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Thermal transport through a spin-phonon interacting junction: A nonequilibrium Green’s function
method study
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Using the nonequilibrium Green’s function method, we consider heat transport in an insulating ferromagnetic
spin chain model with spin-phonon interaction under an external magnetic field. Employing the Holstein-
Primakoff transformation to the spin system, we treat the resulted magnon-phonon interaction within the self-
consistent Born approximation. We find the magnon-phonon coupling can change qualitatively the magnon
thermal conductance in the high-temperature regime. At a spectral mismatched ferromagnetic-normal insulator
interface, we also find thermal rectification and negative differential thermal conductance due to the magnon-
phonon interaction. We show that these effects can be effectively tuned by the external applied magnetic field, a
convenient advantage absent in anharmonic phonon and electron-phonon systems studied before.
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I. INTRODUCTION

Recently, the study of heat transport carried by spin
degrees of freedom has received widespread interest, and it
has created the field of spin caloritronics [1]. One notable
example is the spin Seebeck effect [2,3] (SSE), in which the
application of a temperature gradient drives a spin current.
With the rapid progress in the experiments, the SSE has
been discovered in different types of materials in different
experimental setups [2–7].

Further investigation [8–14] suggests that spin-phonon
interaction plays a vital role in the SSE. In the acoustic spin-
pumping experiment [10–12], a three-layer hybrid structure
of a nonmagnetic metal, a ferromagnetic insulator, and a
piezoelectric actuator of a normal insulator is used to pump
spin using acoustic waves generated in the piezoelectric
actuator. In the ferromagnetic-normal (FN) insulator interface,
a key process is the energy transfer from the normal insulator to
the ferromagnetic insulator through spin-phonon interaction.
This experiment not only provides a new way of spin-pumping
by directly injecting sound waves, but it also gives a persuasive
explanation of phonon-mediated spin-pumping to the long-
range feature of the SSE in different materials. A theoretical
approach of the phonon-drag mechanism shows a proportional
relationship between acoustic spin-pumping and the power of
an external sound wave [12].

Motivated by the rapid progress, several authors studied
spin transport in various nanojunction models [15–17]. A typ-
ical junction of this type is formed by quantum dots bridging
metal and ferromagnetic insulator leads [17]. The main energy
carriers are electrons in the metal lead and spin waves in the
ferromagnetic insulator lead. They exchange energy at the
quantum dot through exchange coupling. Energy transport
in the linear and nonlinear regimes is studied. Following a
similar idea, we study the influence of spin-phonon interaction
on the thermal transport of a junction considering both spin
and phonon degrees of freedom. A Heisenberg model is
used to describe the magnetic exchange interaction, and a
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harmonic-oscillator model is used to describe the phonons.
The spin-phonon interaction is introduced in terms of the Su-
Schrieffer-Heeger (SSH) -like model [18] in the junction. First,
following a Holstein-Primakoff transformation, we discuss
the temperature dependence of the thermal conductances
contributed by magnon and phonon degrees of freedom in the
junction, and we analyze their dependence on the spin-phonon
interaction. Second, we show that thermal rectification (TR)
and negative differential thermal conductance (NDTC) show
up in the junction, whose mechanism is different from other
similar setups using electron-phonon or anharmonic phonon
couplings [19–21], and they can be controlled by an external
magnetic field. We further discuss the influence of different
transport processes on these two effects.

II. MODEL AND METHOD

The model system is a one-dimensional (1D) insulating
ferromagnetic spin junction under a uniform external magnetic
field, as shown in Fig. 1. The leads are modeled by two semi-
infinite chains, which are in their thermal equilibrium with
well-defined temperatures. The center part lies between the
two leads. We assume that the spin-phonon interaction only
takes place in the center region. The Hamiltonian of the whole
system is divided into three parts:

H = HJ + Hph + Hint, (1)

i.e., the Heisenberg spin Hamiltonian HJ , the phonon Hamil-
tonian Hph, and their interaction Hint. The spin part is written
as

HJ = −1

2

∑
α,β=L,R,C

∑
|i−j |=1

J
αβ

ij Sα
i ·Sβ

j − hz

∑
i

Sz
i , (2)

where we only consider the nearest-neighbor exchange inter-
action. For simplicity, we use J α

ij if α and β belong to the same
region, as for the dynamic matrix below. The magnetic field
is chosen to be along the z direction denoted by hz. Under the

2469-9950/2017/96(12)/125432(7) 125432-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.96.125432


ZU-QUAN ZHANG AND JING-TAO LÜ PHYSICAL REVIEW B 96, 125432 (2017)

0,1

LCJ

1,

CR

n nK
−

1,0

LJ
− , 1

R

n nJ +

1,0

LK
− , 1

C

m mK
+0,1

LCK , 1

R

n nK
+

, 1

C

m mJ
+ 1,

CR

n nJ
−

LT RT

intH

0,1

LCJ

1,

CR

n nK
−

1,0

LJ
− , 1

R

n nJ +

1,0

LK
− , 1

C

m mK
+0,1

LCK , 1

R

n nK
+

, 1

C

m mJ
+ 1,

CR

n nJ
−

LT RT

intH

0,1

LCJ

1,

CR

n nK
−

1,0

LJ
− , 1

R

n nJ +

1,0

LK
− , 1

C

m mK
+0,1

LCK , 1

R

n nK
+

, 1

C

m mJ
+ 1,

CR

n nJ
−

LT RT
0,1

LCJ

1,

CR

n nK
−

1,0

LJ
− , 1

R

n nJ +

1,0

LK
− , 1

C

m mK
+0,1

LCK , 1

R

n nK
+

, 1

C

m mJ
+ 1,

CR

n nJ
−

LT RT

intH

hz hz hz hz

FIG. 1. Model diagram of a 1D insulating ferromagnetic spin junction under an external magnetic field. Spin-phonon interaction is included
only in the central region. The two leads are modeled by semi-infinite chains with different temperatures.

harmonic approximation, the phonon Hamiltonian is [22,23]

Hph = 1

2

∑
α,i

(
u̇α

i u̇α
i + uα

i Kα
iiu

α
i

) + 1

2

∑
αβ

∑
|i−j |=1

uα
i K

αβ

ij u
β

j ,

(3)

where u̇α
i = pα

i /
√

mα
i and uα

i = √
mα

i rα
i . Here pα

i ,rα
i are the

momentum and displacement operators of atom i in region α,
respectively, mα

i is the atom mass, and Kα
ii,K

αβ

ij are elements
of the dynamical matrix.

The spin-phonon interaction is introduced through the
SSH-like model in the central region. The nearest-neighbor
exchange interaction is expanded to first order with respect
to the mass renormalized displacements from equilibrium
positions,

J C
ij = JC

ij + λij

(
uC

i − uC
j

)
, (4)

where JC
ij is the exchange interaction with the atoms in their

equilibrium positions, and λij = (dJ C
ij /duC

i )uC
i =0. We note

that J C
ij increases with the reducing of the neighbor atom

distance while it decreases with the increasing of it. This
is reflected by the relation λij = −λji . Thus, the interaction
Hamiltonian in the central region is given by

Hint = −1

2

∑
〈ij〉

λij

(
uC

i − uC
j

)
SC

i ·SC
j . (5)

To treat the spin-phonon interaction, we map the spin
operators to bosonic operators (magnons) by the approximated
Holstein-Primakoff transformation [24]:

S+
i ≈

√
2S̄iai, (6a)

S−
i ≈

√
2S̄ia

†
i , (6b)

Sz
i ≈ S̄i − a

†
i ai . (6c)

Here, a
†
i (ai) is the magnon creation (annihilation) operator

at site i, and S̄i is the average of the spin at site i. The
magnon approximation is valid when the local spins are near
their parallel aligned ground states, i.e., the local magnon
occupation number is small, 〈a†

i ai〉 � S̄i . We use S̄ = 10 for
all regions in this paper. Under this approximation, neglecting
the constant terms that do not contribute to the energy transport,
we write Eqs. (2) and (5) as

HJ ≈
∑

|i−j |=0,1

∑
α,β

a
†α
i X

αβ

ij a
β

j , (7)

Hint ≈
∑

|i−j |=0,1

∑
k

Mk
ij a

†C
i aC

j uC
k , (8)

where Xα
ii = ∑

δ J
αβ

i,i+δS̄
β

i+δ + hz and X
αβ

ij = −J
αβ

ij

√
S̄α

i S̄
β

j

(i �= j ). The magnon-phonon coupling matrix is Mk
ii =∑

δ λi,i+δS̄
C
i+δ(δki − δk,i+δ) and Mk

ij = −λij

√
S̄C

i S̄C
j (δki −

δkj )(i �= j ). The simplified Hamiltonian is similar to that of
the electron-phonon case [22], and it can be solved similarly.

We calculate the transport properties of the systems by using
the NEGF technique [25,26], which was applied recently to the
coupling systems with electron-phonon interaction [22,27–30]
and electron-magnon interaction [31] under the self-consistent
Born approximation (SCBA). Here it is used to deal with the
magnon-phonon interaction.

First, we solve the Green’s functions (GFs) without
magnon-phonon interaction. The retarded GF for magnons
is Gr

0(ε) = [(ε + iη)1 − XC − �r
leads(ε)]−1, with 1 being the

identity matrix, and XC is the Hamiltonian matrix for the
central region from Eq. (7). �r

leads(ε) is the lead’s self-energy
matrix and diagonal in our case. �r

α = XCαgr
αXαC is for

coupling to lead α, where gr
α is the surface GF of lead

α for magnons. For steady-state transport, the lesser GF
is given by the Keldysh equation G<

0 = Gr
0�

<
leadsG

a
0, with

�<
α = f B

α (�r
α − �a

α). f B
α is the Bose distribution function for

lead α. The relation Ga
0(ε) = [Gr

0(ε)]†, �a
leads(ε) = [�r

leads(ε)]†

is used for getting the advanced GF or self-energy from
retarded ones, and it will also be used in the following
text. Similarly for phonons, the retarded GF is Dr

0(ω) =
[(ω + iη)21 − KC − 
r

leads(ω)]−1, where KC is the dynamical
matrix for the central region in Eq. (3). Phonon self-energy due
to lead α is 
r

α = KCαdr
αKαC , where dr

α is the lead’s surface
GF for phonons. The lesser GF is D<

0 = Dr
0


<
leadsD

a
0 , with


<
α = f B

α (
r
α − 
a

α).
Secondly, taking the magnon-phonon interaction as a

perturbation to the noninteracting magnon and phonon GFs,
the full GF can be solved by the Dyson equation. For
magnons, it is given by Gr = Gr

0 + Gr
0�

r
SCBAGr , and the

Keldysh equation is G< = Gr�<
totG

a . Here �<
tot = �<

leads +
�<

SCBA is the total self-energy. Similarly for phonons, we
have Dr = Dr

0 + Dr
0


r
SCBADr , D< = Dr
<

totD
a , and 
<

tot =

<

leads + 
<
SCBA. Diagram representations for the self-energies

under SCBA are shown in Fig. 2. Different from that of
the electron-phonon case [22,30], despite the similarity, the
bosonic loops of magnons in the Hartree and polarization-like
diagrams do not gain a minus sign here. The retarded Hartree
self-energy is

�H,r
mn = ih̄Mi

mnD
r
0,ij (ω′ = 0)Mj

kl

∫
dε

2πh̄
G<

lk(ε). (9)

The Fock self-energies are

�F,<
mn (ε) = ih̄

∫
dω

2π
Mk

miG
<
ij (ε − h̄ω)D<

kl(ω)Ml
jn (10)
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FIG. 2. Diagram representations for the self-energies of
(a) magnons and (b) phonons under the SCBA. The double wavy
line and single wavy line are for the full and noninteracting GFs of
phonons, respectively. The double straight line is for the full GF of
magnons.

and

�F,r
mn (ε) = ih̄

∫
dω

2π
Mk

mi

{
G<

ij (ε − h̄ω)Dr
kl(ω)

+Gr
ij (ε − h̄ω)

[
D<

kl(ω) + Dr
kl(ω)

]}
Ml

jn. (11)

We have �r
SCBA(ε) = �F,r (ε) + �H,r (ε) and �<

SCBA(ε) =
�F,<(ε). The polarization-like self-energies are

[
<
SCBA]mn(ω) = ih̄

∫
dε

2πh̄
Mm

lkG
<
ki(ε)G>

jl(ε − h̄ω)Mn
ij , (12)

[

r

SCBA

]
mn

(ω) = ih̄

∫
dε

2πh̄
Mm

lk

[
Gr

ki(ε)G<
jl(ε − h̄ω)

+G<
ki(ε)Ga

jl(ε − h̄ω)
]
Mn

ij . (13)

The full GFs and the self-energies need to be solved self-
consistently.

The energy current of magnons flowing out of lead α is
expressed in terms of the Meir-Wingreen formula [32,33] as

I J
α = − 1

h̄

∫
dε

2π
ε Tr[G>(ε)�<

α (ε) − G<(ε)�>
α (ε)]. (14)

Similarly, the energy current of phonons is

I ph
α = −1

2

∫
dω

2π
h̄ω Tr[D>(ω)
<

α (ω) − D<(ω)
>
α (ω)].

(15)

Here, the integrals are from −∞ to +∞. The total energy
current flowing out of lead α is their summation, i.e., Iα =
I J
α + I

ph
α . The energy current from magnons to phonons

is IJ→ph = I J
L + I J

R , and that from phonons to magnons is
Iph→J = I

ph
L + I

ph
R . It can be shown that the SCBA conserves

energy, which is reflected by the relation IJ→ph + Iph→J = 0.

III. NUMERIC RESULTS AND DISCUSSION

As applications of the above theory, we consider the
case of two atomic sites as the central region connecting
to two leads. These two sites can also be considered as
two quantum dots. The parameters of the two leads are set
to be the same. The magnon-phonon coupling strength is
set as |Mk

ij | = M0(i,j,k = 1,2). The exchange parameters,
the external magnetic field, the dynamical matrix, and the
magnon-phonon coupling are all converted to energy for
convenience. All calculations are done within the SCBA. A
cutoff energy of 2 eV is used throughout.

FIG. 3. Thermal conductances of the 1D ferromagnetic Heisen-
berg junction for magnons and phonons under an external magnetic
field. Parameters of the central region are J C

12 = 1.5 meV, KC
12 =

6 × 104 meV2. For the leads, J L
ij and J R

ij are 2 meV; KL
ij and KR

ij

are 1 × 105 meV2. Couplings of the central region with the leads
are J LC

01 = J CR
23 = J C

12, KLC
01 = KCR

23 = KC
12. The magnon-phonon

coupling constant is M0 = 14 meV. The external magnetic field is
hz = 4 meV for all regions.

A. Thermal conductance in a junction with
magnon-phonon interaction

We show in Fig. 3 the thermal conductances of magnons
and phonons in a ferromagnetic junction under an external
magnetic field. Their summation gives the total thermal
conductance. To calculate the thermal conductance, we choose
a very small temperature difference between the two leads. The
thermal conductance is calculated from the thermal current and
temperature difference as κi = |I i/T | (i = J,ph).

We can see in Fig. 3 that the phonon thermal conductance
shows little change with or without the magnon-phonon
interaction. The very limited influence of the magnon-phonon
coupling to the phonon thermal transport is mainly due
to the magnetic field hz here, which “freezes” the low-
energy magnons and makes the magnons less populated
in the temperature range considered. However, the thermal
conductance contributed by magnons is affected by the
magnon-phonon interaction at high temperature. It shows a
peak at a temperature about 140 K, and decreases upon further
increase of the temperature. This phenomenon is absent in the
ballistic case. This peak is also observable in the total thermal
conductance of the junction, and it can be considered as a
signature of the magnon-mediated thermal transport.

In the low-temperature region, the magnon-phonon in-
teraction is suppressed. The thermal conductance of the
phonons and magnons shows ballistic behavior. But they have
quite different temperature dependences. The former shows a
linear temperature dependence, while the latter dependence is
exponential. This can be understood from a one-dimensional
chain with translational invariance, neglecting the magnon-
phonon interaction. In this case, the temperature dependences
of thermal conductance contributed by magnons and phonons
are given, respectively, as (see Appendix) κJ ∝ 1

T
exp[− hz

kBT
]

and κph ∝ T , where kB is the Boltzmann constant. We see
clearly that the external magnetic field “freezes” the thermal
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FIG. 4. Thermal conductance for the magnons with different
magnon-phonon coupling constants. The other parameters are the
same as those in Fig. 3.

conductance of the magnons in the low-temperature limit.
This effect has already been used in the study of bulk YIG
to separate the contributions of magnons and phonons to
the thermal conductivity by applying a large magnetic field
[34–37].

We show in Fig. 4 the influence of the magnon-phonon
coupling strength to the thermal conductance of the magnons.
With the increase of the interacting strength, the magnon
thermal conductance decreases and the peak moves to
lower temperature. Obviously, a stronger coupling causes the
magnons to be scattered by the phonons more strongly, and
the magnon transport becomes less effective.

B. Thermal rectification and NDTC driven
by magnon-phonon interaction

In this subsection, we consider the energy transfer between
magnons and phonons at the FN interface. To do that, we
introduce a large mismatch between the dynamical matrices
and exchange coefficients of the left and right leads. Specifi-
cally, we choose a very large KL

ij in the left lead and a very
small exchange interaction JR

ij in the right lead. This setting
effectively blocks the pure phonon or magnon energy transport
channel, and it makes the energy transfer between magnons
and phonons the only transport channel at the interface. In
this case, atom 2 actually becomes the interacting interface
that allows the energy exchange between the magnons and
phonons. A similar study of electron-phonon energy transfer
at a metal-insulator junction has already been reported [19,30].

By applying a temperature difference between the left and
right leads, we find TR and NDTC, as shown in Fig. 5. The
dominant process that determines the thermal transport is the
energy transfer between magnons and phonons at the interface.
The efficiencies of the energy transfer are different for the two
opposite processes at positive and negative temperature biases.
For positive bias, heat flows from magnons to phonons, and
the current grows monotonically with the temperature bias.
For negative bias, there is a turning point for the NDTC at
T ≈ 30 K. This effect is larger for larger T0.

FIG. 5. Energy current IL of an FN insulator interface device as
a function of the temperature bias T with TL,R = T0 ± T/2. T0

is the average temperature of the two electrodes. The strength of
Heisenberg ferromagnetic exchange interactions is 2 meV for all the
regions on the left side of atom 2 in Fig. 1, and they are effectively zero
in the right region. The magnitude of the dynamic matrix elements
is K0 = 1 × 105 meV2 for all the regions on the right side of atom
1, and they are very large for its left region. The magnon-phonon
coupling strength is M0 = 20 meV. The external magnetic field is
hz = 2 meV for the magnetic part.

The reason is as follows. Due to the presence of the
magnetic field, there is a low-frequency gap in the magnon
spectrum. The thermal excitation of the magnons has to over-
come this extra energy. Thus, the magnons tend to “freeze” in
the low-temperature range. This can be reflected from the local
DOS projected onto the interface, which are defined by ρ2(ε) =
− 1

π
Im[Gr

22(ε)] for the magnons and ν2(ω) = − h̄ω
π

Im[Dr
22(ω)]

for the phonons [38], respectively, as shown in Fig. 6. To
support this argument, we vary Ez to explore its influence on
the energy current, as shown in Fig. 7. We can see in Fig. 7(b)
that the lowest energy needed for the excitation of the magnons
increases with the increase of the external magnetic field. With
the decrease of the magnetic field, the energy current in the
negative temperature bias increases greatly, and TR fades a
lot, as seen in Fig. 7(a). So the TR and NDTD can be tuned

FIG. 6. Local density of states for (a) magnons and (b) phonons
of atom 2. The parameters are the same with those of Fig. 5.
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FIG. 7. (a) The energy current IL as a function of the temperature
bias. (b) The corresponding local density of states for the magnons of
atom 2. The average temperature of the two electrodes is T0 = 60 K.
The other parameters are the same as those of Fig. 5.

effectively by the external magnetic field. This leads to the
possibility of a magnetic-field-controlled thermal diode. This
ability to control the TR is hard to realize in other similar
setups using electron-phonon coupling [19,30], anharmonic
phonon coupling [20], or asymmetric structures [39]. We note
that the TR can also be realized in pure spin systems by smart
control of the external magnetic field [40,41].

In real materials with an FN interface, the direct magnon-
magnon and phonon-phonon transport channels may not be
blocked abruptly, as we have assumed at the interface. To
see the influence of this, we open the ballistic magnon
channel gradually, i.e., we change JR

ij and JCR
23 gradually

until they are comparable to JL
ij . As is shown in Fig. 8,

when JCR
23 = 0.05 meV, still much smaller than JL

ij , the total
energy current IL is almost linearly scaled with T and is
two orders of magnitude larger than IJ→ph, which implies that
the ballistic transport becomes dominant. Similarly, in real
materials, the phonon-phonon transport across the interface
cannot be neglected. If KL

ij = KLC
01 , and they are comparable

to KCR
23 , with the other parameters not changed as those in

Fig. 5, the ballistic phonon contribution to the energy current
will be several orders of magnitude larger than that via the
magnon-phonon channel. But for the magnon-phonon channel,

FIG. 8. (a) Total energy current out of the left lead. (b) Energy
current via the magnon-phonon channel. We set J CR

23 = J R
ij and hz =

2 meV for the whole region. The average temperature is T0 = 60 K.
The other parameters are the same as those of Fig. 5.

FIG. 9. Local temperatures for (a) magnons and (b) phonons of
atom 2 as a function of the temperature bias. (i) Left lead temperature
and (ii) Right lead temperature are given for comparison. (iii), (iv),
and (v) correspond to the local temperatures of (a) magnons or
(b) phonons with J CR

23 = 0.05, 0.1, and 0.2 meV, respectively. The
other parameters are the same as in Fig. 8 except for the added
probes. One probe is for measuring T J

2 and consists of a semi-infinite
chain, with the exchange interaction J P

ij = 20 meV in the lead. The

other probe is for measuring T
ph

2 , with the dynamic matrix element
KP

ij = 2 × 105 meV2. The two probes couple very weakly to the
measured atom.

there are still TR and NDTC effects for small ballistic coupling
JCR

23 , as shown in Fig. 8(b). However, when the coupling JCR
23

increases from 0.05 to 0.2 meV, the two effects fade gradually
even for the magnon-phonon channel.

To explain this, we explore the effective local temperature
of the interface. We use the Büttiker probes to “measure” the
effective local temperature [42] of the magnons and phonons
at the interface. The two temperatures are denoted as T J

2 and
T

ph
2 , respectively. The effective temperatures are determined

when there is no heat flow between the probe leads and the
atom probed.

We show in Fig. 9 the effective local temperatures for the
magnons and phonons of the interface as a function of the
temperature bias. By opening the ballistic magnon channel
gradually, i.e., increasing the magnetic coupling strength
of the interface to the right electrode from JCR

23 = 0.05 to
0.2 meV, the local magnon’s temperature of the interface
shifts toward the temperature of the right electrode, as shown in
Fig. 9(a). The effective local temperature for the phonons of the
interface has a similar but not obvious change in the negative
temperature bias range, as shown in Fig. 9(b). However, in the
positive temperature bias range, we note that it has an obvious
nonmonotonic behavior with the increase of the temperature.
The turning point is about T ≈ 40 K. This is due to the
hotter magnons, which pass energy to the colder phonons more
efficiently via the magnon-phonon channel with the increase
of the positive temperature bias, as can be seen clearly in
Fig. 8(b). Similarly, in the large negative temperature bias,
although the temperature of the left electrode decreases to the
“freezing” temperature for the magnons, the local temperature
for the magnons at the interface cannot get to the “freezing”
temperature with the larger coupling strength, due to the
ballistic magnon’s heating effect from the hot right electrode.
This leads to the disappearance of the TR and the NDTC in
Fig. 8(b). So in order to build such an efficient thermal diode,
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one needs to find efficient ways to suppress the ballistic thermal
conductance of the phonons and magnons across the interface
by using spectral mismatched materials.

IV. CONCLUSION

In summary, we study two cases of thermal transport
of 1D systems with magnon-phonon interaction, one for
a ferromagnetic-coupled junction and the other for an FN
interface. In the former case, we show that the magnon-phonon
interaction has a large influence on the magnon thermal
conductance in the high-temperature range, while this is
suppressed in the low-temperature range due to the external
magnetic field. We note that this conclusion is qualitatively
valid in ferromagnetic insulating crystals, where the sponta-
neous magnetization energy plays a role similar to the external
magnetic field. For the case of the FN interface, we find TR and
NDTC for the inelastic magnon-phonon channel. The effective
local temperature imbalance between the local magnons and
phonons at the interface together with the “freezing” effect
of the external magnetic field play an important role in the
two effects. External magnetic field control of the magnon
spectrum is a unique feature of the magnon system, absent in
purely phononic systems. For some bulk materials with the
FN interface [10–12], or devices of molecule magnets [43,44],
the pure phonon transport could be reduced a lot due to
lattice mismatch or low-dimensional size, and the spin-phonon
interaction could make the magnon-phonon transport channel
a bottleneck for heat transfer at the interface. This could make
the control of TR and NDTC possible and is useful for novel
device applications.
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APPENDIX: BALLISTIC THERMAL CONDUCTANCES
FOR MAGNONS AND PHONONS IN A 1D CHAIN

The aim is to give a qualitative explanation to the quite
different behavior of the thermal conductances of the magnons
and phonons in the low-temperature limit in a ferromagnetic
spin chain, where the magnon-phonon interaction is very
weak due to the very limited thermal excitations and is thus
omitted. It is convenient to demonstrate their different thermal
conductances clearly by using a one-dimensional chain with
translational invariance. In this case, the thermal conductances
for the magnons and phonons can be written as

κi(T ) =
∫

dω

2π
h̄ωT i(ω)

∂f B(ω,T )

∂T
, (A1)

where i = J,ph for magnons and phonons, respectively.

f B(ω,T ) = (e
h̄ω

kB T − 1)
−1

is the Bose distribution function, and
the transmission function T i(ω) is

T J (ω) =
{

1, hz � h̄ω � hz + 4J0,

0 otherwise (A2)

FIG. 10. Ballistic thermal conductances for magnons and
phonons of a ferromagnetic spin chain under an external magnetic
field in the low-temperature range. The magnetic field is hz = 4 meV.

or

T ph(ω) =
{

1, 0 � ω � 4
√

K0,

0 otherwise,
(A3)

where J0 is the nearest-neighbor Heisenberg exchange interac-
tion, hz is the magnetic energy due to the external field, and K0

is the dynamic matrix element for the nearest-neighbor atoms.
Equation (A1) can be written as

κi(T ) =
∫

dω

2π
T i(ω)

(h̄ω)2e
h̄ω

kB T

(e
h̄ω

kB T − 1)2kBT 2
. (A4)

In the low-temperature limit, we assume hz,J0,h̄
√

K0 �
kBT . We can simplify Eq. (A4) as

κJ (T ) ≈
∫ +∞

hz

dω

2π

(h̄ω)2e
h̄ω

kB T

(e
h̄ω

kB T − 1)2kBT 2

≈ h2
z

2πh̄T
e
− hz

kB T (A5)

and

κph(T ) ≈
∫ +∞

0

dω

2π

(h̄ω)2e
h̄ω

kB T

(e
h̄ω

kB T − 1)2kBT 2

= πk2
B

6h̄
T . (A6)

We can see from Eqs. (A5) and (A6) that the ballistic
magnon and phonon transport are quite different. For this
special case, the phonon has a fully opening channel with
a thermal conductance quantum showing a linear temperature
dependence, but due to the gapped spectrum, magnons show
an exponential dependence. We plot in Fig. 10 the ballistic
thermal conductances for magnons and phonons given by
Eqs. (A5) and (A6), respectively.
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