shown in Fig. 8(a).

By crossing now each frontier defined by the gap closed at
k = 0, with magnetic field increasing from zero, topologically
nontrivial phases containing M states alternate with topolog-
ically trivial phases containing at most P states, depending
on whether the number of crossed frontiers is odd or even, re-
spectively. For example, with μ = 276.5 meV and B = 1.32 T,
the spectrum is that of Fig. 6(d), with a PP configuration in the
finite case. Thus, the phase surrounded by all four frontiers,
situated in the middle of Fig. 12(a), is a trivial phase, where
we expect only P states.

By reducing the aspect ratio of the polygon, for example
by reducing the thickness by only one nanometer the energy
spread of the corner states rapidly drops to γS = 0.56 meV
(at B = 0) and the phase boundaries approach each other,
Fig. 12(c). The central region contains states of 2PP type, one
of which being shown in Fig. 8(f) for μ = 347.3 meV and
B = 0.66 T. Reducing the aspect ration of the square polygon
further these states converge to four independent M states.
Notice also that the critical field increases relatively to the
previous case of t = 9 nm because the orbital Zeeman effect
drops.
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FIG. 13. Hexagonal shell with R = 50 nm and t = 9 nm. (a),(b)
The phase diagrams are shown with the same color schemes as
before (Figs. 11 and 12). (c),(d) The results after excluding the orbital
Zeeman effect of the magnetic field.

The orbital effect further increases for the hexagonal shell
with a similar aspect ratio as the other polygons, t = 9 nm,
such that the critical magnetic field is about 12 mT for μ =
287.3 meV, Fig. 13(a). That phase boundary is created by
the corner state with the lowest energy. As for the square
geometry, the energy gap in the topological phase may possibly
be almost closed at nonzero k as shown in Figs. 7(d) and 7(e),
and also indicated by the blue colors of Fig. 13(b). Still, robust
Majorana regions exist in this example at chemical potentials
below 288 meV. BdG spectra in one of such zones, at μ =
286.9 meV, are shown in Figs. 7(b) and 7(c), for B = 0.062 T
when the gap closes at k = 0 (i.e., near the phase boundary),
and at B = 0.26 T, when M states are present. In the later case
the eigenstates of a nanowire of finite length are qualitatively
similar to that of Fig. 8(a).

In general both orbital and spin Zeeman energies may
lead to the splitting of electron and hole bands of the
superconductor, which would combine into M states at a
sufficiently large magnetic field. It turns out that for our
hexagonal core-shell wire the orbital splitting is dominant.
Consequently, in this case, the M states can be obtained even
if we neglect the g factor. With geff = 0 we could obtain a
critical field of about 60 mT. This is an important detail, since
the g factor in the shell material may be different, possibly
lower than that of the same bulk material. A “strange” detail
of the phase diagram can be the small elliptic island seen on the
left side of Fig. 13(b), around μ ≈ 287.2 meV and B ≈ 0.4 T.
The reason for it is that, due to the combined orbital and
spin Zeeman splitting, the energy levels at k = 0, forming
the M states, can possibly increase with the magnetic field,
instead of decreasing, as expected from the spin Zeeman effect
alone. Within that island the topological phase is suppressed,
although it exists all around outside it.

Finally, to close this section, in Figs. 13(c) and 13(d) we
show the phase diagram for the hexagon after removing from

the Hamiltonian (2) all terms related to the orbital Zeeman
effect of the magnetic field, to compare with the real phase
diagram. Indeed, the critical field returns to the value expected
from the spin Zeeman splitting only. But with increasing the
chemical potential the gap can easily close at finite k values in
the topological phase even without orbital effects.

VIII. SUMMARY AND CONCLUSIONS

In conclusion, we have shown that prismatic core-shell
nanowires with proximity-induced superconductivity and
Rashba spin-orbit coupling provide an interesting and rather
complex playground for Majorana physics. A key new element
that characterizes these structures is that the Majorana physics
can be realized within a low-energy subspace defined by
states localized along the edges of the prism, which are
separated by a significant energy gap from higher energy
states. Furthermore, the localization of these states around
the edges can be controlled, e.g., by varying the thickness of
the shell or of the core. Strong edge localization leads to a
system of effectively decoupled 1D nanowires running along
the edges of the prism, each wire hosting Majorana bound
states generated according to the well-known mechanism when
the magnetic field exceeds a certain critical value. Remarkably,
upon increasing the aspect ratio AR = t/R the “edge”
wires become coupled and an interference between states
localized on different edges emerges. In the phase diagram, this
edge-edge “communication” is manifested as a fragmentation
of the boundaries between trivial and topological regions, as
well as a separation of the Majorana bound states into real
Majoranas and “trivial” but nearly-zero energy modes which
we dub pseudo Majorana states.

The transformation of Majorana into pseudo Majorana
states can be seen as a finite size effect in the direction
transversal to the nanowire. The resulting phase diagrams
correspond to ladders of interacting chains [41–43], as we
demonstrate in the Appendix.

In the presence of edge-edge interference there are regions
in the μ-B phase diagram containing np near-zero-energy pairs
of states, where np can take all integer values from zero to the
number of prism edges. We have focused on triangles and
squares, exploring also the results for hexagons. Regions with
odd values of np contain a genuine Majorana mode at zero
energy, while those with even values of np only contain zero
modes asymptotically, for low AR. Actually, the energies of
all the np pairs collapse to zero energy in the limit of low
AR. We stress that the Rashba interaction in our model is
not oriented along any externally fixed direction, but points
perpendicular to the sides and in a radial direction on the
edges. Therefore, we do not need to invoke a breaking of
the overall nanowire symmetry. For given values of the shell
thickness and radius, the edge localization weakens when the
number of corners is increased. This is supported by our results
for triangle, square, and hexagon. Indeed, the triangle has a
relatively weaker fragmentation of the phase diagram and of
the pseudo Majorana pairs, while this fragmentation is larger
for the hexagon.

A relevant effect in core-shell nanowires is the possibility of
controlling the magneto-orbital contributions by varying the
shell thickness t . Orbital effects of the magnetic field cause
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a strong reduction of the global energy gap for propagating
states at arbitrary values of the wave vector k. They can even
lead to a complete closing of the gap at a finite k in some
cases. We have shown that in prismatic core-shell wires with
small values of t orbital effects are greatly quenched and, as a
consequence, the energy gaps are sizable larger than for wide
shell nanowires. This is a very appealing feature, since in any
practical application a sizable gap is required for the stability
and protection of the Majorana states.

Our analysis uncovered a remarkable consequence of the
magnetic orbital effect in prismatic core-shell nanowires.
Namely, the strong reduction of the overall minimum magnetic
field for a phase transition, for an arbitrary chemical potential
μ. This is a consequence of edge-edge interference in thick
enough core-shell nanowires. For the hexagon this reduction
is much larger than for the triangular and square, due to the
enhanced edge-edge interference. As mentioned, thick wires
also tend to rapidly close the overall gap for propagating states
when increasing B. Still, our results indicate that in hexagonal
prismatic nanowires a compromise regime can be found with
a thickness t such that the Majorana pairs are obtained, along
with a sizable overall gap, at low magnetic fields. Finally,
as a general conclusion, we emphasize that edge localization
in prismatic core-shell nanowires offers a promising physical
mechanism towards the controllability of Majorana states in
nanowires.
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APPENDIX: TOY MODEL FOR PROXIMITIZED
CORE-SHELL NANOWIRES

To gain further insight into the low-energy physics of
proximitized core-shell nanowires, and to better understand
the qualitative dependence of the BdG spectrum on relevant
parameters, it is convenient to use a simplified tight-binding
“toy model” consisting of coupled parallel chains. The basic
idea is to define a “coarse-grained” shell consisting of one
chain associated with each vertex and one chain corresponding
to each side, as illustrated in Fig. 14. If the cross section of the
wire is a polygon with N corners, the toy model will contain N

or 2N parallel chains, depending on whether only the corner
or also the side states are included, respectively.

Consider now a core-shell nanowire, described in a tight-
binding manner in the longitudinal direction, and proximity-
coupled to one or more s-wave superconductors. The
low-energy physics of the hybrid structure is described by
the following BdG Hamiltonian

H = −t
∑

i,�,σ

(c†i+1�σ ci�σ + H.c.) − t ′
∑

i,�,σ

(c†i�+1σ ci�σ + H.c.)

+
∑

i,�,σ

[Veff(�) − μ]c†i�σ ci�σ + �
∑

i,σ

(even)∑

�

c
†
i�σ ci�σ

1
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n1
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FIG. 14. Schematic representation of the toy model construction
for a triangular wire. The shell (yellow/light gray) is coarse grained
so that the vertices and the sides are represented by one-dimensional
chains (red/dark gray circles). The arrows indicate the direction of the
effective magnetic field n� associated with the (longitudinal) Rashba
spin-orbit coupling.

+ i

2

∑

i,�

[αc†i+1�(σ̂ · n�)ci� + α′c†i�+1σ̂xci� + H.c.]

+EZ

∑

i,�

c
†
i�σ̂xci� +

∑

i,�

(
�c
†
i�↑c

†
i�↓ + 
∗

�ci�↓ci�↑),

(A1)

where ci�σ is the annihilation operator for an electron with
spin projection σ localized on the longitudinal lattice site
i of the chain �, 1 � � � 2N , and ci� = (ci�↑,ci�↓)T is the
corresponding spinor operator. The first term in Eq. (A1)
represents nearest-neighbor hopping along the chains (with
characteristic energy t), while the second term corresponds
to the interchain coupling. In the summations over the chain
index � we use the convention 2N + 1 ≡ 1. The interchain
coupling t ′ contains information about the shell thickness,
so that t ′/t → 0 in the thin shell limit. The third term
of the Hamiltonian (A1) contains the chemical potential
μ and a chain-dependent effective potential Veff(�) that
incorporates electrostatic effects due to back gates, coupled
superconductors, and nonhomogeneous charge distributions.
In general, Veff(�) breaks the N -fold rotational symmetry of
the wire, and in addition it can also vary along the chains, i.e.,
Veff = Veff(i,�), but here we do not consider this aspect.

The term proportional to � accounts for the property that
the “side states” have higher energies than the “corner states”
as shown in Fig. 2. The next term models a Rashba-type SOI,
with longitudinal and transverse components proportional to
α and α′, respectively, generated by an effective electric
field in the shell, Fig. 3. The corresponding direction of
the effective magnetic field, n�, for electrons moving along
a triangular wire, is shown in Fig. 14. The last two terms
in Eq. (A1) describe the Zeeman splitting EZ = geffμBB

generated by an external magnetic field applied along the
chains and the proximity-induced pairing. Note that pairing
potential 
� can be chain dependent, which reflects the
generic situation when the surface of the wire is not uniformly
covered by a superconducting layer. Here we shall consider
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FIG. 15. (a) Topological phase diagram for a symmetric triangu-
lar wire, Veff = 0. The white areas are topologically trivial, while the
orange (gray) regions correspond to M = −1. (b) Dependence of the
minimum quasiparticle gap on the Zeeman field for μ = −5.4 meV
[blue cut in panel (a)]. (c) Dependence of the minimum quasiparticle
gap on the Zeeman field for μ = −4.4 meV [dark red cut in panel (a)].
The white/orange regions correspond to the phases shown in panel
(a). Note the vanishing of the quasiparticle gap in certain parameter
regions.

a constant pairing potential, 
 = 0.3 meV. The other model
parameters used in the numerical calculations presented below
have the following values: t = 5.64 meV, t ′ = 1.41 meV,
α = 2.0 meV, α′ = 0.5 meV. In these examples only the
corner chains are considered, i.e., with odd �, corresponding
to the previous calculations where the chemical potential was
always inside the gap �.

The first question that we address using the simplified tight-
binding model given by Eq. (A1) concerns the structure of the
phase diagram of the proximitized wire. For this purpose we
consider a translation-invariant system (i.e., an infinite wire)
and, for concreteness, we focus on the triangular case, i.e.,
on the case N = 3. To distinguish between the topologically
trivial and nontrivial phases, we calculate the Z2 topological
index M (the so-called Majorana number) defined as [1]

M = sgn[PfB(0)]sgn[PfB(π )], (A2)

FIG. 16. (a) Topological phase diagram as a function of the
chemical potential and applied Zeeman field for a slightly asymmetric
triangular wire, with Veff = (0.67, − 0.33, − 0.33) meV at corners.
The white and orange (gray) phases are topologically trivial and
nontrivial, respectively. (b) Dependence of the minimum quasiparticle
gap on the Zeeman field for μ = −5.4 meV [blue cut in panel (a)].
(c) Dependence of the minimum quasiparticle gap on the Zeeman
field for μ = −4.4 meV [dark red cut in panel (a)]. Note that all
superconducting phases are gapped.

where Pf[. . . ] designate the Pfaffian and B(k) is a momentum-
dependent antisymmetric matrix (see below). The trivial
phase is characterized by M = +1, while M = −1 signals a
topological superconducting phase. The antisymmetric matrix
B represents the Fourier transform of the Hamiltonian (A1) in
the Majorana basis and can be constructed [14,50] by virtue
of the particle-hole symmetry of the BdG Hamiltonian,

T H(k)T −1 = H(−k), (A3)

where H(k) is the Fourier transform of the (single particle)
Hamiltonian corresponding to Eq. (A1) and T = UtK is the
antiunitary time-reversal operator, with Ut being a unitary
operator and K the complex conjugation. One can easily
verify that B(k) = H(k)Ut is an antisymmetric matrix when
calculated at the time-reversal invariant points k = 0 and
k = π . Furthermore, for physically-relevant model parameters
(i.e., Zeeman splittings not exceeding a few meVs and
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chemical potentials near the bottom of the spectrum) we
have sgn[PfB(π )] = +1 and the topological phase boundary
is determined by a sgn change of PfB(0). Note that DetH(0) =
[PfB(0)]2, hence the phase boundary is associated with the
vanishing of the quasiparticle gap at k = 0.

The phase diagram for a triangular wire with Veff(�) = 0
(i.e., no symmetry-breaking potential) is shown in panel (a) of
Fig. 15. The white regions are characterized by M = +1,
i.e., they are topologically trivial, while the orange (gray)
areas correspond to M = −1. The three phase boundaries
would merge into a single one, like in Fig. 11(a), if t ′/t → 0.
For a complementary characterization of different phases, we
calculate, as before, the minimum quasiparticle energy (for
all wave vectors), as shown in Figs. 15(b) and 15(c), for
two different values of the chemical potential. At EZ = 0
the system is in a trivial superconducting phase characterized
by a quasiparticle gap close to 
. Increasing EZ reduces
the quasiparticle gap, which eventually vanishes at a certain
critical field. In panel (C), the gap reopens as we enter
a topological superconducting region (orange). By contrast,
in panel (B) the spectrum remains gapless throughout the
first region characterized by M = −1, which means that the

system is a gapless superconductor. Note that the vanishing
of the gap happens at k 
= 0, except for the phase boundary
crossing points, where the quasiparticle gap vanishes at k = 0,
as mentioned above. A gapless superconducting phase is also
present in panel (c) for Zeeman fields between approximately
0.55 meV and 0.85 meV, where M = +1. Finally, for large-
enough values of the Zeeman splitting, i.e., above 0.7 meV in
panel (b) and 0.85 meV in panel (c), the system is in a gapped
topological phase.

Next, we consider the effect of a symmetry-breaking
potential Veff(�) = (0.67, − 0.33, − 0.33) meV for � = 1,3,5.
The results are shown in Fig. 16. First, we note that the
location of the phase boundaries changes significantly, but
the topology of the phase diagram remains the same. Sec-
ond, upon breaking the threefold rotation symmetry of the
wire the gapless superconducting phases shown in Fig. 15
become gapped. Finally, we note that the low-field topological
phase corresponding to μ = −4.4 meV is characterized by a
sizable quasiparticle gap [see panel (c)], which suggests that
this regime may be particularly suitable for the experimental
realization of a topological superconducting state that supports
robust zero-energy Majorana modes.
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Lindgren, A. Mikkelsen, R. Feidenhansl, M. T. Borgstöm, and
L. Samuelson, Nano Lett. 15, 2462 (2015).

[39] X. Yuan, P. Caroff, F. Wang, Y. Guo, Y. Wang, H. E. Jackson,
L. M. Smith, H. H. Tan, and C. Jagadish, Adv. Funct. Mater. 25,
5300 (2015).

[40] A. Sitek, L. Serra, V. Gudmundsson, and A. Manolescu, Phys.
Rev. B 91, 235429 (2015).

[41] K. Pöyhönen, A. Westström, J. Röntynen, and T. Ojanen, Phys.
Rev. B 89, 115109 (2014).

[42] R. Wakatsuki, M. Ezawa, and N. Nagaosa, Phys. Rev. B 89,
174514 (2014).

[43] N. Sedlmayr, J. M. Aguiar-Hualde, and C. Bena, Phys. Rev. B
93, 155425 (2016).

[44] A. Sitek, G. Thorgilsson, V. Gudmundsson, and A. Manolescu,
Nanotechnology 27, 225202 (2016).

[45] R. Winkler, Phys. E (Amsterdam, Neth.) 22, 450 (2004).
[46] A. Bringer and T. Schäpers, Phys. Rev. B 83, 115305 (2011).
[47] A. Manolescu, T. O. Rosdahl, S. I. Erlingsson, L. Serra, and V.

Gudmundsson, Eur. Phys. J. B 86, 445 (2013).
[48] J. S. Lim, R. Lopez, and L. Serra, Europhys. Lett. 103, 37004

(2013).
[49] L. Serra, Phys. Rev. B 87, 075440 (2013).
[50] P. Ghosh, J. D. Sau, S. Tewari, and S. Das Sarma, Phys. Rev. B

82, 184525 (2010).

125435-13

https://doi.org/10.1103/PhysRevB.84.085442
https://doi.org/10.1103/PhysRevB.84.085442
https://doi.org/10.1103/PhysRevB.84.085442
https://doi.org/10.1103/PhysRevB.84.085442
https://doi.org/10.1021/nl200981x
https://doi.org/10.1021/nl200981x
https://doi.org/10.1021/nl200981x
https://doi.org/10.1021/nl200981x
https://doi.org/10.1088/0957-4484/24/3/035203
https://doi.org/10.1088/0957-4484/24/3/035203
https://doi.org/10.1088/0957-4484/24/3/035203
https://doi.org/10.1088/0957-4484/24/3/035203
https://doi.org/10.1021/nl301690e
https://doi.org/10.1021/nl301690e
https://doi.org/10.1021/nl301690e
https://doi.org/10.1021/nl301690e
https://doi.org/10.1021/nl5049127
https://doi.org/10.1021/nl5049127
https://doi.org/10.1021/nl5049127
https://doi.org/10.1021/nl5049127
https://doi.org/10.1002/adfm.201501467
https://doi.org/10.1002/adfm.201501467
https://doi.org/10.1002/adfm.201501467
https://doi.org/10.1002/adfm.201501467
https://doi.org/10.1103/PhysRevB.91.235429
https://doi.org/10.1103/PhysRevB.91.235429
https://doi.org/10.1103/PhysRevB.91.235429
https://doi.org/10.1103/PhysRevB.91.235429
https://doi.org/10.1103/PhysRevB.89.115109
https://doi.org/10.1103/PhysRevB.89.115109
https://doi.org/10.1103/PhysRevB.89.115109
https://doi.org/10.1103/PhysRevB.89.115109
https://doi.org/10.1103/PhysRevB.89.174514
https://doi.org/10.1103/PhysRevB.89.174514
https://doi.org/10.1103/PhysRevB.89.174514
https://doi.org/10.1103/PhysRevB.89.174514
https://doi.org/10.1103/PhysRevB.93.155425
https://doi.org/10.1103/PhysRevB.93.155425
https://doi.org/10.1103/PhysRevB.93.155425
https://doi.org/10.1103/PhysRevB.93.155425
https://doi.org/10.1088/0957-4484/27/22/225202
https://doi.org/10.1088/0957-4484/27/22/225202
https://doi.org/10.1088/0957-4484/27/22/225202
https://doi.org/10.1088/0957-4484/27/22/225202
https://doi.org/10.1016/j.physe.2003.12.043
https://doi.org/10.1016/j.physe.2003.12.043
https://doi.org/10.1016/j.physe.2003.12.043
https://doi.org/10.1016/j.physe.2003.12.043
https://doi.org/10.1103/PhysRevB.83.115305
https://doi.org/10.1103/PhysRevB.83.115305
https://doi.org/10.1103/PhysRevB.83.115305
https://doi.org/10.1103/PhysRevB.83.115305
https://doi.org/10.1140/epjb/e2013-40735-5
https://doi.org/10.1140/epjb/e2013-40735-5
https://doi.org/10.1140/epjb/e2013-40735-5
https://doi.org/10.1140/epjb/e2013-40735-5
https://doi.org/10.1209/0295-5075/103/37004
https://doi.org/10.1209/0295-5075/103/37004
https://doi.org/10.1209/0295-5075/103/37004
https://doi.org/10.1209/0295-5075/103/37004
https://doi.org/10.1103/PhysRevB.87.075440
https://doi.org/10.1103/PhysRevB.87.075440
https://doi.org/10.1103/PhysRevB.87.075440
https://doi.org/10.1103/PhysRevB.87.075440
https://doi.org/10.1103/PhysRevB.82.184525
https://doi.org/10.1103/PhysRevB.82.184525
https://doi.org/10.1103/PhysRevB.82.184525
https://doi.org/10.1103/PhysRevB.82.184525



