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Single vacancy defect in graphene: Insights into its magnetic properties from theoretical modeling
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Magnetic properties of a single vacancy in graphene is a relevant and still much discussed problem. The
experimental results point to a clearly detectable magnetic defect state at the Fermi energy, while calculations
based on density functional theory (DFT) yield widely varying results for the magnetic moment, in the range of
μ = 1.04–2.0 μB . We present a multitool ab initio theoretical study of the same defect, using two simulation
protocols for a defect in a crystal (cluster and periodic boundary conditions) and different DFT functionals—bare
and hybrid DFT, mixing a fraction of the Hartree-Fock (HF) exchange. We find that due to the π character of
the Fermi-energy states of graphene, delocalized in the in-plane and localized in the out-of-plane direction, the
inclusion of the HF exchange is crucial, and moreover, that defect-defect interactions are long-range and have to
be carefully taken into account. Our main conclusions are two-fold. First, for a single isolated vacancy we can
predict an integer magnetic moment μ = 2μB . Second, we find that due to the specific symmetry of the graphene
lattice, periodic arrays of single vacancies may provide interesting diffuse spin-spin interactions.
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I. INTRODUCTION

A single vacancy is the simplest intrinsic defect in a
crystal, and has been seen in graphene with atomic resolution
through transmission electron microscopy (TEM) [1,2] and
scanning tunneling microscopy (STM) [3]. When the atom
is removed, two scenarios are possible: either the disrupted
bonds remain as dangling bonds or the structure undergoes a
bond reconstruction through a Jahn-Teller rearrangement, and
in three-dimensional (3D) semiconductors we find a localized
state and deep gap levels. Graphene, on the other hand, has
notable two-dimensional (2D) properties with the covalent
bonding introducing two intrinsically different state types, σ

and π , these last relevant for the Fermi-energy and Dirac point
properties. The π states are diffuse in the 2D planar (x,y)
directions, but very localized on the z direction with an in-plane
node. As such, long-range 2D electron-electron interaction
is enhanced. In addition, the hexagonal structure with two
sublattices creates for the π states the special band structure
with the Dirac point. We might thus expect special properties
also for the vacancy in graphene. There is controversy from
the experimental side about the reconstruction [4,5], however,
a clear symmetry is found for the defect, and in particular,
from scanning tunneling microscopy [3,5] it is found also that
the defect level is resonant at the Dirac point, and induces
magnetism [5].

A number of theoretical studies of the electronic and mag-
netic properties of the vacancy in graphene were reported in the
past decade [5–18]. In particular, first-principles calculations
based on density functional theory (DFT) [5,8–17] yielded
widely varying results for the magnetic moment, in the range
of 1.04–2.0 μB . For instance, Palacios and Ynduráin [12]
found that the magnetization decreases with decreasing defect
density, tending to 1.0 μB in the low-density limit. On the other
hand, Yazyev and Helm [11] reported that the magnetization
increases from 1.15 to 1.5 μB with decreasing density.
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These results highlight the possibility of magnetic moment
dependence with defect-defect interaction.

Regarding this last point, two typical approaches can be
used for the simulation: model clusters, which are assumed
to resemble the defect environment in the bulk, or periodic
boundary conditions based on the choice of supercells (SC).
In the cluster model we must be careful about defect interaction
with cluster edge states, which in the case of graphene can be
critical [19,20]. As for the SC modeling, we must remember
that we will study defects periodically arranged [21], that is,
we study an array of defects that may induce spurious defect
interactions.

Concerning the defect-edge interactions and focusing on
the π states, when we have flakes with zig-zag edges we can
(depending on the flake symmetry) bring in Lieb’s imbalance
states [22] that will group at the Fermi energy. These states are
not realistic concerning the modeling of infinite graphene (no
Lieb’s imbalance), so we should not adopt such flakes for use as
clusters. In the case of SCs we have for graphene three different
symmetrical (N × N ) families, as shown in Refs. [23,24],
namely (3n × 3n), (3n − 1 × 3n − 1) and (3n + 1 × 3n + 1),
where n is an integer number. For the 3n family, there occurs
a folding of the K − K ′ points onto the � point of the
SC Brillouin zone, that is, we will have degenerate, fully
delocalized π -character states of different original symmetry
crossing the Fermi energy at the SC � point. These delocalized
states show strong interference with localized defect states,
through the long-range interaction property of the � point,
which is softened when we adopt either one of the other
families. Still for supercells, due to the π symmetry of the
relevant states at the Fermi region, we also have to take
into account the possibility of long-range interaction between
defects coming from parity in the zig-zag direction, as will be
seen here.

In this work we adopt both the cluster approach, choosing
hexagonal clusters with arm-chair and zig-zag edges, and
periodic conditions with symmetrical cells from the differ-
ent families (3n × 3n)(6 × 6), (3n + 1 × 3n + 1)(7 × 7), and
(3n − 1 × 3n − 1)(8 × 8), as also a different symmetry cell
(6 × 9). We use semilocal DFT [25] and hybrid DFT including
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a fraction α of Hartree-Fock exchange XC [26], in which α is
chosen to reproduce the properties of perfect graphene in the
Fermi energy region [27].

We remark that, for the dimensions of supercells we adopt,
we see always defect-defect interaction, while for the clusters
we use there is still a sizable confinement effect. However, we
can extract from our results that the isolated vacancy defect
introduces a magnetic moment of 2μB . It is critical to include
a proper fraction of XC to arrive at a coherent description.
Moreover, we find that periodic arrays of the defect can bring
in interesting long-range spin dispersion effects [28,29].

II. METHODOLOGY

The calculations in this work are performed using the all-
electron Fritz Haber Institute ab initio molecular simulations
code (FHI-aims) [30], with or without spin-polarization: the
code employs numeric atomic orbitals obtained from ab initio
all-electron calculations for isolated atoms, and can be used
at the mean-field level with finite or infinite periodic models.
The use of an all-electron code allows us to align the level
structure of different simulation models by the deep 1s2 C
orbitals. For dispersion interactions we adopt the Tkatchenko-
Scheffler [31] model, which is sensitive to the chemical
bonding environment. We employ tight integration grids and
TIER2 basis sets [32], and the atom positions are relaxed until
the Hellmann-Feynman forces are smaller than 10−3 eV/Å.
For periodic cells, we use the Monkhorst-Pack [33] (�-point
included) scheme for sampling the Brillouin zone, with a
[6 × 6 × 1] grid. The Gaussian smearing is 0.01 eV for all
calculations.

We compute the formation energy of the defect and
electronic and magnetic properties. The geometry optimization
calculations are done using the Perdew-Burke-Ernzerhof
(PBE) functional. The formation energy of a vacancy EV

F is
calculated as

EV
F = E(Cn−1Hm) + E(carbon) − E(CnHm) , (1)

where here E(CnHm) is the total energy of the perfect cluster,
E(carbon) is the average energy of a single carbon atom in
graphene, and E(Cn−1Hm) the total energy for the relaxed
defect cluster. A similar computation is used in the case of
periodic conditions.

Standard DFT, with exchange-correlation functionals in the
local approximation or semilocal generalized gradient approx-
imation (GGA), is known to suffer from self-interaction errors
(SIE) [34] leading to excessive delocalization of electrons [35].
Hybrid density functionals reduce the SIE by mixing in a
fraction of Hartree-Fock (HF) exchange and can significantly
improve the study of many electronic properties. Now most
previous DFT calculations for the vacancy in graphene
were performed in the generalized gradient approximation.
Since removing a C atom modifies the delocalized π states
into a localized defect state, a relevant improvement to the
calculations could be the use of hybrid-DFT, since hybrid
functionals may describe localized states better than GGA
functionals [27]. The general form of the hybrid functional we
use is

EPBEh
x + EPBEh

c = αEHF
x + (1 − α)EPBE

x + EPBE
c , (2)

where EPBE
x and EPBE

c denote the PBE exchange and correla-
tion energy, respectively, and EHF

x is the exact HF exchange
energy: for example, α = 0 corresponds to the PBE, and
α = 0.25 to the PBE0 functional [36].

The choice of the optimal α factor is system dependent, as
shown in Ref. [27]. There, the choice is based on Koopmans
theorem for the ionization potential, gauged through many-
body G0W0 calculations for finite systems. Here we simulate
defects in graphene, and as such the goal is to find the
optimal factor for the infinite extended system. We cannot
apply the same procedure here since we need GW results for
the extended crystal, which cannot be obtained with the same
code. We rely on theoretical results from the literature for the
Fermi velocity vF , coming from GW methodology [37,38],
and experimental results [39] for the Work Function EW . With
this rationale we choose α = 0.25, from the much-adopted
functional PBE0, with which we obtain vF = 1.3 × 106 m/s
and EW = 4.35 eV (compared to vF = 0.98 × 106 m/s and
EW = 4.24 eV with PBE).

Regarding the cluster simulation models, the σ − π char-
acter allows us to use hydrogen-saturation of a graphene cut
or nanoflake, with the required absence of imbalance states.
We adopt for the electronic structure the same factor α = 0.25
since we are simulating by the cluster model the defect in the
infinite crystal (it must be noted that the optimal factor [27]
for this size of nanoflakes would be in the range α ∼ 0.4–0.6).

Simulations models

It is possible to cut bulk graphene in different sizes and
shapes, which allows us to create a cluster model which
reproduces some relevant properties for the defect, such as
symmetry. Graphene is a particular case for this approximation
since nanoflakes can be specifically associated to chemically
stable, well-known polyaromatic hydrocabons (PAHs) [40],
and long flakes approach the well-studied graphene nanorib-
bons [41,42]. In this last case, it is also well known that the
character of the saturated border, arm-chair or zigzag, is very
important for the electronic structure [43,44]. We here will
require that the structural conformation of the perfect cluster
involves at least a C3 symmetry operation, matching the C3

rotation axis for regular graphene. Two series of hexagonal
(H ) clusters (D6h group) were analyzed, with arm-chair (AC)
and zig-zag (ZZ) edges as shown in Fig. 1 for (HAC)- C222H42

and (HZZ)-C216H36.
For the specific settings reported above, the resulting

average carbon-carbon bond distances are 1.42 Å, and
1.09 Å for carbon-hydrogen bond lengths, and the (C-C-C)
angle is 120◦, thus we obtained the expected sp2 hybridization
character of carbon atoms. It is important to note that all
structures were fully relaxed without any symmetry restriction.
All structures remain completely flat after the relaxation
of atomic positions, regardless of the size, and the overall
symmetry is maintained.

To begin, we show in Fig. 2 the energy spectra for
the two clusters, which have a similar number of atoms,
N ∼ 220, but different edges. The highest occupied molecular
orbital (HOMO) and the lowest unoccupied molecular orbital
(LUMO) are two-fold degenerate for both HZZ and HAC.
Already at the PBE level we have a sizable HOMO-LUMO
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FIG. 1. Cluster models adopted here for graphene, hexagonal D6h symmetry (a) HAC C222H42 arm-chair and (b) HZZ C216H36 zig-zag
edges.

gap coming from the confinement effect, however, it is worth
noting that a quite significant increase is seen when we adopt
PBE0.1 As is well known [45,46] this significant increase in the
HOMO-LUMO gap is seen for finite systems when a fraction
of the exact exchange is included via the hybrid functional
approach; here these HOMO-LUMO gaps do not represent
the actual gaps expected for nanoflakes due to our choice of
α factor, but just the cluster confinement effect. We simulated
smaller clusters (HAC from 114 C atoms and HZZ from 96 C
atoms) and we see that the HOMO-LUMO gap closure is
very slow with the cluster radius, as expected. An important
characteristic of the frontier states in the case of zigzag edges
is the concentration at the edges, not seen for the armchair
cluster; however, we can see that at the center, where the
vacancy will be simulated, this effect should not be important.
The difference in aromaticity between the clusters also brings
a difference in the conjugation design of the frontier states,
however, both are fully conjugated.

As reported in the literature in two independent and almost
simultaneous papers [19,20], graphene nanostructures can
have nonzero spin magnetic moment due to the sublattice
imbalance mentioned above (Lieb’s theorem) [22]. In the case
of hexagonal clusters the sublattice imbalance does not exist
so the spin should be zero regardless of the type of edges.
Indeed, we verify that none of the states show spin splitting
for both PBE and PBE0 functionals. Our results herein are in
agreement with earlier theoretical results [19,20,47].

1For the largest HAC cluster and for the (6 × 9) and (8 × 8)
supercells using PBE0 we adopt TIER2 with exclusion only of the
H (3d) basis; A H (3d) basis is anyhow included in the TIER1 portion
of the basis.

Regarding the supercell (SC) models, as said above we will
simulate the vacancy in the symmetrical 3n (6 × 6) SC, much
adopted in the relevant literature, however, we will compare
results to the 3n + 1 (7 × 7) and 3n − 1 (8 × 8) SCs, which
do not carry the same symmetry problems, and also for the
nonsymmetric (6 × 9) SC.

III. VACANCY IN GRAPHENE

Perfect graphene is nonmagnetic, but the presence of the
vacancy can induce magnetism, by breaking the symmetry of
the π -electron system. Theoretical results are, however, not
identical, and depend on the specific model or methodology
adopted. As already commented in the Introduction, in the
past years several works were dedicated to this study, using
the different approaches of cluster or periodic conditions, and
different theoretical formalisms [5–17,48,49]. Discussing first
the results for the geometrical structure, there is consensus
about the occurrence of Jahn-Teller distortion [50] for the
surrounding atoms, with two of the three (here named C1
and C2, see Fig. 3) reconstructing, and realizing a (weak)
complete σ -π bond, while the remaining (C3) atom carries the
σ and π dangling bonds. Also, some of these previous stud-
ies [9,10,13,17] found that when the calculation is performed
without spin polarization (or with constrained zero spin), the
C3 atom is projected out-plane, but when the spin is included
(or free) the defect is back to full planar morphology. This is,
however not consensual, and indeed the two conformations are
very close in energy [13,17,51].

This discussion leads us to reported results for the magnetic
moment of the defect, as obtained [9–13,15,17,48,49] from
different works: Lehtinen et al. [9] and Ma et al. [10] reported
a magnetic moment of ∼1.04 μB (8 × 8 supercell, 3n − 1
family, PBE-sp). Palacios and Ynduráin [12] detailed the

125431-3



A. M. VALENCIA AND M. J. CALDAS PHYSICAL REVIEW B 96, 125431 (2017)

PBE

PBE PBE0

PBE0

HAC

HZZ

En
er

gy
 (e

V
)

En
er

gy
 (e

V
)

Eg=1.89 eVEg=1.10 eV

Eg=1.38 eVEg=0.73 eV

HOMO

LUMO

HOMO

LUMO

FIG. 2. Electronic energy levels for hexagonal H clusters in the
region near the Fermi level, results from PBE and PBE0. Solid
(dotted) lines indicate occupied (unoccupied) states. Upper panel
HAC-C222H42 and lower panel HZZ-C216H36. Energies aligned to
the Fermi energy of the perfect crystal by the C-1s2 average energy.
Isosurfaces for the molecular orbitals (HOMO and LUMO) at the
frontier energies from the PBE0 calculations.

analysis, and related the magnetic moment of the vacancy
with the size of used supercells (3n family); they found,
using PBE-sp, already a magnetic moment of ∼1.7 μB in
a 6 × 6 supercell, but this value decreases to ∼1.0 μB as
the supercell size increases (15 × 15). Casartelli et al. [13]
found a maximum of ∼1.9 μB in a 5 × 5 supercell, a value
that stabilizes ∼1.5 μB for larger supercells already from
6 × 6, up to 10 × 10. In an earlier work (all three families,
4 × 4 to 12 × 12 supercells, PBE-sp), Yazyev and Helm [11]
calculated, however, an increase in the magnetic moment,
from 1.12 to 1.53 μB , when the distance between vacancies
increases. We see that in all cases where the band structure is
reported with details, and as we will see below, the noninteger
value of the magnetic moment comes from the crossing of
delocalized bending bands at the Fermi energy, giving the
system a “doped” character (which, however, is generated by a
vacancy, a defect usually associated with a deep-level character

in semiconductors). At the same time, these delocalized bands
tell us that the interaction between defects in our supercell
models may bring misleading effects.

At introducing a vacancy in supercell or cluster models,
we find that it exhibits a planar Jahn-Teller distortion, and
the point-group symmetry becomes C2v . The reconstruction
seen in Refs. [9–12,15,17,48,49] is recovered here, with two
of the three affected carbon atoms binding to each other,
and one single carbon with dangling bonds remains. The
formation energy from PBE-sp results is approximately 7.6 eV,
in agreement with earlier theoretical results [8,14,52–54].

We show next our results2 for the symmetric supercell
models, for which the band structures are shown in Fig. 4.
We see first that in all cases we also find noninteger magnetic
moments μV = 1.49μB for the (6 × 6), μV = 1.30μB for the
(7 × 7), and μV = 1.38μB for the (8 × 8) supercell, coming
from the crossing of the bands at the Fermi energy. It is
interesting now to look into the details of the band structure for
the different supercells. While for the disruption of the σ states
we see quite localized defect states (flat bands) which we will
call Vσ , with a sizable spin-splitting (∼2 eV) in all models, the
effect on the π electrons is qualitatively different when moving
from the 3n to the 3n ± 1 supercells. Starting with the (6 × 6)
SC we can see that the Dirac point degenerate bands (now
upshifted relative to the Fermi energy) show very different
behavior. The lower energy band that we call here dπ shows a
clean crossing with the other bands, down to the M6SC folding
point, with no interaction except in the �6SC-K6SC path very
close to the K6SC region; these dπ up- and down-spin bands are
degenerate, so do not add to the total spin. On the other hand,
for the d’π band, responsible for the total spin and seen in
previous works [12,13,15–17], we see a strong anticrossing
with the vacancy-related band, which in this case we call
lπ (see Fig. 5), highlighting the defect-defect interaction.
This interaction results in a different character for the band
eigenstates along the Brillouin zone, so that close to the �6SC

point the states are highly delocalized (also shown in Fig. 5),
down to the Fermi-level crossing points, while at the center
of the M6SC–K6SC tract they exhibit localized defect-state
character; furthermore, the Fermi-level crossing states show a
slightly different character, with the down-spin state presenting
a more localized, defect-state character, but with the up-spin
state being delocalized, resulting in a spread-out character,
with impact on the spin-density.3 The vacancy-related lπ states

2From nonspin PBE results we observe that after optimization of
atomic positions, the vacancy is reconstructed with a weak C1-C2
covalent bond (2.1 Å) and the C3 is displaced out of the plane by
∼0.5 Å. Also we see that the surrounding atoms are displaced below
the plane by 0.2 Å, resulting in a local rippling, similar to previously
reported theoretical results [10,16,52,54,56]. Moving to results from
PBE with spin polarization, after the relaxation defective graphene is
completely flat. Here the spin-polarized flat structure is more stable
by 0.07 eV

3We performed further calculations using the QUANTUM ESPRESSO

code [57] that allow us to picture also the non-�-point eigenstate
densities, and we find that the description of the localized-delocalized
character of the states agrees with the conclusions coming from the
band-anticrossing analysis.
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FIG. 3. Vacancy in graphene (a) visualization of the atoms in the close vicinity. Model clusters: fully optimized structures with spin-polarized
PBE (b) VHAC-C222H42, (c) VHZZ-C216H36. All structures remain flat after the structural relaxation.

are in this case affected first by the symmetry-folding and
further by the parity of the supercell, interacting through the
zig-zag connection. Looking now at our results for the (7 × 7)
SC, free from the parity connection problems, the defect-defect
interaction and related band-anticrossing is also seen. We can
follow the delocalized bands d’π from the �7SC point, at
∼Ef − 1.2 eV, up to the K7SC at ∼Ef + 0.4 eV, while the
defect-related bands which we will call Vπ , seen at the �7SC-
point at ∼Ef − 0.15, cross the Fermi-level between the �7SC

and M7SC , but are found at ∼Ef − 0.3 eV close to the K7SC

point. In this SC delocalized bands are not involved anymore
in the spin generation since the Fermi-level crossing band Vπ

is the one causing the final (noninteger) magnetic moment.
Similar effects are still visible in the (8 × 8) SC, that is, we
also have no symmetry-folding thus the Vπ state is the one
crossing the Fermi energy, however, we have parity connection
and the lπ states can also contribute to the final magnetic
moment. Moving to the nonsymmetrical (6 × 9) SC, we still
have symmetry folding to the � point, the results present the
same character found for the (6 × 6), and a magnetic moment

of μV = 1.40μB . In summary, the defect-related states in these
supercells show not only a different total magnetic moment,
but also different characters, and one cannot correlate the
variations of μV to simple defect-defect distance since these
symmetry-related effects are very relevant.

We turn thus to our results using the cluster models. Figure 3
shows the geometric structures of the vacancy in the different
clusters, optimized with PBE and spin polarization. The cluster
symmetry is broken, from D6h to C2v . The removal of one π

orbital creates a lattice imbalance in the hexagonal clusters,
with a direct effect on the magnetization. As was reported
in Refs. [19,20] perfect clusters with sublattice imbalance
have nonzero spin magnetic moments, in accordance to Lieb’s
theorem. Considering this “counting rules,” the magnetic
moment of the vacancy in graphene is predicted to be 1μB .
However, one has to keep in mind that Lieb’s theorem refers
only to π orbitals and the contribution from the σ -dangling
orbital is not considered.

We here obtain a magnetic moment of 2μB already using
PBE-sp in agreement with Wang and Pantelides [49]. This
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FIG. 4. Band structure for the vacancy defect in the region near the Fermi energy, results from spin-polarized PBE, for the supercells
(6 × 6) at left, (7 × 7) at center, and (8 × 8) at right. Solid (dotted) lines indicate occupied (unoccupied) states. Energies aligned to the Fermi
energy of the perfect crystal by the C-1s2 average energy.
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FIG. 5. Isosurfaces for the d’π , lπ , and Vπ defect states
(indicated in Figs. 4 and 6) obtained with the spin-polarized PBE
functional; isosurfaces for periodic structures at the � point. The Vσ

state shown here for the (7 × 7) SC and the HZZ cluster presents very
similar character in all simulations, and the lπ state is similar in the
(8 × 8) SC.

value of the magnetic moment can be understood through
the energy spectra in Fig. 6: the defect states with different
localized character are clearly identified, the lowest-energy
occupied defect state Vσ has higher localization, shows a spin-
splitting of ∼ 2.0 eV already at the PBE level of theory, and
contributes 1μB to the magnetization. We can see from Fig. 5
that we recover here the defect state Vπ , very similar to that
seen in the (7 × 7) SC. It is more spread over the cluster,
the occupied spin orbital is the frontier HOMO level, and the
spin-splitting is much lower ∼0.2 eV than for the Vσ states.
Even so, the Vπ contribution is the same, and for the hexagonal
clusters the final magnetic moment is 2μB .

At this point, we have conflicting results coming from the
simulation of the same defect with the same formalism, just
different theoretical models: from clusters we obtain μV =
2μB and for the SCs, as seen here and in the extensive literature
mentioned above, PBE-sp results give a noninteger magnetic
moment, where the spin splitting is complete for the localized
σ defect band, but a delocalized defect-induced π -band crosses
the Fermi energy.

We now go to the final step of this work, which regards
the effect of inclusion of Hartree-Fock exchange in the DFT
functional.

In the case of clusters the actual value of μV does not change
μV = 2μB . We see in Fig. 6 a stronger spin-splitting for the
defect levels, that for the Vπ state goes from ∼0.2 to ∼1.2 eV,
and the main impact is in the placing of the acceptor level.
The isosurfaces for these specific states in the HZZ cluster
are shown in Fig. 5 where we can see the distinct localization
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FIG. 6. Electronic energy levels for the vacancy in the clusters
HAC-C222H42 (left) and HZZ-C216H36 (right), in the region near
the Fermi energy. Results from spin-polarized PBE (top) and
PBE0 (down) functionals. Solid (dotted) lines indicate occupied
(unoccupied) states. Energies aligned to the Fermi energy of the
perfect crystal by the C-1s2 average energy.

character of the σ and π states (similar characteristics are
found for the HAC cluster). We here remark that using the
PBE0 α fraction we observe, for all analyzed clusters including
the smaller ones, that the vacancy defect state V π indicated in
Fig. 6 is pinned at EF = 0, as seen by Ugeda et al. [3] and in
accordance with previous theoretical predictions [6,55], which
is not the case using PBE. We pass next to the effect with more
impact, seen for all SCs and shown in Fig. 7: We find that the
inclusion of the Hartree-Fock exchange eliminates the band-
crossing at the Fermi energy in all supercells, enhancing the
spin-splitting for the involved states and restoring the vacancy
magnetic moment μV = 2μB .

Even if the magnetic moment is now the same found
for the clusters, defect-defect interaction is still seen by the
band anticrossing structure and should not be neglected, and
the cell symmetry impacts the defect eigenstate densities.
However, another important result coming from the inclusion
of the HF exchange comes from the improved character of
these eigenstates: We can see that, from the PBE to PBE0
band structure, the width of the Vπ acceptor band decays
by ∼55–60%, indicating increased localization, as expected
from the mitigation of the self-interaction error [27]. We
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FIG. 7. Band structure for the vacancy defect in the region near the Fermi energy, results from spin-polarized PBE0 for the supercells
(6 × 6) at left, (7 × 7) at center, and (8 × 8) at right. Solid (dotted) lines indicate occupied (unoccupied) states. Energies aligned to the Fermi
energy of the perfect crystal by the C-1s2 average energy.

note that the acceptor Vπ↑ and donor Vπ↓ levels show a
different localization character (band curvature close to the
KSC point) as detected in experimental results [5], and finally
that increasing the defect-defect distance from the (7 × 7) to
the (8 × 8) SC both levels approach the Fermi energy.

Careful analysis of our results, from cluster and periodic
boundary conditions and with the inclusion of HF exchange,
leads us to predict an integer magnetic moment of μV = 2μB

for the isolated vacancy defect. The characteristic Vσ level,
seen in different DFT studies, shows a large spin splitting
of very similar magnitude in our different simulations. For the
defect π states, we also see a characteristic acceptor level in the
cluster and supercells, pinned to the Fermi energy, responsible
for the final integer magnetic moment. The confinement effect
in the cluster models places the donor level much below,
however, from periodic conditions, in the (3n ± 1) cells, we
see this level approaching the Fermi energy.

We turn now to the specific results obtained for the
(6 × 6) SC: the plot in Fig. 8, showing the spin density across
the cell, highlights the delocalized effect of this 3n-array of
defects compared to the immediately one-unit larger (7 × 7)
SC. The high spin-density centered on the vacancy site comes
from the difference in density between the lπ up and down
states, while the overall delocalization comes from the mixed
d ′ ↔ l character. We show also the spin density found for
the (6 × 9) SC, where we still see the same density along
the zigzag direction in the shorter distance, while along the
larger defect-defect distance, which has no parity connection,
the density is much lower. We suggest this symmetry-derived
behavior could be explored by designing chosen arrays of point
defects.

IV. SUMMARY AND CONCLUSION

In summary, we study the vacancy defect in graphene
through different approaches, and analyze the effects on
the obtained electronic and magnetic structure. We use both
cluster and periodic supercell models, and different exchange-
correlation functionals, PBE and hybrid DFT-HF, this last with
a fraction of Hartree-Fock exchange α chosen to properly
describe the electronic properties of graphene close to the

Fermi energy, specifically PBE0 α = 0.25. The results from
the different simulation models show that, due to the specific
symmetry and bilattice properties of graphene, symmetry-
related coupling effects have to be carefully probed when using
periodic boundary conditions to describe the isolated defect.

FIG. 8. Isosurfaces for the spin density (0.05Å−3) produced by
the array of vacancies in graphene obtained through PBE0 for
(a) 6 × 6, (b) 7 × 7, and (c) 6 × 9 SCs.

125431-7



A. M. VALENCIA AND M. J. CALDAS PHYSICAL REVIEW B 96, 125431 (2017)

Our main conclusions are that, even with the extreme
rupture of the π bands brought by a vacancy, the delocalization
intrinsic to the π states of graphene introduces long-range
effects that must be taken into account when analyzing the
supercell modeling results; we find also that the inclusion
of the proper fraction of Hartree-Fock exchange is crucial
for the description of the system, and allows us to arrive
at the value of μV = 2μB for the magnetic moment of the
isolated vacancy defect, after careful analysis of all adopted
models. In addition, we propose that the spin density created
by an array of vacancies can show interesting directional
properties.
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