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Even at zero temperature dissipation reduces quantum fluctuations and tends to localize particles. A notable
exception is the nonlinear dissipation due to quasiparticle tunneling in a Josephson junction. It is well known
that quasiparticle dissipation does not suppress tunneling of the superconducting phase difference between
next-nearest metastable phase states even though tunneling to the nearest phase state is suppressed. The reason is
that the dissipative action admits an instanton solution, the so-called Korshunov instanton. Here, we analyze this
model at elevated bias current I . We find that besides the known regime where the logarithm of the tunneling rate
scales as I 2/3 there is a novel regime with a scaling I 2. We argue that the increased tunneling rate that derives
from the elevated bias current is favorable for experimental verification of the Korshunov instantons.
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I. INTRODUCTION

Dissipative effects in quantum mechanics have been the
object of research for a long time. With their simple model
of quantum dissipation, Caldeira and Leggett popularized a
linear and analytically trackable model to effectively describe
dissipation in quantum systems [1,2]. Despite the tremendous
success of this simple model, it cannot describe all dissipative
effects; for example, it does not describe quantization of
the transported charge in a resistor built from a tunnel
junction. To this end, the Ambegaokar-Eckern-Schön (AES)
model was introduced, modeling a superconducting tunnel
junction that is subject to quasiparticle tunneling [3]. The
latter introduces a dissipative term in the action that is periodic
in the superconducting phase difference with a period of 4π

corresponding to the normal flux quantum. In Ref. [4], it was
noted that due to quasiparticle tunneling the ground state is a
superposition of the phase localized in the even or odd minima
of the Josephson potential. Remarkably, these superpositions
are immune to the quasiparticle dissipation and survive even
in the limit of strong dissipation. As a consequence, the
phase “particle” does not localize in one of the minima
[5]. The action describing the quasiparticle tunneling admits
instanton solutions, the so-called Korshunov instantons, that
connect minima in the Josephson potential separated by
4π . This results in a coherent tunneling amplitude between
states localized in next-nearest minima and, consequently, the
formation of bands. However, the bandwidth is exponentially
small in the damping parameter, and thus, experimental
verification remains challenging.

In a different context, Korshunov instantons are important
to understand the charging effects of metallic islands con-
nected to reservoirs via tunnel junctions [6–10]. Recently,
the charging energy of a normal island was measured as
a function of the tunnel coupling [11]. However, to our
knowledge, a direct observation of Korshunov instantons of the
superconducting phase tunneling to the next-nearest minima
is still missing. This observation would be interesting not only
as an example in which strong dissipation does not completely
suppress tunneling but also because Korshunov instantons are
related to coherent, paired phase slips which are of interest,
for example, for the realization of parity-protected qubits
[12–15]. Additionally, the system is an interesting example of

dissipative quantum mechanics with a multitude of different
regimes that can be accessed by simply changing the bias
current; the regimes cover coherent quantum dynamics, even
in the presence of strong dissipation, the case of a special
incoherent relaxation due to quasiparticle tunneling, and more
conventional Ohmic relaxation [5,16].

In this work, we investigate the effect of an elevated bias
current I on Korshunov instantons at zero temperature. This is
relevant because increasing the bias current raises the tunneling
rate �4π of the superconducting phase to the next-nearest
minima of the potential that is the hallmark of the presence of
strong quasiparticle dissipation and thus increases the chance
of experimental verification of the theoretical results. We find
that, apart from the low-bias regime with ln(�4π ) ∝ I 2/3,
studied in Ref. [5], there is a novel regime at elevated bias
current where ln(�4π ) ∝ I 2. At even higher bias current, the
quasiparticle nature of the dissipation becomes irrelevant, and
only tunneling to the next-nearest minima survives, which
is described by the conventional Ohmic model of Caldeira
and Leggett. We discuss the transition between the different
regimes and propose an experimental method to measure the
predicted decay rates.

This paper is organized as follows. In Sec. II, we introduce
the setup and the theoretical model. In Sec. III, we provide a
short introduction to the notation and the instanton method
that we use throughout this work. In Sec. IV, we give a
comprehensive derivation of the coherent tunneling amplitude
before we proceed with the calculation of the incoherent
tunneling rates in Sec. V. Note that these sections have some
overlap with the work of Ref. [5]. Section V includes our
main result of the scaling of the tunneling rate at elevated
bias current. Moreover, we discuss the transition between
the coherent, incoherent, and conventional Ohmic regimes. In
Sec. VI, we propose a simple scheme to measure the incoherent
tunneling rate before we end with our conclusions.

II. SETUP

For our analysis, we consider a current-biased tunnel junc-
tion between two superconducting leads that is intrinsically
subject to quasiparticle tunneling that acts as a dissipative
element. This can be described by the AES model. In
the Euclidean (imaginary-time) path-integral formalism, its
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dimensionless action S = Sc + Sη at zero temperature is given
by [3]

Sc =
∫ ∞

−∞
dt

{
h̄C

8e2
ϕ̇2 − EJ

h̄
[1 − cos(ϕ)] + Iφ0

h̄
ϕ

}
,

Sη = h̄

πe2R

∫ ∞

−∞
dt dt ′

sin{[ϕ(t) − ϕ(t ′)]/4}2

(t − t ′)2
, (1)

where ϕ is the superconducting phase difference across the
Josephson junction and ϕ̇ = dϕ/dt is its derivative with
respect to the imaginary time t . The first term, Sc, describes
the coherent superconducting circuit consisting of a Josephson
junction with Josephson energy EJ = φ0Ic/2π , where Ic is the
junction’s critical current and φ0 = 2e/h is the superconduct-
ing flux quantum. The capacitive energy due to the junction’s
capacitance C is given by EC = e2/2C. The second term,
Sη (quasiparticle action), corresponds to the dissipation due
to quasiparticle tunneling. Its magnitude is connected to the
effective shunt resistor R. For small ϕ, the dissipative action
can be expanded in a Taylor series, so that it reproduces the
Ohmic action described by Caldeira and Leggett. However,
this approach neglects the periodicity of Sη. The latter causes
the action to stay invariant for a 4π phase shift corresponding
to the tunneling of a normal flux quantum [17]. This refers to
the fact that the quasiparticles are quantized single electrons
and therefore do not feel a shift of a normal flux quantum.

In this work, we are interested in the regime where the dissi-
pative action Sη dominates Sc, with h̄/4e2R � (EJ /8EC)1/2.
Such a strong dissipation brings the system always into
the semiclassical regime, so that an instanton analysis is
applicable. Interestingly, the quasiparticle action by itself can
admit instanton saddle points without an additional kinetic
or potential term. Therefore, the solution of δSη/δϕ = 0,
where δSη/δϕ is the first variation of the quasiparticle action,
is an approximative saddle point of the full action S. In
Ref. [5], it was shown that a solution exists for this equation,
the Korshunov instanton ϕI (t) = 4 arctan(�t), with arbitrary
frequency �, that connects not neighboring minima of the
Josephson potential but next-nearest minima. For vanishing
bias current I = 0, it is this instanton of the dissipative action
that results in a coherent tunnel element between minima
shifted by 4π and leads to the formation of bands even in
the presence of strong dissipation. However, the resulting
bandwidth is small and difficult to tune, and the effect of
the pure coherent tunneling therefore is difficult to measure.
The situation can be changed by applying a bias current I . On
the one hand, this destroys the bands, but on the other hand,
it introduces a dissipative incoherent tunneling rate where a
phase particle located in one of the minima tunnels by 4π

to the next-nearest minimum. Additionally, the bias gives
rise to “Ohmic” decay into the next minimum for which the
quasiparticle action acts as a simple Ohmic shunt. Contrary
to intuition, at low bias current, the 4π tunneling dominates
the 2π tunneling; that is, the particle is more likely to tunnel
to the next-nearest minimum than to the nearest minimum.
While the 2π tunneling vanishes at zero bias, the 4π process
transforms into the coherent tunneling element.

For the analysis, we introduce the dimensionless parameters

j = Iφ0/EJ , η = h̄/4e2R, ζ = (EJ /8EC)1/2. (2)

The normalized bias current j gives a measure of how strongly
the potential is tilted. For j = 1, the tilt due to the bias is so
strong that the minima in the potential vanish. At this point,
the particle classically slides down the potential landscape.
The parameter ζ describes the ratio between the capacitive
kinetic energy and the Josephson potential energy. Without
dissipation, it describes the quantum uncertainty of the phase
with δφ ∝ ζ−1. The parameter η describes the strength of
dissipation. For large η, the dissipation is strong, and the phase
becomes localized. Note that for η � 1, semiclassical methods
are applicable even for ζ < 1.

III. SADDLE-POINT APPROXIMATION

In this section, we concisely describe the instanton method
for analyzing tunneling problems. In the following sections,
coherent tunnel elements as well as incoherent tunneling rates
will be calculated. Both can be accomplished by evaluating the
imaginary-time path integral in the Gaussian approximation
around a saddle point ϕ̄(t) of the action S. In general, the
action admits different saddle points with different physical
meanings. Given a saddle point, the imaginary-time propagator
can be approximated as

G[ϕ̄(t)] =
∫

ϕ≈ϕ̄

D[ϕ]e−SG . (3)

Here, ϕ̄ is defined as the solution of δS/δϕ = 0 with appropri-
ate boundary conditions, D[ϕ] is the functional integration
measure, and the subscript ϕ ≈ ϕ̄ indicates that the path
integral should be evaluated in the Gaussian approximation
around the extremum ϕ̄.

The action SG corresponds to S expanded to second order in
the fluctuations deviating from the extremal path. In particular,
we set

ϕ(t) = ϕ̄(t) +
∑

n

cnχn(t), (4)

with n ∈ N0. The approximated action SG can be written as

SG = Sϕ̄ +
∑
n,n′

cncn′

∫
dt χn

δ2S

δ2ϕ
[ϕ̄] χn′ = Sϕ̄ +

∑
n

�nc
2
n,

(5)

where Sϕ̄ is the action directly evaluated at the extremal path ϕ̄.
For the second equality, we have assumed that the fluctuation
modes χn are eigenfunctions of the second variation satisfying

δ2S

δϕ2
[ϕ̄] χn = �nχn, (6)

with eigenvalues �n and normalized to
∫
dt χn(t)χn′(t) = δn,n′ .

With this, the integration measure can be chosen to be
D[ϕ] = N

∏
n dcn, where N is a normalization constant.

Every positive �n leads to a Gaussian integral with the result

G[ϕ̄] = N
∫ ∏

n

dcn exp

[
−Sϕ̄ −

∑
n

�nc
2
n

]

= N
∏
n

(π/�n)−1/2e−Sϕ̄

= Fe−Sϕ̄ . (7)
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For an instanton solution ϕ̄, we have to deal with a zero
eigenvalue that cannot be treated by the simple Gaussian
integration above. Handling it correctly [18,19] leads to the
prefactor F = ω0A1A2, with [2]

A1 =
√

W

2π

h̄ω2
0

8EC

√
�1�2

, (8)

A2 = 8EC

∏∞
n=1 �

1/2
n,0

h̄ω2
0

∏∞
n=3 �

1/2
n

. (9)

Here, the frequency ω0 = (8EJ EC)1/2/h̄ denotes the plasma
frequency, and the factor A1 incorporates the product of
the three lowest eigenvalues, including the zero eigenvalue.
The zero mode is accounted for by the expression W =
h̄

∫
dt ˙̄ϕ2/8EC . The factor A2 includes the eigenvalues �n with

n � 3. Its leading behavior is determined by the asymptotics
for n → ∞. �n,0 correspond to the fluctuations around the
constant path ϕ0 = 0. They enter the equation when fixing the
normalization N .

To conclude this section, we briefly discuss the applicability
of the semiclassical approximation above. It corresponds to the
method of steepest decent that is applicable as long as Sϕ̄ is
much larger than 1. Additionally, within one potential well,
the phase should be localized in the minimum. While this
condition normally demands EJ � EC , it is always fulfilled in
the case of strong dissipation η � 1 as the dissipation localizes
the phase difference across the Josephson junction.

IV. COHERENT TUNNELING

Coherent quantum tunneling describes the Hamiltonian
evolution of a system that connects localized states separated
by a classically inaccessible barrier. This unitary evolution
leads to quantum superposition of the particle in different
potential wells. In our case, the system is mainly localized
in the minima of the Josephson potential, i.e., at φ ∈ 2πZ.
This makes it possible to treat the minima of the cosine
potential as sites of a linear lattice. The tunneling between
different sites causes the formation of bands with a bandwidth
I equivalent to twice the tunneling matrix element. The
bandwidth can be expressed by the imaginary-time propagator
evaluated at the so-called instanton ϕI . It is a saddle point
of the action connecting two minima of the Josephson
potential. It can be shown that the bandwidth is given by
I = 4h̄G[ϕI ] = 4h̄FI e

−SI , where SI is the action evaluated
at the instanton saddle point ϕI and FI originates from the
Gaussian fluctuations around this instanton path [18].

A. Instanton action

We are going to determine the extremal action correspond-
ing to an instanton that connects two minima of the Josephson
potential. For this analysis, we are essentially following
Ref. [5]. The saddle point equation δSη/δϕ = 0 reads

δSη

δϕ
[ϕI ] = 2η

π

∫
dt ′

sin{[ϕ(t) − ϕ(t ′)]/2}
(t − t ′)2

= 0. (10)

An instanton solution to this equation is given by [5]

ϕI (t) = 4 arctan[�(t − τ )], (11)

connecting a minimum of the cosine potential at t = −∞ with
a next-nearest-neighbor minimum shifted by 4π at t = ∞.
It depends on the frequency � that determines how fast the
phase flips. The solution ϕI is, in principle, a saddle point
only of the quasiparticle action Sη and not of the full action S.
However, in the case η � ζ , the quasiparticle action dominates
the saddle-point solution, and thus, even including the circuit
action Sc in Eq. (10) changes the instanton only perturbatively.
Therefore, inserting the quasiparticle instanton ϕI into the
action Sc is justified, which corresponds to proceeding with
first-order perturbation theory. We find as the resulting action
SI (�) on the instanton path

SI (�) = 4π

(
η + h̄�

8EC

+ EJ

h̄�

)
. (12)

The action depends on �, so that we also need to extremize
with respect to this parameter. We find a minimum of the action
where � is equal to the plasma frequency ω0 of the minimum,
with � = ω0 = (8EJ EC)1/2/h̄. At this minimum the instanton
action becomes

SI = 4π (η + 2ζ ). (13)

B. Instanton prefactor and result

The next step is the evaluation of the fluctuations to deter-
mine the prefactor FI . The explicit action of the fluctuation
operator on χn is given by

δ2Sc

δϕ2
[ϕI ] χn(t) =

[
− h̄

8EC

∂2

∂t2
+ EJ

h̄
cos(ϕI )

]
χn(t), (14)

δ2Sη

δ2ϕ
[ϕI ] χn(t) = η

π

∫
dt ′

cos{[ϕI (t) − ϕI (t ′)]/2}
(t − t ′)2

× [χn(t) − χn(t ′)], (15)

where we separated the operator into circuit and dissipative
contributions. By acting on χn, these operators define a
stationary Schrödinger equation with a nonlocal potential.
Here, the imaginary time plays the role of the spatial
coordinate. The lower eigenvalues are determined mainly
by the dissipative action corresponding to bounded states
in the potential. However, for the high-energy modes, the
kinetic-energy term dominates and gives rise to a continuum
of states lying above the bounded spectrum. For ease of mode
counting, we temporarily introduce a finite imaginary-time
interval β with periodic boundary conditions, corresponding
to nonzero temperatures. At the end, we send the interval to
infinity again.

For low energies, only the dissipative action is relevant. The
eigenvalue equation related to Eq. (15) is given explicitly as
(for τ = 0)

−2�

1 + (�t)2

[
χn(t)−

∫
dt ′

π

�χn(t ′)
1 + (�t ′)2

]

+
∫
P dt ′

π

1

(t − t ′)
dχn(t ′)

dt ′
= �n

η
χn(t), (16)

where P denotes the Cauchy principle value. In general such
an equation is hard to solve. However, we obtain a zero mode
for each free parameter of the instanton solution (11), which
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in our case means the imaginary time τ and the frequency �.
These zero modes generate a shift or dilation of the solution
in imaginary time without changing the value of the action
Sη. The zero modes can be found by taking the derivative
of the instanton path with respect to the corresponding free
parameters. We find

χ0 = N0
dϕI (t)

dτ
=

√
2

π

�1/2

1 + (�t)2
,

χ1 = N1
dϕI (t)

d�
=

√
2

π

�3/2t

1 + (�t)2
, (17)

both with eigenvalue �0 = �1 = 0; the normalization Nj is
fixed by N2

j

∫
dt χ2

j = 1.
It is well known that for Schrödinger-like equations the

number of nodes in the eigenfunction can be associated with
the size of the eigenvalue, where the eigenfunction with the
lowest number of nodes corresponds to the lowest eigenvalue
[20]. For higher modes, the zero modes should be modulated
in order to obtain more nodes [19]. For n = 2, we obtain
approximately [5]

χ2 =
(

2

β

)1/2 cos(ν1t)(1 − t2�2) + sin(ν1t)2t�

1 + t2�2
, (18)

with the eigenvalue �2 = ην1, where νn = 2πn/β are the
bosonic Matsubara frequencies. We incorporate the effect of
Sc by performing lowest-order perturbation theory with

�n =
∫

dt χn

δ2S

δϕ2
[ϕI ] χn. (19)

We obtain �0 = 0, �1 = h̄�2/16EC , and �2 = EJ /h̄ =
h̄�2/8EC for the lowest three eigenvalues determining A1.

For the calculation of A2 we first consider only the
kinetic term in Eq. (14) and treat the rest as a perturbation.
The eigenfunctions of the kinetic operator are given by
χ2n = (2/β)1/2 sin(νnt) and χ2n+1 = (2/β)1/2 cos(νnt), with
eigenvalues �2n = �2n+1 = h̄ν2

n/8EC . By treating the rest of
the action in first-order perturbation theory, the eigenvalues at
large n are given by

�2n−1 = �2n =
∫

dt χn

δ2S

δϕ2
[ϕI ] χn

= h̄

8EC

(
ν2

n + ω2
0

) + η|νn| − ην1. (20)

The term proportional to ω2
0 originates from the fluctuations

in the Josephson potential, while η|ν| is produced by the last
term in Eq. (16). The n-independent offset ην1 is generated
by the first part of the first term in Eq. (16), whereas the
integral without the principal part does not contribute for large
n because it is exponentially suppressed by the factor e−νn .
For the normalization of A2 we also need the eigenvalues
�n,0 corresponding to the fluctuations around the constant
path ϕ0 = 0. These are given by

�2n−1,0 = �2n,0 = h̄

8EC

(
ν2

n + ω2
0

) + η|νn| (21)

and correspond to �n in Eq. (20) without the offset ην1.

With the eigenvalues at hand we are in the position to
evaluate A2. Evaluating the infinite product ratio (9), we can
write in our regime η � ζ

A2 = η2

ζ 2
. (22)

Using the results (19) in Eqs. (8), (22), and the zero-mode
normalization WI = πh̄�/EC , the final expression for the
bandwidth is given by [21]

I = 4
η2h̄�

ζ 3/2
e−4π(η+2ζ ). (23)

V. INCOHERENT TUNNELING

Switching to a finite bias current j , we render the minima in
the Josephson potential unstable. Considering the Hamiltonian
time evolution in this system, we cannot treat the minima
of the Josephson potential as sites with a single level of a
tight-binding model as for the case of coherent tunneling. The
evolution brings the initial state into a superposition of excited
states of the neighboring minimum. Only strong dissipation
then localizes these states again in the local minimum. Such
an evolution is called incoherent tunneling. For intermediate
evolution times, this can be approximated as an exponential
relaxation out of the original well and can be expressed by
an imaginary part of the energy when starting in a single
minimum. For this problem, the important object is not the
instanton trajectory but the bounce ϕB . This is a cyclic
trajectory connecting the minimum to a turning point and
going back to the starting point, as shown in the lower plot
of Fig. 1. It can be shown [18] that in this case, the incoherent
decay rate �4π is given by G[ϕB] = FBe−SB ; here, SB is the
action S evaluated at the bounce trajectory, and in Eq. (8) we
have to replace �1 by |�0| because of an occurring negative
eigenvalue of the second variation (see below).

A. Bounce action

We start this section with a discussion of the bounce action
SB . In principle, as the quasiparticle action dominates, it is
justified to find a saddle point of only the quasiparticle action
and treat the circuit action in perturbation theory, as in the
case of the instanton. However, there is also a bounce solution
that is mainly determined by the circuit action. It corresponds
to the tunneling of the phase difference through the barrier
between the origin and the nearest-neighbor minimum of
the Josephson potential. In Fig. 2, this is indicated by the
arrow labeled 2π . For such a trajectory, we can expand the
quasiparticle action to second order, so that it reproduces
conventional Ohmic dissipation. Therefore, we call the decay
due to this bounce solution in the following Ohmic decay. It
results at low temperatures in the decay rate �2π ∝ j 4πη−1

[16]. For small currents, this rate is lower than the rate of
decay to the next-nearest minimum caused by the quasiparticle
action. While it accounts for a 2π phase slip, the quasiparticle
bounce corresponds to a paired 4π phase slip into the next-
nearest minimum. Therefore, both processes can physically
be distinguished and should be individually considered. In the
following, we calculate the dominating rate of decay due to
the quasiparticle tunneling.
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FIG. 1. The top panel shows the instanton path ϕI connecting
the minima of the Josephson potential at ϕ = 0 and at ϕ = 4π . The
instanton solution corresponds to coherent tunneling of the phase
difference. The bottom panel shows the bounce path ϕB , a closed
trajectory connecting the origin with itself via a fast penetration of
the potential barrier. In our case, it consists of a superposition of
an instanton shifted by τ/2 in imaginary time with an anti-instanton
shifted by −τ/2. For the plot, we have chosen the value �τ = 20. It
is related to the incoherent decay out of the potential minimum at the
origin; see Sec. V.

FIG. 2. The Josephson potential biased by a current j = 0.1. The
black circle corresponds to the phase difference localized at the origin.
Conventional Ohmic decay tunnels the phase through the potential
barrier to the next minimum, as shown by the black line. The decay
due to the quasiparticle tunneling is only slightly influenced by the
potential and directly goes to the minimum shifted by 4π , indicated
by the dashed line.

The analytical solution to the saddle-point problem of Sη

that fulfills the boundary conditions of the bounce is not
known. However, we can construct an asymptotic saddle point
by adding an instanton shifted by τ/2 in imaginary time
with an anti-instanton shifted by τ/2 in the other direction,
resulting in the bounce path ϕB = ϕI (t + τ/2) − ϕI (t − τ/2).
This trajectory has the free parameters � and τ , where the
first describes how fast the phase switches in imaginary time
and the second indicates how long it stays in the shifted
minimum before it returns. In the limit �τ → ∞, ϕB becomes
an exact saddle point of the dissipative action Sη. Evaluating
the whole action S for this trajectory corresponds to first-order
perturbation theory in the circuit action Sc. This approach
leads to a bounce action SB(�,τ ) still depending on the two
free parameters of the bounce. To find the approximate saddle
point, we need to extremize with respect to these parameters.
We find two distinct regimes: the first one corresponds to
the regime found in Ref. [5] that is valid as long as � stays
approximately constant. We denote the regime at small bias
current j < (ζ/2η)1/2 by (i). In this regime, we find

τ (i) = 2

(
2h̄η

jEJ ω2
0

)1/3

, �(i) = ω0, (24)

resulting in the action

S
(i)
B = 4π [2η + 4ζ − 3(2ηj 2ζ 2)1/3]. (25)

At elevated bias currents (ζ/2η)1/2 < j < jcrit ≈ 0.2, we
find a second novel regime in which the frequency � starts
to decay ∝ j−2. In this regime, we have to minimize both
parameters � and τ (see the Appendix for more information).
The resulting saddle-point solution is given by

τ (ii) = 2

j�(ii)
, �(ii) = EJ

h̄ηj 2
, (26)

with

S
(ii)
B = 8πη(1 − j 2). (27)

As j � 0.2, the term 8πη, which is the quasiparticle action
contribution of two infinitely separated instantons, always
dominates. This is in agreement with our assumption that the
dissipative term approximately determines the saddle point. If
we exceed the critical current jcrit, the extremum for SB(�,τ )
is found at � = 0, and therefore, the bounce of the dissipative
action Sη approaches the constant solution ϕ0 that stays in the
minimum of the Josephson potential. In Fig. 3, we compare
Eqs. (25) and (27) to the value of SB(�,τ ) at the saddle point
that we obtained numerically.

B. Bounce prefactor and result

To find the 4π tunneling rate, the remaining task is
to calculate the prefactor FB that represents the quantum
fluctuations on top of the bounce path. The procedure is
similar to the calculations for the instanton, however with
some complications added. First of all, we have to evaluate the
fluctuation operator at the bounce trajectory so that the eigen-
value equation does not take the simple form (16). We can
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FIG. 3. The value of the bounce action SB (�,τ ) at the saddle
point plotted versus the bias current j for η = 2 and ζ = 10−3. The
solid black line corresponds to the saddle point obtained numerically,
while the dashed line corresponds to S

(i)
B [Eq. (25)] with a j 2/3

dependence. The dotted line depicts the action S
(ii)
B [Eq. (27)] with a

j 2 dependence. The solid vertical line marks the crossover between
regimes (i) and (ii) at j = (ζ/2η)1/2 ≈ 0.016. We observe that the
validity of the solution S

(i)
B breaks down for elevated bias currents,

and the action changes its behavior from a j 2/3 dependence to a
j 2 dependence.

approximate the exact fluctuation operator of Sη by the form

− 2�

1 + �2(t − τ/2)2

[
χB,n(t) −

∫
dt ′

π

�χB,n(t ′)
1 + �2(t ′ − τ/2)2

]

− 2�

1+�2(t+τ/2)2

[
χB,n(t)−

∫
dt ′

π

�χB,n(t ′)
1+�2(t ′+τ/2)2

]

+
∫
P dt ′

π

1

(t − t ′)
dχB,n(t ′)

dt ′
= �B,n

η
χB,n(t), (28)

valid for �τ → ∞. It corresponds to the instanton eigenvalue
equation (16) with a potential at each position ±τ/2 of
the constituting instantons. For large �τ , the potentials are
well separated, so that the eigenmodes are expected to be
superpositions of the instanton eigenmodes.

For example, for the low-energy eigenvalues needed in the
factor AB,1, we can make the ansatz of the even and odd
superpositions of the shifted instanton zero modes

χ±
B = 1

(N±
B )1/2

(χ0,+ ± χ0,−)

= 1

(2πN±
B )1/2

[
�1/2

1 + �2(t + τ )2
± �1/2

1 + �2(t − τ )2

]
,

(29)

where χ0,± = χ0(t ± τ/2) and the new normalization is given
by N±

B = [2 ± 8/(4 + �2τ 2)]1/2.
By comparing (29) with the derivative of the bounce with

respect to the imaginary time we see that the odd superposition
indeed corresponds to the real zero mode. This zero mode
generates a shift of the whole bounce trajectory in imaginary
time. Moreover, approximately [up to O((�τ )−4)], the even
superposition is a zero mode of the quasiparticle action, too.
It is a so-called breathing mode and generates a shift of the
two instanton parts of the bounce in two different directions,
changing the size of the bounce. It can also be obtained by

FIG. 4. The solid line shows the effective potential cos(ϕB ) of
the circuit action Sc for the fluctuations around the bounce path (for
�τ = 40). The potential consists of two double wells at ±τ/2. The
dashed line corresponds to the even eigenmode χ+

B of the fluctuation
operator. It is approximately given by a superposition of the (shifted)
instanton eigenmodes χ0(t ± τ/2), where the lighter part of the
curve corresponds to χ0(t + τ/2) and the darker part corresponds to
χ0(t − τ/2).

taking the derivative of the bounce with respect to τ . Counting
the numbers of nodes, we recognize that the zero mode χ−

B has
one node, while the even mode χ+

B has no nodes. Therefore, the
even eigenvalue has to be negative. For a negative eigenvalue
the naive Gaussian fluctuation approximation breaks down.
However, it is this negative eigenvalue that gives rise to the
imaginary part of the energy that corresponds to the decay
rate [18].

The degeneracy between the even and odd modes is lifted
if we perturbatively consider the fluctuations of the circuit
action. However, here, we cannot take the simple approach
as in Eq. (19) for the instanton. We encounter the problem
that we do not know the eigenfunctions accurately enough for
this treatment. The eigenfunctions of the quasiparticle action
are a good approximation of the real eigenmodes away from
the position ±τ/2 of the instantons. However, close to these
positions the eigenmodes are subject to “fast” modulations that
are not included in lowest-order perturbation theory.

In Fig. 4, we show the Josephson potential for the fluctua-
tions around the bounce and the even mode χ+

B to visualize the
problem. The eigenfunction χ+

B , plotted with the dashed line,
is clearly not a ground state for the potential close to the points
with t = ±τ/2. The missing fast modulations are irrelevant
for the quasiparticle action but change the contribution by the
Josephson potential already on the order of ζ . However, the
splitting between the even and odd modes is of the order of
(�τ )−2, and thus, we have to apply a modified procedure.

The idea is to directly calculate the splitting �B between
the two lowest eigenvalues �B,0 and �B,1 instead of finding
their absolute values. Knowing that �B,1 = 0 for the exact
solution of the problem, we obtain �B,0 = −�B . It is
possible to calculate �B without accurate knowledge of the
wave functions close to the instanton position. For that we de-
fine Tkin = −(h̄/8EC)(∂/∂t)2, V± = EJ cos[ϕI (t ± τ/2)]/h̄,
and Vpert = V0 − V + − V −, with V0 = EJ cos(ϕB) being the
Josephson potential evaluated at the bounce. We can rewrite
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the circuit fluctuation operator as

δ2Sc

δϕ2
[ϕB] = Tkin + V + + V − + Vpert. (30)

In the expression

�B =
∫

dt[χ−
B (Tkin + V + + V − + Vpert)χ

−
B

−χ+
B (Tkin + V + + V − + Vpert)χ

+
B ]

= 2
∫

dt χ0,+(V − + V + + 2Vpert)χ0,−

= 4EJ

h̄(�τ )2
(31)

for the first-order perturbation, we make use of the fact that
(Tkin + V ±)χ0,± = 0 for the zero mode. This removes the
terms V ±χ2

0,± that are localized in the dangerous region around
the instanton position. Additionally, for the second equality,
we have left out terms proportional to V ∓χ2

0,± that are higher
order in �τ .

For the modes with more than one node (n > 1), the
accuracy of the conventional perturbation theory is sufficient.
By using the odd superposition of the shifted χ1,± instanton
eigenmodes, we can estimate the third eigenvalue as �B,2 =
h̄�2/16EC . The expression for the normalization due to the
zero mode reads WB = 2πh̄�/EC . As a result, we obtain the
prefactor

AB,1 = 2

√
EJ

h̄�
�τ. (32)

In order to calculate AB,2, we still have to determine the
higher eigenvalues corresponding to n → ∞. The high-energy
eigenmodes are still approximately given by the eigenfunc-
tions of the kinetic operator. We obtain the corresponding
eigenvalues by inserting the second variation (28) of the
bounce into expression (20). We find the result

�B,2n−1 = �B,2n = h̄

8EC

(
ν2

n + ω2
0

) + η|νn| − 2ην1, (33)

where the factor 2 in the last term not present in Eq. (20) orig-
inates from the fact that there are two instantons contributing
to the bounce. Plugging (33) into (9) yields (for η � ζ )

AB,2 = (A2)2 = η4

ζ 4
. (34)

With the results (33) and (34) and the ones in Sec. V A,
we are in the position to evaluate the decay rate for the two
regimes identified above. For low bias current j < (ζ/2η)1/2,
the rate is given by [21]

�
(i)
4π = 2

I ζ
−1/2

8h̄2

(
2h̄η

jω2
0EJ

)1/3

e12π(2ηj 2ζ 2)1/3
. (35)

For elevated currents with (ζ/2η)1/2 < j < 0.2, the decay rate
is given by

�
(ii)
4π = 4ω0

η7/2

ζ 4
e−8πη(1−j 2). (36)

FIG. 5. The crossovers between the different regimes. The axes
are the bias current j and ζ (for fixed η/ζ = 100). From light to
dark color we go from the coherent regime to regime (i) with a
scaling of the decay rate ln �4π ∝ j 2/3 followed by the regime (ii) with
ln �4π ∝ j 2 and finally end up with Ohmic dissipation. The dashed
black curve marks the crossover to the coherent regime. For very small
ζ , there is no crossover to the j 2/3 regime. For approximately j > 0.14
(indicated by the dashed vertical line) the rate of 2π decay generated
by the Ohmic bounce becomes larger than the rate of the 4π quasipar-
ticle decay. However, the two processes can be distinguished, so that
the quasiparticle decay can still be measured. Above jcrit, the bounce
of the quasiparticle action approaches the constant solution ϕ0 = 0,
and only the 2π process, for which the quasiparticle dissipation is
approximately Ohmic, survives. For larger ζ than shown, the coherent
regime vanishes already for a small bias current, while the other
crossover lines do not depend on ζ .

The crossover from the result (35) to (36) that we describe
in more detail below and the decay rate (36) at elevated bias
current are the main results of the present work.

C. Regimes and crossovers

In this section, we discuss the crossovers between the
regimes identified above. Without bias current, the system
forms bands due to dissipation-mediated coherent tunneling.
We call this regime the “coherent regime” (see Fig. 5). The
amplitude I/2 then defines a tunneling matrix element for
a 4π phase slip. Increasing the bias current j , more than a
single state in the well separated by 4π becomes energetically
accessible, and the coherent tunneling transforms into an
incoherent relaxation. A quantitative criterion for the crossover
from the coherent to the incoherent regime can be defined by
(τ (i,ii))2 > δτ 2 ≈ [∂2SB(�,τ )/∂τ 2]−1. This gives an estimate
of whether we can treat the position τ of the bounce as a
classical variable or whether quantum fluctuations have to be
taken into account. As long as the quantum fluctuations of τ

are smaller than the optimal separation between the instantons
τ (i,ii), the bounce and therefore incoherent tunneling are an
appropriate description. If the fluctuations in τ increase, the
system is more accurately described by a gas of individual
instantons giving rise to coherent tunneling elements. De-
pending on the parameters, tuning j up leads in general to
a crossover of the action to regime (i) with a scaling of
ln � ∝ j 2/3 and then to regime (ii) with a scaling ∝ j 2.
However, for ζ < 0.012, regime (i) is never realized, and
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the system directly crosses over from the coherent regime
to regime (ii). From the crossover criterion above, we obtain
the approximate expressions for the crossover (at fixed η/ζ ),

ζ (i) = 1

24π (10 + 2η/ζ )1/3j 2/3
(37)

in the regime j < (ζ/2η)1/2 and

ζ (ii) = η/ζ

π [24 + (48η/ζ − 80)j 2]
(38)

in the regime (ζ/2η)1/2 < j < 0.2. At j ≈ 0.14 the rate of 2π

phase slips �2π generated by the Ohmic bounce solution is of
the same order as the quasiparticle decay �4π . However, the
two processes are physically distinguishable, so they can be
individually measured (see also below). At a bias current j

above jcrit, the bounce connecting two minima separated by
4π vanishes, such that only Ohmic dissipation is present in
this regime.

VI. MEASUREMENT

As demonstrated above, Josephson junctions with strong
quasiparticle dissipation admit many interesting properties that
can be the subject of an experimental investigation. The sim-
plest approach to observe the effects of the special (nonlinear)
form of the dissipation due to quasiparticle tunneling is to
measure the incoherent tunneling. Measuring the coherent tun-
neling directly is challenging due to the small bandwidth expo-
nentially suppressed in η without any additional tuning param-
eter. Therefore, we propose to measure paired phase-slip events
and compare the resulting rates to expression (35) or (36).

The key idea for the experimental observation of the paired
phase slips is to raise the bias as much as possible, i.e.,
smaller than jcrit but still in its vicinity, in order to increase
the rate of paired phase slips. An important requirement
for the experimental setup in order to be able to operate at
elevated bias current is the possibility to distinguish between
double and single phase slips. The reason is that at elevated
bias current, the rate of unpaired 2π phase slips can already
dominate the rate of paired 4π phase slips. Additionally, even
if we can distinguish between the two processes, we need to
make sure that the 4π process can be uniquely associated with
the periodic quasiparticle tunneling, while the 2π process is
caused solely by the conventional Ohmic tunneling. The latter
process does not necessarily end up in the nearest minimum. If
the momentum, i.e., the kinetic energy, of the phase difference
is too large it may not be retrapped after the tunneling, but
it can classically go on over the next potential hill and end
up in the following minimum. Especially, after the point at
which the Ohmic tunneling rate �2π exceeds the quasiparticle
rate �

(i)
4π or �

(ii)
4π,2, it is not possible to distinguish between

the two processes anymore. Therefore, it is best to keep the
capacitance C small, so that the dissipation always brings the
Ohmic phase slips to rest in the next minimum. Additionally,
it is advantageous to use small ζ � 1 because it allows us to
consider systems with smaller η without making the ratio η/ζ

too large. Smaller η then keeps the exponential suppression of
the phase-slip rate low.

An approach that can satisfy the above requirements is to
include the Josephson junction in a loop with inductance L or,

alternatively, build an asymmetric superconducting quantum
interference device so that one Josephson junction serves as
an inductance (see Refs. [22,23] for a recent experimental
setup). With a magnetic bias, it is possible to add an external
flux ϕex in the loop that takes the role of the bias current.
Placing the circuit in a transmission line, the number of flux
quanta in the loop can be measured nondestructively by a
flux-dependent shift of the transmission phase of the input and
output signals into the transmission line. This flux-dependent
shift in the transmission phase directly indicates when a 2π or a
4π event has happened. By recording these events over a given
measurement time, the resulting rates can be compared with the
results (35) or (36). Theoretically, the setup corresponds to in-
troducing the additional term SL = ∫

dt φ2
0(ϕ − ϕex)2/(8π2L)

to the circuit action Sc with induction L. In this setup, the bias
current is given by the term linear to ϕ with I = h̄φ0ϕex/4π2L.
The additional quadratic contribution ∝ ϕ2 simply changes
the bias current according to j �→ j − h̄φ2

0/πLEJ . This takes
care of the fact that a quadratic potential needs already an
external flux of ϕex = 4π until the minimum at ϕ = 0 becomes
unstable for the Korshunov decay channel, while without the
quadratic confinement an infinitesimal bias is already enough
to render the minimum unstable. A similar setup has been used
in Ref. [23] to measure the interference between phase slips
in two parallel nanowires. It indicates that the quasiparticle
tunneling in nanowires is strong, and therefore, these wires
are a potential candidate for such an experimental setup. Note
that there are also other potential experimental probes that
can detect changes in flux. For example, a flux-dependent
absorption process could be used to measure the rate of paired
phase slips [24,25].

VII. CONCLUSION

In conclusion, we have shown that the coherent dissipation
due to quasiparticle tunneling over a Josephson junction in
a superconductor can be probed by the measurement of
4π phase-slip events. These 4π phase slips are caused by
Korshunov instantons probing the specifics of the nonlinear
dissipation due to quasiparticles. We have identified a novel
regime at elevated bias current that leads to a substantially
increased rate of 4π phase slips. This is important as the
low rate is one of the main reasons why paired phase slips
are challenging to measure. We have discussed the different
crossovers between the coherent regime and the incoherent
regimes. In addition, we have proposed a measurement scheme
for the detection of the paired phase slips; fixing the bias
current slightly below a critical current jcrit ≈ 0.2 and working
with a small capacitance C, corresponding to a large charging
energy, offer the best chance to observe paired phase slips
due to the increased rates. We hope that our analysis helps to
guide the experimental effort to directly observe Korshunov
instantons as paired phase slips of the superconducting phase.
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FIG. 6. Double logarithmic plots of the extremal parameters
(a) �/ω0 and (b) 1/�τ as a function of the dimensionless bias
current j for the parameters η = 2 and ζ = 10−3. The thick black
lines correspond to the result that is obtained by simply extremizing
the whole action (A1) with respect to both parameters � and τ

numerically. The dashed line represents regime (i), where � = ω0

is constant. The dotted line represents regime (ii), where � decays to
zero.

APPENDIX: EXTREMIZING THE ACTION
IN DIFFERENT REGIMES

In this Appendix, we provide details for the extremizing the
action SB to find regime (i), corresponding to Eqs. (24) and
(25), and regime (ii), corresponding to Eqs. (26) and (27). The
action SB evaluated at the bounce trajectory and consistently

expanded for large �τ up to second order reads

SB ≈ 8π (η + EJ /h̄� + h̄�/8EC) − 4πEJ τj/h̄

− 32π (η + 4EJ /h̄� + h̄�/8EC)

�2τ 2
. (A1)

In Fig. 6, we show an example of the resulting optimal
parameters calculated by a numerical optimization of the
action above with respect to � and τ . It clearly shows two
distinct regimes with different power-law behaviors. The first
regime corresponds to regime (i) with a constant �, while the
second regime corresponds to regime (ii) with decaying �.
The crossover is numerically found to be at jc  (ζ/2η)1/2

(see below).
An analytic expression valid in regime (i) can be found

by assuming � = ω0 and optimizing (A1) with respect to the
single parameter τ . In this case, only the two last terms in
Eq. (A1) contribute. This yields Eqs. (24) and (25) for the
optimal point.

By increasing the bias current, the assumption � = ω0 fails
to hold as the inverse size of the instanton � starts to decline
with increasing bias current j . As a result the term 8πEJ /h̄�

starts to become relevant. The point at which this happens can
be estimated by comparing it to one of the last two terms, e.g.,
EJ /h̄ω0  EJ τjc/h̄. With τ  (h̄η/jEJ ω2

0)1/3 [from (24)],
we obtain the estimate for the crossover current jc  (ζ/η)1/2

as before.
So for j � jc, the parameters τ and � in the action have

to be simultaneously optimized. Not all terms of the action
(A1) are relevant. In the first term, we can neglect the term
proportional to � as � � ω0. In the last term, only the term
proportional to η is relevant as η � ζ . Thus, the effective
action in regime (ii) reads

SB ≈ 8π (η + EJ /h̄�) − 4πEJ τj/h̄ − 32πη/�2τ 2. (A2)

Extremizing this action with respect to the parameters � and τ

is straightforward and leads to the results of Eq. (26). Inserting
the optimized parameters into Eq. (A2) yields the simple
expression for the action

SB ≈ 8πη(1 − j 2), (A3)

which is equivalent to (27). For bias currents j > 0.1,
the accuracy of (27) can be increased by including small
corrections to the j 2 dependence with first-order perturbation
theory. This corresponds to inserting the optimized values �

and τ from Eq. (26) into the full action (A1).
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