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Influence of image forces on the interlayer exchange interaction in magnetic tunnel junctions
with a ferroelectric barrier
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We study the interlayer exchange interaction in magnetic tunnel junctions with a ferroelectric barrier. We focus
on the influence of image forces on the voltage dependence of the interlayer magnetic interaction (magnetoelectric
effect). The influence of the image forces is twofold: (1) they significantly enforce the magnetoelectric effect that
occurs as a result of the surface charges at the interface between ferroelectric and ferromagnetic forces, and (2)
in combination with the voltage-dependent dielectric constant of the ferroelectric barrier image forces cause an
additional contribution to the magnetoelectric effect in magnetic tunnel junctions. This contribution can exceed
the one coming from surface charges. We compare the interlayer exchange coupling voltage variation with the
spin transfer torque effect and show that for half-metallic electrodes the interlayer exchange coupling variation
is dominant and defines the magnetic state and dynamics of magnetization in the tunnel junction.
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I. INTRODUCTION

Interlayer exchange coupling (IEC) in magnetic tunnel
junctions (MTJ) is a long-standing problem in the field of
spintronics [1–14]. IEC is the interaction between magnetic
moments of MTJ electrodes. It is described as the surface
energy term of the form Eex = −J (M1 · M2)/(|M1||M2|),
where M1,2 are the magnetizations of ferromagnetic (FM)
leads (see Fig. 1) and J is the coupling constant. The coupling
induces an effective magnetic field acting on FM layers in
MTJ, Hi

ex = J/(|Mi |ti), with ti being the thickness of the ith
layer. This field may exceed coercive fields of the magnetic
leads [6,8,11]. Thus, the IEC effect is of crucial importance
for the MTJ magnetic state. Moreover, it is shown theoretically
and experimentally that the IEC effect can be controlled with
voltage (V ) applied to the MTJ [3–5,9,15–17]. This opens an
avenue to the voltage-based magnetization switching in MTJ,
which is the crucial issue for magnetic memory applications.
Note that IEC voltage dependence can be considered as a
magnetoelectric (ME) effect [18].

Applying voltage to MTJ results in a charge current which
is spin polarized due to the FM nature of electrodes. Such
a current causes the so-called spin transfer torque (STT)
effect [1,19], which is being actively studied [3–5,9,15–17].
The STT effect leads to dynamics of magnetization and
can be used to control the MTJ magnetic state. However,
switching of magnetization in MTJ with the STT effect
appears only at huge currents, overheating the system. Another
issue is the dynamical nature of STT-based magnetization
switching, which requires sophisticated tuning of the voltage
pulse.

The IEC effect is not caused by electrical current flowing
across the MTJ and exists even at zero voltage. In contrast,
the STT effect is directly related to the electron flow between
electrodes of the tunnel junction (TJ) and may not be associated
with any energy term. This is a fundamental difference between
IEC and STT effects. Spin transfer torque enters the macro-
scopic equation for magnetization dynamics as an additional
dissipation term of the form ṁ1,2 = [γ Jd/(|M1,2|t1,2)][m1,2 ×

(m1,2 × m2,1)], where Jd is the strength of the STT effect,
mi = Mi/|Mi |, and γ is the gyromagnetic ratio.

In a symmetric MTJ with the same FM metal in both
electrodes, the IEC effect is the even function of voltage,
J (V ) = J (−V ) [15,16,20–22]. However, from a practical
point of view, the odd voltage dependence of the IEC is more
useful. It would allow one to change the magnetic coupling
type from FM to antiferromagnetic (AFM) and finally to re-
alize controllable reversible magnetization switching in MTJ,
avoiding problems of dynamical SST-based remagnetization.

Theoretically it has been shown that the odd contribution
to J (V ) may appear for asymmetric MTJ (having different
leads) [16]. IEC effect appears due to virtual hopping of
electrons between FM leads and therefore is defined by
the tunneling matrix. MTJ with different electrodes has an
asymmetric barrier, resulting in the odd voltage contribution
to the tunneling probability. Weak odd contributions can also
appear in the system with FM leads of different thickness [23].
Recently, the IEC was considered in asymmetric MTJ with a
ferroelectric (FE) barrier [24]. Following Ref. [25], we will call
such systems multiferroic tunnel junctions (MFTJ). In MFTJ,
the magnitude of the IEC effect is defined by the direction of FE
polarization. Switching polarization direction changes the IEC
strength. The dependence of the IEC effect on the polarization
appears due to surface charges at the FE/FM interfaces in
MTJ. They deform the barrier potential profile and therefore
change tunneling matrix elements defining the IEC strength.
These theoretical findings were not verified experimentally.
IEC was studied mostly in symmetric MTJs without FE (such
as Fe/MgO/Fe).

A new mechanism of IEC was recently proposed for MFTJ
and granular multiferroics [26–30]. The IEC may appear
due to the spin-dependent part of the s-s electron Coulomb
interaction. Two electrons in different leads experience the
Coulomb-based exchange interaction as in the Heitler-London
model. Summation of the interaction over all electron pairs
gives the magnetic coupling between leads. In the case of a
granular system, the Coulomb blockade affects the IEC and
also depends on the dielectric constant. Interestingly, the IEC
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FIG. 1. Left panel: Magnetic tunnel junction with ferroelectric
barrier biased with voltage V . M1,2 are the magnetizations of left and
right leads, P is the ferroelectric polarization, d is the spacer thickness,
and t1,2 are the electrodes thicknesses. Right panel: Red lines are the
dependencies of the dielectric constant ε of ferroelectric layer on
voltage. Two curves correspond to two polarization states. Black
arrows shows hysteresis loop bypass. Vs is the switching voltage. εmin

and � ε are determined in Eq. (7). Blue lines demonstrate polarization
of ferroelectric layer as a function of voltage. P0 is the saturation
polarization. The curves correspond to ferroelectric Hf0.5Zr0.5O2.

due to the many-body effects is inversely proportional to the
FE barrier dielectric constant, ε. In turn, ε is voltage dependent
in FEs and has the odd voltage contribution, leading to the odd
component of the IEC effect in MFTJ.

In the present paper, we will study one more mechanism
leading to the odd contribution in IEC voltage dependence in
MFTJ. In contrast to our previous works [26–30], here we
do not take into account the exchange interaction between
s-s electrons and the Coulomb blockade. We focus on the
hopping-based IEC effect, taking into account image forces
acting on electrons in the barrier. Image forces were neglected
in previous studies of the IEC effect. This is reasonable for
MTJ without a FE barrier since in this case the forces just
reduce the barrier height independently of applied voltage.
This is not the case in MFTJ. Image forces are inversely
proportional to the barrier dielectric constant, ε. Since ε is
voltage dependent in FEs, the barrier reduction due to the
image forces is also voltage dependent. This introduces an
additional odd contribution to J (V ) dependence in MFTJ.

Recently, the influence of image forces on electron transport
in nonmagnetic TJ with a FE barrier and in granular metal
with a FE matrix was studied [31–33]. In the case of granular
FE, the image forces affect the Coulomb blockade effect,
leading to conductivity modification. In FE tunnel junctions,
the image forces essentially influence electron transport and
cause significant electroresistance effect. In the present paper,
we add magnetic degrees of freedom and study thermodynamic
rather than transport properties of TJ.

The goals of this work are the following: (1) study
the influence of image forces on the IEC effect due to
surface charges created by the FE polarization, Ref. [24]; (2)
investigate the ME effect appearing due to a combination of

image forces and voltage-dependent dielectric constant of the
FE barrier; (3) compare IEC voltage variation with the STT
effect.

TJ with FE barrier is currently not very well studied. Thin
FE films lose their electrical properties as their thickness is
reduced down to the nanometer-scale range [34]. Therefore,
the fabrication technique for TJ with a FE barrier is rather
complicated. A lot of effort has been spent to investigate
transport properties of nonmagnetic TJ with FE barrier [35].
The magneto-resistance effect in MFTJ was also studied [36].
Investigation of the IEC effect in MFTJ has just started
recently [2].

The paper is organized as follows. The model of MTJ with
FE barrier and calculations of IEC and STT effects are given in
Sec. II. In Secs. III A and III B, we discuss general behavior of
IEC and STT effects. Dependencies of IEC and STT effects on
various parameters are discussed in Secs. III C–III H. The last
subsection of Sec. III is devoted to magnetization switching
based on the IEC effect in MFTJ.

II. THE MODEL

In order to study the IEC in MFTJ, we will use the
following simple model: We assume that conduction electrons
are responsible for the interlayer interaction. MFTJ consists of
two homogeneously magnetized FM layers and a FE insulating
spacer. Electrodes are thick enough to be considered as infinite.
A voltage V is applied to the MFTJ. The FE barrier has
polarization P , dielectric constant ε, and thickness d (see
Fig. 1). Polarization is uniform and directed along the x axis.
Both polarization P and dielectric constant ε are functions of
the applied voltage (see details in Sec. II A). The Hamiltonian
for electrons is given by

Ĥ =

⎧⎪⎪⎨
⎪⎪⎩

− h̄2�
2m

− Jsd(σ̂m1) − Uc + Up(x), x < 0,

− h̄2�
2me

+ hb + Up(x) + Uif (x) − eV x
d
, 0 < x < d,

− h̄2�
2m

− Jsd(σ̂m2) − Uc + Up(x) − eV, x > d,

(1)

where unit vectors m1,2 are directed along magnetizations of
the leads, σ̂ is the vector of Pauli matrices, Jsd is the spin
subband splitting occurring due to interaction of conduction
electrons with localized ones (as in Vonsovskii’s s-d model)
or due to exchange interaction between conduction electrons
themselves [37], x is the coordinate perpendicular to the
layers surfaces, and m and me are the effective electron
masses in metallic leads and the insulator layer. Generally
the effective mass in FM leads may be spin dependent,
especially in half-metals, but we do not take this into account
for simplicity. hb defines the barrier height above the Fermi
level of the left lead. We assume that the Fermi level of the
left electrode corresponds to zero energy. The right lead is
biased by the applied voltage. Quantities −Uc ± Jsd determine
the bottoms of the conduction majority and minority spin
bands. Using these quantities, one can define the minority
and majority Fermi momentums, k±

F =
√

2m(Uc ± Jsd)/h̄2.
If Uc > Jsd both minority and majority bands exist and we
have a two-band ferromagnet (TBF). If Uc < Jsd, only one
spin subband works and the leads are half-metal ferromagnets
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(HMF). The potential Up appears due to the influence of the
FE polarization and is defined as follows [38]:

Up = φp

⎧⎪⎨
⎪⎩

ex/δ, x < 0,(
1 − 2x

d

)
, 0 < x < d,

−e−(x−d)/δ, x > d,

(2)

with the characteristic potential created by surface charges

φp = edP δ

ε0(d + 2 ε δ)
. (3)

Here e is the electron charge, ε0 is the vacuum dielectric
constant, and δ is the Thomas-Fermi screening length. The
potentials are found using electrostatic problem where FE with
polarization P is clamped in between two metals. The metals
are treated within the Thomas-Fermi approximation with close
circuit conditions.

The term Uif (x) in Eq. (1) describes the influence of the
image forces. They appear due to the interaction of electron
inside the barrier and image charges occurring in metallic
leads. We assume that electron concentration in the leads is
high enough and the screening length in these metals δ is small
enough (δ � d). In this case, one can use a simple picture of
image forces inside the insulating barrier [39]

Uif (x) = 0.795e2d

16πε0 ε x(d − x)
. (4)

The terms with voltage V in Eq. (1) describe the effect of
the applied voltage. Following Refs. [38,39], we introduce
the total potential barrier “seen” by the tunneling electron as
follows (region 0 < x < d):

U (x) = hb + Up(x) + Uif (x) − eV
x

d
. (5)

Calculating the image forces potential, we treat the metallic
leads as ideal neglecting corrections due to finite screening
length. When calculating potentials Up, the finite screening
length is crucial and cannot be neglected. Note that Uif (x)
diverges at points x = 0 and x = d. In fact, in the vicinity of
these points the image force approximation does not work.
The region where potential Uif (x) is not valid is defined
by the size of the correlation hole size in metal. Usually it
is of order of 0.05 nm. In this region, the potential should
smoothly transform from Uif (x) to the bulk metal potential.
Since we consider the FM lead, the potential in the vicinity
of metal/insulator interface should be spin dependent even
inside the insulator. In our calculations, we restricted image
force potential at the level of the lower spin subband bottom.
We tried a number of potential shapes. All shapes give the same
result, because the shape of image forces potential in the close
proximity to FM/FE interface influences only the low-lying
electron states. These electrons make a small contribution to
the overall IEC effect. The true potential profile in the vicinity
of the interface is a long-standing problem which is not fully
resolved by now. Even ab initio calculations based on density
functional theory do not provide an acceptable picture of the
potential profile.

A. FE layer

FE polarization below the Curie temperature is a function
of applied voltage and has a hysteresis. We use the following
formula to describe the FE polarization as a function of applied
voltage:

P ±(V ) = P0
1 − e−(V ∓Vs)/�Vs

1 + e−(V ∓Vs)/�Vs
, (6)

where Vs is the switching voltage, P0 is the saturation
polarization, and �Vs is the width of the transition region.
Superscripts + and − correspond to the upper and the lower
hysteresis branches, respectively. For example, the polariza-
tion of HfZrO2 is shown in Fig. 1 and can be approximately
described with the following parameters: P0 = 30 μC/cm2,
Vs = d × 108 V (with d being measured in m), and �Vs =
1Vs. The parameters were obtained by fitting the experimental
curves of Ref. [40].

The dependence of dielectric constant on voltage is given
by the expression

ε±(V ) = εmin + �ε

1 + (V ∓ Vs)2/�V 2
s

. (7)

This dependence captures the basic features of dielectric
constant behavior as a function of electric field. The dielectric
permittivity has two branches corresponding to two polariza-
tion states. In the vicinity of the switching bias, the dielectric
permittivity, ε, has a peak. For example, the dielectric constant
of HfZrO2 can be described using the following parameters:
εmin = 35, �ε = 15 (see Fig. 1).

B. Toy model of the electron potential profile

On one hand, the potential profile given in Eq. (5) is
complicated enough and does not allow for an analytical
solution of Shrodinger’s equation and calculation of wave
functions. On the other hand, the profile does not take into
account several phenomena such as band structure of leads and
the barrier or exchange-correlation effects in the vicinity of the
FM/I interface. Since it does not allow quantitative estimates
of the IEC in MTJ, we will further simplify the potential profile.
Our simplification will not reduce the quantitative precision of
our calculations but still capture the main physical phenomena
that we will study in the present work.

The effect of the surface charges potential Up on IEC is stud-
ied in Ref. [41]. Surface charges change the potential barrier for
electrons and therefore change the tunneling probability. This
effect can be captured within the quasiclassical approximation
in which the average barrier height defines the tunneling
probability. The influence of image force on the total barrier
profile is twofold: (1) decreasing the effective barrier width and
(2) decreasing the effective barrier height. Generally, these two
effects are also captured by the quasiclassical approximation.

We will change the initial barrier in Eq. (5) with effective
rectangular barrier of width deff and height heff . Within the
quasiclassical approximation, the effective barrier thickness
is defined by the intersection of the potential profile with the
electron energy level. The points of intersection are x1,2 and
deff = x2 − x1. This point generally depends on the electron
energy.
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Note that due to the bias applied to the MFTJ, the Fermi
levels are different in the left and the right leads and the
effective barrier seen by electrons in the right and the left
electrodes is different. Generally, we can introduce a different
barrier thickness for electrons in different leads d

r,l
eff . To

determine d l
eff , we find the intersection (points x l

1,2) of U (x)
with electron energy. To determine d r

eff , we find intersections
(points xr

1,2) of U (x) with energy −eV , which is the Fermi
level of the right lead. At zero bias, d r

eff = d l
eff .

If we neglect the image forces, the effective barrier
thickness is the same for electrons in both leads and at any
energy is equal to d. In the opposite situation, when we neglect
the effect of the bias and polarization, the effective thickness
at Fermi level is given by deff = d

√
1 − hc/hb. The quantity

hc is given by

hc = 0.795e2

4πε0 ε d
. (8)

This is the characteristic potential associated with image forces
in the TJ. Particularly, hc is the reduction of the initial potential
barrier height [see Eq. (5)] at the symmetry point (x = d/2)
at zero bias.

Effective barrier height seen by electrons in different leads
is also different and one can introduce h

l,r
eff . Even in the absence

of the image forces and surface charges, the applied bias leads
to difference in the height of eV and hr

eff = hl
eff + eV . A

general expression for the effective barrier height has the form√
heff = 1

deff

∫ x2

x1

√
U (x) − Edx. (9)

Here E is the electron energy counted from the Fermi level of
the left electrode. Because the bias occupied electron energies
are different in the left and the right leads, one has different
effective barriers.

In the next two subsections, we provide simplified expres-
sions for IEC and STT in MTJ. In these formulas, we take
into account only the electrons at the Fermi level and use
h

l,r
eff for effective barrier heights for electrons in the left and

the right leads at their Fermi levels. While this approach is
oversimplified and misses some important phenomena, it still
gives the general trends of the IEC and STT effect, which is
useful to keep in mind. In Sec. III, we calculate IEC and STT
effects, taking into account all electrons at all energy levels
(see the Appendix).

The most important phenomena that we study is the
dependence of the IEC on dielectric properties of the barrier.
As the dielectric constant becomes higher, the influence of
image forces becomes weaker. For infinite ε, the image force
potential disappears. This effect is captured in the toy potential.
Similarly, the influence of voltage and FE polarization is also
captured in this approach.

C. Exchange interaction in MTJ

Interlayer exchange coupling in MTJ can be described
using the following macroscopic surface energy density:
−J (m1 · m2). The IEC effect enters into the Landau-
Lifshitz-Gilber (LLG) equation as the torque, ṁ1,2 =
[γ J/(|M1,2|t1,2)][m1,2m2,1]. We will follow Slonczewski ap-
proach to calculate the IEC in MFTJ. The IEC is given by the

equation

J = −
∑

i

Qi
y, (10)

where Qi
y is the y-spin component of the spin current density

carried by the electron in the state i. The sum is over all orbital
and spin states in both leads. The orbital state is described by
quasimomentum inside each lead. The spin quantization axis
for electrons in left (right) lead is along magnetization of left
(right) electrode. To calculate spin current of an electron in the
state i, we find an electron wave function using the effective
rectangular barrier model. We calculate the effective barrier
height and width for each state i (see more details in the the
Appendix). The magnitude of the spin current depends on the
mutual orientation of m1 and m2 as sin(ϑ), where ϑ is the angle
between m1 and m2. We calculate spin currents at ϑ = π/2.

Simplified analytical expressions for IEC in MFTJ can be
found following the Slonczewski approach [1]

J = −
∑
i=l,r

h̄2
(

i

eff

)4
bi

4 me π2
(
di

eff

)2[(

i

eff

)2 + (k+
F )2

]2 e−2
i
effd

i
eff , (11)

where

bi = k+
F

[
(k+

F )2 − 
i
eff|k−

F |](

i

eff + |k−
F |) , Jsd > Uc,

bi = 
i
eff

[(

i

eff

)2 − k+
F k−

F

]
(k+

F − k−
F )2(k+

F + k−
F )[(


i
eff

)2 + (k−
F )2

]2 , Jsd < Uc.

(12)

Here we use the electron wave function inverse decay lengths,



l,r
eff =

√
2 me h

l,r
eff/h̄

2. The effective barrier parameters should
be calculated at the Fermi levels of the left and the right
electrodes, correspondingly. For zero voltage, 
 l = 
r, and
the above expression turns into the Slonczewski formula. At
finite bias, the electron tunneling from the left electrode to the
right one sees a different barrier than the electron moving in
the opposite direction. This results in voltage dependence of
IEC effect.

D. Spin transfer torque

The STT appears at finite bias [1]. This effect is described by
a tensor with spin and orbital indexes. In our case, the electron
current flows along the x axis. The tensor elements with orbital
indexes y and z are zero. Therefore, we omit the orbital index
in the spin current notation and keep only the spin index. The
STT effect cannot be associated with some energy contribution
as the IEC effect [10]. It can be introduced into LLG
equation for leads magnetizations as an additional torque in the
form, ṁ1,2 = [γ J

1,2
d /(|M1,2|t1,2)][m1,2(m1,2m2,1)]. Note that

the magnitude of the torques acting on the left and right leads
can be different at finite voltage. System symmetry results in
the following relation: |J 1

d (V )| = |J 2
d (−V )|. Below we will

calculate the STT acting on the left lead and omit the upper
index. The STT effect does not exist without a charge current
and is always related to energy dissipations. Therefore, we
mark it with the subscript d.
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STT has angular dependence similar to IEC, sin(ϑ). For
clarity, we assume that m1 is along the z axis. Then, the
x component of spin current flowing into the left lead is
associated with the STT effect. We neglect the z component
of the spin current when calculating the STT acting on the
left lead. This is reasonable, providing that the magnitude of
magnetization is fixed by strong internal interaction. The STT
effect constant is given by the following expression,

Jd = −
∑

i

Qi
x, (13)

where summation is only over electrons carrying the electric
current (see the Appendix for details).

For analytical analysis, one can use the simplified expres-
sion [1]

Jd = eV e−2
effdeff

2π2deff
D, (14)

where the quantity D is given by

D = 
3
eff(k

+
F )2

[(
eff)2 + (k+
F )2]2

, Jsd > Uc,

D = 
3
eff

(

4

eff − (k−
F )2(k+

F )2
)
[(k+

F )2 − (k−
F )2][


2
eff + (k−

F )2
]2[


2
eff + (k+

F )2
]2 , Jsd < Uc.

(15)

The effective barrier parameter are calculated at the Fermi
level of the left (right) lead for positive (negative) V . Equation
(14) provides the linear in voltage term to the STT only.
Therefore, it cannot describe the STT voltage asymmetry
known theoretically and experimentally [3–5,15,22]. In our
numerical calculations, we take this effect into account.

III. EXCHANGE INTERACTION IN MFTJ

In this section, we will calculate the IEC and STT in MFTJ
as a function of applied voltage depending on the system
parameters.

Voltage dependence of IEC can be considered as ME effect
in MFTJ. In the literature, a variation of the IEC constant
with voltage is called fieldlike (or perpendicular) STT effect
[3–5,15]. We will refer the IEC variation as the ME effect in
the present work.

Variation of J may cause a variation of the system magnetic
state. Similarly, STT may also cause magnetization rotation.
STT and IEC effects produce spin currents flowing across
the tunnel junction. The spin direction of these currents is
different. The IEC produces the spin current perpendicular to
magnetization plane while the STT causes the spin current in
the plane of system magnetization. We will compare here only
magnitudes of these spin currents J and Jd. Magnetization
dynamics in MFTJ under the action of IEC variation and
the STT effect is beyond the scope of the present paper and
requires a separate investigation.

A. System parameters

Generally, the system has a lot of parameters. To reduce the
number of variables, we fixed some of them. We will use the
parameters value chosen in this section in all cases below.

On one hand, the FE cannot be thinner than a single atomic
layer; on the other hand, the IEC itself decreases exponentially
with d for d > 0.5 nm [6,8,11]. So, we will use d = 1 nm in
all our calculations, keeping in mind that only for such a thin
barrier the IEC has some impact on the magnetic state of MTJ.

In a similar way, we will fix the barrier height hb = 0.5 eV
in all our calculations. Such a value is relevant for FE
insulators. Obviously, increasing the height decreases the
exchange interaction between the leads and the STT effect.
Therefore, it is better to keep it as small as possible to be able
to influence the magnetic state of MFTJ.

Also, we fix parameters of the FE polarization hysteresis
loop such as switching voltage, Vs = 0.1 V, and the switching
transition region, �Vs = 0.1 V. They correspond to 1 nm thick
layer of Hf0.5Zr0.5O2 (see experimental data of Ref. [40]).

We fix the effective mass in the barrier, me at the level
of 0.4 electron mass. It follows from Eq. (11) that the IEC
effect decreases with the barrier effective mass growth. In
the absence of polarization and image forces, the following
relation holds: J (αme,hb) = (1/α)J (me,αhb). The STT effect
decreases slower than the IEC with the growth of barrier
effective mass, Jd(αme,hb) = Jd(me,αhb); see Eq. (14).

Similar scaling rules can be written for effective mass of
electron in FM leads, J (αm,Uc, Jsd) = J (m,αUc,α Jsd) and
Jd(αm,Uc, Jsd) = Jd(m,αUc,α Jsd). In all calculations, we use
m = 0.9 of electron mass.

For good metals, the parameter δ in Eq. (2) is of order of
0.05 nm. Taking into account the fact that ε ∼ 50 we have
(d + 2 ε δ) ≈ 2δ ε. In this regime, δ vanishes in Eq. (2) and
does not influence the IEC and STT effects. In our numerical
calculations, we fix the screening length, δ = 0.05 nm.

B. General remarks

In this section we use Eqs. (5), (11), and (14) to analyze
general properties of IEC and STT effects.

(1) Since we consider the symmetric MTJ, the IEC effect
does not depend on the direction of FE polarization at zero
bias voltage. Spin transfer torque is absent at V = 0.

(2) The IEC depends on (k+
F − k−

F )2 ∼ Jsd
2 while the STT

depends on (k+
F − k−

F )1 ∼ Jsd
1. This immediately leads to the

fact that the STT becomes more important with decreasing
of Jsd.

(3) At zero polarization, due to the system symmetry, the
IEC effect should be an even function of voltage. By neglecting
the image charges one can get

√
heff ≈

√
hb

[
1 − eV

hb
− (eV )2

24h2
b

]
. (16)

The linear term does not contribute to the IEC effect (which
follows from the symmetry consideration). The quadratic term
shows that effective barrier reduces with increasing voltage.
Thus, the IEC effect increases with voltage in agreement with
other calculations [22].

(4) By neglecting the surface charges (P0 = 0) and at V =
0, one gets the following expression for the average barrier
height at the Fermi level:

√
heff ≈

√
hb

(
1 − hc

4hb
ln

hb

4hc

)
. (17)
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One can see that as ε becomes higher, barrier is higher and J

and Jd are smaller. This is the most general effect of the image
forces.

Note that many FEs (for example, BTO or PZT) have
very high dielectric constants (∼1000), making image forces
negligibly weak. Image forces are significant in FEs with low
dielectric constant only. There are a number of low-dielectric-
constant FEs such as the hafnium oxide family XHfO2 (where
X can be Y, Co, Zr, Si) [42–44], rare-earth manganites XMnO3

(where X is the rare-earth element) [45], colemanite [46],
Li-doped ZnO [47], etc. There are also numerous organic FEs
with low dielectric constant [48–50].

(5) For voltage-dependent dielectric constant, the effective
barrier height acquires an additional [to that shown in Eq. (16)]
dependence on voltage. If ε(V ) has the odd component (as it
does in FE), the barrier height and the IEC would also have
the linear in voltage contribution caused by image forces.

(6) At zero voltage and neglecting image forces, one can
get the following estimate for the effective barrier:

√
heff ≈ 1

3φp
(
√

hb + φp
3 − √

hb − φp
3
)

≈
√

hb

(
1 − φ2

p

12h2
b

)
. (18)

Surface charges reduce the barrier at zero voltage and increases
the IEC and STT effects. This reduction of barrier appears due
to internal electric field is created by the surface charges. This
effect is similar to the one discussed in the third clause.

At finite voltage, the electric fields produced by polarization
and voltage can be co-directed or counterdirected. For exam-
ple, for positive voltage and positive polarization both electric
fields are codirected, leading to the reduction of the barrier
height and to the increase of the IEC effect. Negative voltage
at P > 0 decreases the interlayer coupling. FE polarization
(surface charges) breaks the MTJ symmetry and results in the
linear contribution to the voltage dependence of the IEC effect.

C. IEC and STT as a function of spin subband splitting, Jsd

Figure 2 shows a typical dependence of IEC and STT on the
spin subband splitting, Jsd, for the following parameters: Uc =
3.4 eV, V = 0.1 V (STT is finite only for nonzero voltage).
We neglect here the FE polarization (P0 = 0) but consider the
image forces. We show the curves for several value of ε. The
IEC is positive for small spin subband splitting and changes
its sign for Jsd approaching Uc. For HMF case (Jsd > Uc), the
IEC effect is negative. Jd has a similar behavior, changing its
sign for large spin subband splitting.

Note that spin subband splitting and Fermi energy can
be tuned in many compounds by varying the proportions of
material components. For example, the spin subband splitting
in FM metal Co1−xFexS2 [51] strongly depends on the
concentrations of Fe and Co. At zero Fe concentration, the
material is a TBF. Increasing of Fe concentration transforms
this material to a half-metal.

STT is much weaker for MFTJ with half-metal electrodes
(Jsd > Uc), compared to the IEC constant J . Thus, in the
HMF region the voltage-based variation of IEC (ME effect)
is the main option for the control of MFTJ magnetic state.

FIG. 2. The IEC (J ) and STT (Jd) effects as a function of the
spin subband splitting Jsd at V = 0.1 V and Uc = 3.4 eV (relevant
for Co2MnSi). Blue curves show J and the red ones show Jd. The
effect of FE polarization is neglected (P0 = 0). Image forces are
taken into account. Solid, dash-dot-dotted, dashed, dash-dotted, and
dotted curves correspond to ε = ∞, 100, 50, 25, and 10. Vertical
line at Jsd = Uc shows a border between two band ferromagnet and
half-metal cases. Inset shows J and Jd as a function of applied voltage
V for different Jsd at Uc = 3.4 eV and ε = 10.

For two band FM metals both the STT and IEC variation are
important. For sufficiently small spin subband splitting, the
STT becomes the most important mechanism causing MTJ
magnetic dynamics under the applied voltage.

Parameters J and Jd depend on the dielectric constant of
the barrier ε. Increasing ε increases the average barrier height
according to our estimates, Eq. (17). This leads to decreasing
of coupling and the STT effect. One can see that variation of
J with ε is significant and comparable to the value of the STT
effect.

D. Dependence of the IEC and STT on voltage
in MTJ without FE

Inset in Fig. 2 shows the IEC and STT effects as a function of
applied voltage in MTJ with simple insulating barrier (P0 = 0
and ε is voltage independent). We use ε = 10 as in MgO
barrier. Two curves for IEC correspond to different values of
spin subband splitting, Jsd. It is known [16] that variation
of IEC with applied voltage is comparable to the STT in
MTJ. STT is asymmetric function (see red lines) of voltage in
agreement with previous theoretical and experimental studies
[3–5,15,22]. Dependence of IEC on voltage is an even function
of V due to symmetry of the tunnel junction without FE barrier.

E. Influence of image forces and surface charges on
the IEC in MFTJ

Both the surface charges (and associated potential Up) and
the image forces (Uif ) influence the IEC effect in MTJ with
FE barrier. To study their effect, we calculate three different
quantities: J if , J p, and J . The first one, J if , is the IEC effect,
taking into account only image forces and neglecting the
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FIG. 3. IEC (J ) for MTJ with the FE barrier as a function
of voltage V . Lead parameters are Jsd = 3.6 eV and Uc = 3.4 eV
(relevant for Co2MnSi HMF). Dotted lines show IEC, neglecting
image forces but taking into account FE surface charges, J p. P (V ) is
given by Eq. (6) with P0 = 30 μC/cm2 (relevant for HfZrO2 FE).
Blue and red curves correspond to different hysteresis branches.
Dashed lines show IEC taking into account only image forces, J if .
Voltage dependence of dielectric constant ε is given by Eq. (7) with
εmin = 30 and � ε = 15 (relevant for HfZrO2 FE). Solid lines are
the IEC taking both effects into account, J . Black short-dashed line
shows IEC for MTJ with simple insulating barrier with no polarization
and voltage-independent dielectric constant ε = 30, J I. Arrows show
hysteresis bypass direction.

potential Up [we put P0 = 0 but use the voltage-dependent
ε in Eq. (7)]. J p is calculated neglecting Uif (image forces) but
taking into account surface charges described by Up. Quantity
J accounts for both effects.

Figure 3 shows the IEC effect as a function of voltage for
the case of HMF leads with Uc = 3.4 eV and Jsd = 3.6 eV.
These parameters correspond to HMF Co2MnSi [52,53]. The
HMF has a rather complicated band structure. We model it
with free electron model. Majority and minority spin bands
bottoms are taken from ab initio calculations. Effective mass
is found by fitting the density of states at the Fermi level in
the majority spin band to the density of states in ab initio
calculations. The chosen effective mass (m = 0.9 of free
electron mass) corresponds to HMF Co2MnSi. Note that
this material demonstrates half-metallic properties and high
tunneling magneto-resistance in the MTJ structure [53,54] in
contrast to many HMFs losing their high spin polarization at
an interface [55]. Curves in Fig. 3 correspond to the FE barrier
with saturation polarization P0 = 30 μC/cm2. Variation of
dielectric constant in the barrier is described by Eq. (7)
with εmin = 30 and �ε = 15. These parameters correspond
to Hf0.5Zr0.5O2 FE [42].

The black short-dashed line in Fig. 3 shows the IEC
(J I) as a function of voltage, neglecting the dependence of
polarization (P0 = 0) and dielectric constant (ε = 30) on bias.
Nevertheless, the image forces are taken into account. This
corresponds to the case of a simple insulator. The dependence
is an even function of voltage. Variation of IEC with voltage
is significant (about 25% in the shown voltage range). The

increase of IEC magnitude with voltage is caused by reducing
of the effective barrier when bias voltage is applied [see
Eq. (16)].

The dotted line in Fig. 3 shows the IEC in MFTJ neglecting
image forces, J p. The exchange coupling as a function of
voltage has two branches corresponding to two different FE
polarization states, P + and P −. Arrows indicate the path of
the hysteresis loop.

Two maxima at V = ±Vs correspond to polarization
switching. As we stated, the electric fields induced by
polarization and bias voltage can be either codirected or coun-
terdirected. Switching between these two situations happens at
V = ±Vs. This explains the occurrence of these two maxima.

At zero voltage, the IEC has the same value for both
branches due to the system symmetry. At finite voltage, the
symmetry is broken and the IEC depends on the polarization
state. At small voltages, one can write J p ∼ J

p
0 + αPV . This

is in contrast to the situation considered in Ref. [38], where
MTJ with different magnetic leads show a different IEC effect
at zero voltage for two different polarization states.

Note that even though the image forces are not taken
into account when calculating J p, the voltage dependence
of dielectric constant, ε, still influences the IEC. According
to Eq. (2), the dielectric constant defines the potential barrier
disturbance by the surface charges. As ε is higher, the influence
of surface charges becomes lower. The influence of ε bias
dependence on surface charge potential and on the tunneling
electro-resistance and magnetoresistance was considered in
Ref. [56]. Similarly, ε(V ) contributes to the IEC variation in
the present model.

Influence of the surface charges on the IEC effect does
not exceed several percent, which is less than IEC variation
without FE barrier (black short dashed line).

Influence of image forces alone is shown with red and blue
dashed lines, J if . Behavior of J if is similar to J p. It has two
branches corresponding to two branches of dielectric constant
ε+ and ε−, Eq. (7). At zero bias, the IEC is the same for both
branches. According to our estimates [Eq. (17)], the increase
of dielectric permittivity leads to the decrease of tunneling
probability and therefore to the decrease of exchange coupling.
The dielectric constant has maxima at V = ±Vs. This explains
two peaks of IEC at V = ±Vs.

The change of IEC effect due to image forces alone is larger
than due to surface charges, but still not as large as changes
caused by the voltage itself. We estimate the IEC changes
due to image forces �J if as the difference between IEC for
the upper (or lower) branch at V = Vs and at V = 0 [�J if =
J if (Vs) − J if (0)]. IEC variation due to voltage can be estimated
as difference between J I at finite and at zero voltage [�J I =
J I(V ) − J I(0)]. One can see that at V = Vs the quantity �J if

is larger than �J I, but with increasing voltage �J I exceeds
the IEC changes due to image forces.

The situation changes drastically when both image forces
and surface charges are taken into account. The corresponding
curves [J (V )] are shown with red and blue solid lines in
Fig. 3. The curves have shapes similar to J if and J p, but
have much larger variation. Moreover, the IEC has strong
linear dependence at voltages |V | < Vs, which may be useful
for applications (see Sec. III I). Thus, the curves demonstrate
that image forces together with surface charges essentially
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FIG. 4. STT (Jd) for MTJ with FE barrier as a function of voltage
V . All parameters are the same as in the previous figure. Dotted lines
show IEC neglecting image forces but taking into account FE surface
charges, J

p
d . Dashed lines show IEC, taking into account only image

forces, J if
d . Solid lines are the IEC taking both effects into account,

Jd. Blue and red curves correspond to different hysteresis branches.
Black short-dashed line shows IEC for MTJ with simple insulating
barrier, J I

d with no polarization and voltage-independent dielectric
constant.

change the dependence of the IEC effect on applied voltage
in MFTJ.

F. Influence of image forces and surface charges
on STT in MFTJ

Image forces and surface charges influence the STT effect
in MFTJ as well. However, their influence in this case is not
very pronounced. Figure 4 shows the voltage dependence of
the STT magnitude. The same parameters and notations are
used as in the previous figure. Superscript I means that the STT
is calculated for MTJ with an insulator barrier (P0 = 0 and ε =
30 is voltage independent). Superscript if stands for STT cal-
culated in the presence of image forces and voltage-dependent
dielectric constant, but for P0 = 0. J p stands for STT effect
accounting for surface charges in the absence of image forces.
The STT in the presence of both effects is denoted with Jd.
Neither image forces nor surface charges qualitatively change
the STT voltage behavior. However, a weak hysteresis appears
when both effect are taken into account.

G. STT vs IEC in MFTJ

In this section, we compare the magnitude of STT effect and
variation of IEC effect with voltage (see Fig. 5). We subtract
the IEC effect at zero voltage from the J (V ) dependence,
introducing the notation �J (V ) = J (V ) − J (0). Here we take
both image forces and surface charges into account. Two cases
are shown: Jsd > Uc (HMF case) and Jsd < Uc (TBF case). In
the case of two-band FM leads, the STT effect grows fast with
voltage and exceeds the IEC variation (compare red dotted
and red dash-dotted lines in Fig. 5). Thus, mostly the STT
is responsible for magnetization dynamics in this case. In the
case of HMF leads, the IEC variation becomes stronger than

FIG. 5. STT (Jd) and IEC variation (�J ) for MFTJ as a function
of voltage V . We use Uc = 3.4 eV, P0 = 30 μC/cm2, εmin = 30,
� ε = 15. Solid and dash-dotted lines show IEC variation (�J ) at
Jsd = 3.6 eV (HMF case) and 3.0 eV (TBF case), respectively. Dashed
and dotted lines are the STT effect (Jd) at Jsd = 3.6 and 3.0 eV,
respectively. All curves demonstrate the hysteresis loop. Arrows
indicate the hysteresis loop bypass direction. Black short-dashed and
dash-dotted lines show IEC for non-FE insulating barrier with ε = 30
at Jsd = 3.6 and 3.0 eV, respectively.

the STT effect (compare blue dashed and blue solid lines in
Fig. 5). In this case, mainly the IEC defines the magnetization
dynamics and even the magnetic state of MFTJ.

Black dash-dotted and short dashed lines (�J I) shows the
IEC variation in MTJ without the FE barrier. Coupling changes
caused by image forces and surface charges essentially exceed
the ones caused by the voltage itself (�J I), at least in the
region of voltages below the FE switching (|V | < Vs).

Thus, image forces and surface charges result in enforce-
ment of IEC variation with voltage. Such variations become
stronger than the STT effect in MFTJ with HMF leads. It is
even more important that the image forces and surface charges
produce the linear in voltage contribution to the IEC effect,
which does not occur in symmetric MTJ without FE barrier.

H. Variation of IEC as a function of barrier parameters

Figure 6 shows dependence of IEC variation �J on various
barrier parameters. Here we calculate the IEC by taking into
account both surface charges and image forces. Figure 6(a)
shows �J as a function of minimum dielectric constant, εmin,
and polarization switching region width, �Vs. Blue lines show
�J (V ) for three different �Vs for fixed εmin = 30. These
curves correspond to the upper branch of FE hysteresis loop.
The dependence for lower branches is a mirror reflection
with respect to zero voltage, V = 0. Red curves show �J (V )
for tree different εmin at fixed �Vs = 0.025 V. Only lower
hysteresis branches are shown. All curves are for the following
parameters: hb = 0.5 V, �ε = 15, P0 = 30 μC/cm2, Uc =
3.4 eV, Jsd = 3.6 eV.

The peak of IEC variation at V = −Vs grows with decreas-
ing of the transition region width �Vs. This can be understood
as follows: According to Eqs. (17) and (18), the decrease of
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FIG. 6. ME effect [�J (V )] for various barrier parameters. (a) Blue lines show upper branches of �J (V ) for different polarization switching
transition region �Vs at εmin = 30. Red lines are the lower branches of �J (V ) for different minimum dielectric constant εmin at �Vs = 25 mV.
Other parameters are the following: hb = 0.5 eV, � ε = 15, P0 = 30 μC/cm2. (b) Blue lines show upper branches of �J (V ) for different
saturation polarization P0 at � ε = 15. Red lines are the lower branches of �J (V ) for different dielectric constant variation values � ε at
P0 = 30 μC/cm2. Other parameters are the following: hb = 0.5 eV, εmin = 30, �Vs = 25 mV. (c) Value of �J is multiplied by 50. Blue lines
show upper branches of �J (V ) for different saturation polarization P0 at � ε = 90. Red lines are the lower branches of �J (V ) for different
dielectric constant variation values � ε at P0 = 30μC/cm2. Other parameters are the following: hb = 1.5 eV, εmin = 30, �Vs = 25 mV. For
all plots we use Uc = 3.4 eV, Jsd = 3.6 eV.

dielectric constant decreases the effective barrier due to both
surface charges and image forces. The decrease of transition
region, �Vs, leads to the reduction of ε at zero voltage [see
Eq. (7)]. The dielectric constant at V = −Vs stays the same,
ε(−Vs) = εmin +�ε. Finally, the IEC effect grows at V = 0
and stays the same at V = −Vs leading to peak growth.

Red curves show that the IEC variation strongly depends
on the minimum dielectric constant, εmin. Growth of εmin leads
to the decrease of IEC variation. The strength of image forces
and potentials created by the surface charges are inversely
proportional to the dielectric constant. Therefore, increasing
of minimum value of ε reduces the effect of surface charges
and image forces.

Figures 6(b) and 6(c) provide an additional insight into the
effect of image forces on IEC. Both panels show �J (V ) for
different values of saturation polarization, P0, and variation of
dielectric constant, �ε. Blue (red) curves show modification
of �J (V ) with varying of P0 (�ε). We use the following
parameters: Uc = 3.4 eV, Jsd = 3.6 eV and �Vs = 0.025 V.
In Fig. 6(b), the curves correspond to the low barrier system
with hb = 0.5 eV. In this case P0 (see blue curves) influences
the IEC effect much more strongly than the �ε (see red
curves). We conclude that in this case the IEC variation
appears due to modulation of FE polarization rather than due
to the modulation of dielectric constant with voltage. However,
image forces essentially enhance the effect of surface charges.
Figure 6(b) shows the case of high barrier, hb = 1.5 eV. In
this case, the situation is the opposite: �J (V ) curves weakly
depend on polarization (see blue curves) and strongly depend
on �ε (see red curves). This means that the dependence of
dielectric constant on voltage is the main source of the IEC
variation (ME effect) and one can neglect the variation of
polarization.

To conclude, the role of image forces is twofold: (1) they
enhance the IEC variations caused by surface charges, even in
the absence of voltage dependence of ε, and (2) due to variation
of dielectric constant with voltage, the image forces cause the

ME effect, which can be even stronger than that caused by
surface charges.

I. Magnetization switching in the MFTJ

Dependence of IEC on voltage can be used for switch-
ing of magnetization in MFTJ. Importantly, the switching
mechanism is essentially different than the STT effect. The
STT effect may be used for dynamical switching only.
It does not correspond to any energy contribution in the
system Hamiltonian and can cause rotation of magnetization
independently of magnetization state. In contrast, the IEC
effect defines the system ground state. As shown above, the
interlayer coupling may have a linear contribution as a function
of voltage. At zero voltage, the IEC is finite. Consider the
following system. The left FM layer is pinned (see Fig. 7)
and cannot be switched. At zero bias, this layer produces an
effective field acting on the right layer Hex(V = 0) = J (V =
0)/(t2M2). The right layer has small enough coercive field
and is pinned also. The second pinning layer is chosen such
that it compensates the IEC effect at zero voltage. Pinning
magnetic field acting on the right layer is Hb = −Hex(V = 0).
In this case the sign of the effective IEC (IEC effect + pinning)
depends on voltage sign. Positive voltage would create the
FM IEC while the negative voltage creates the AFM IEC.
If coercive field of the right layer is smaller than the IEC
variation, one can switch the magnetization with voltage.
There is no need to tune voltage impulse parameters to get
reliable switching, in contrast to STT-based remagnetization.
The IEC variation of �J = 0.02 erg/cm2 creates an effective
field Hex(Vs) − Hex(0) = 80 Oe acting on the material with
saturation magnetization Ms = 500 Gs and thickness t =
5 nm. Therefore, if the material has a coercive field lower
than 80 Oe, one can switch it with electric field.

For example, half-metal F3O4 has a rather small magneti-
zation at room temperature about 140 Gs, meaning that the
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FIG. 7. MFTJ with two pinning layers. Left pinning layer creates
very strong exchange bias acting on magnetization M1. IEC effect
between layers M1 and M2 creates exchange field Hex acting on the
“free” layer M2. Right pinning layer compensates the exchange field
at zero voltage. Therefore at zero voltage, the free magnetic layer has
symmetric hysteresis loop (b). Positive voltage shifts the hysteresis
loop of the free layer to the left as shown in panel (c). Negative
voltage moves the hysteresis loop right (a). By swiping voltage, one
can switch magnetization of the free layer.

effective IEC field variation can be as high as 250 Oe, which
is the same as the coercive field of the material [57].

HMF considered in the present work Co2MnSi has the
coercive field in the range of 10 to 100 Oe depending on
fabrication conditions [58,59]. Thus, it can be also switched
with the IEC variation effect.

IV. CONCLUSION

We studied the voltage dependence of the IEC and STT
effects in MTJ with a FE barrier. We took into account two
phenomena influencing the IEC in MFTJ: (1) modification
of the tunnel barrier potential due to the FE polarization
and (2) modification of the barrier due to image forces
acting on electrons in the tunneling spacer. Voltage-dependent
polarization results in the voltage dependent IEC effect. The
influence of the image forces is twofold: (i) they enhance
the IEC variation occurring due to FE polarization and (ii)
image forces in combination with voltage-dependent dielectric
constant of the FE barrier produce an additional contribution
to the interlayer coupling variation. This contribution becomes
dominant for MFTJ with high barrier. We compare the IEC
with the STT effect occurring at finite voltage in MTJ. In
the case of HMF, the variation of IEC effect is the dominant
mechanism defining the MTJ magnetic state and dynamics. We
estimate the variation of the IEC effect and show that it can
be used for controllable switching of magnetization in MFTJ
with HMF leads.
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APPENDIX: IEC AND STT FORMULAS

Consider two FM leads separated by a rectangular barrier
of width d (0 < x < d). Magnetizations of the leads are
orthogonal. Left (right) lead magnetization is along the z (x)
axis. Consider a majority spin electron with unit incident
flux in the left lead with energy E moving to the barrier.
The quasimomentum of the up (or majority) band electron in
the left lead is k+

l . For the down (minority) spin band, the
quasimomentum is k−

l in the left lead. In the right lead, the
quasimomentum of an up (down) spin electron with energy
E is k+

r (k−
r ). Inside the barrier, the electron wave function

decays. The barrier potential is spin independent. Therefore,
the decay length, 
, is spin independent; however, it is energy
dependent. Let us calculate the spin current of a single electron
inside the barrier. Spin current flows along the x axis (across the
barrier). We omit the spatial direction index in the notation of
spin current and keep only the spin index. We consider several
different cases depending on electron energy, bias voltage, and
spin subband splitting.

First consider the case when all k+
l , k−

l , k+
r , and k−

r are real.
In this case, we have

Q+
x = 4h̄2

me

k+
l 
2(k+

r −k−
r )(
2 − k+

r k−
r )e−2
d

[
2 + (k+
l )2][
2 + (k+

r )2][
2 + (k−
r )2]

, (A1)

Q+
y = −4h̄2

me

k+
l 
3[(k+

r )2 − (k−
r )2]e−2
d

[
2 + (k+
l )2][
2 + (k+

r )2][
2 + (k−
r )2]

, (A2)

Q+
z = 4h̄2

me

k+
l 
2(k+

r +k−
r )(
2 + k+

r k−
r )e−2
d

[
2 + (k+
l )2][
2 + (k+

r )2][
2 + (k−
r )2]

. (A3)

These expressions coincide with Slonczewski formulas if one
put k+

l = k+
r and k−

l = k−
r . The spin current for electron inci-

dent on the barrier from the left electrode with down spin can
be found using the following relations: Q−

x,z = −Q+
x,z(k

+
l ↔

k−
l , k+

r ↔ k−
r ), Q−

y = Q+
y (k+

l ↔ k−
l , k+

r ↔ k−
r ).

Note that here we use slightly different notations compared
to the main text [see Eq. (10)]. The upper index here stands for
spin state of an electron only, while in the main text the index
was responsible for both spin and orbital states.

Now consider the case when only the majority spin states
in both leads are allowed and the minority spin states cannot
propagate(k+

l and k+
r are real; k−

l and k−
r are imaginary):

Q+
x,z = 4h̄2

me

k+
l k+

r 
2e−2
d

[
2 + (k+
l )2][
2 + (k+

r )2]
, (A4)

Q+
y = 4h̄2

me

k+
l 
2[
|k−

r | − (k+
r )2]e−2
d

[
2 + (k+
l )2][
2 + (k+

r )2](
 + |k−
r |) . (A5)

Minority (down) spin states do not propagate in this case and
Q−

x,y,z = 0. This result agrees with the Slonczewski result for
one band leads (if one put k+

l = k+
r and k−

l = k−
r ).

However, at finite voltage (or in MTJ with different leads),
situations can occur when only one spin channel is active in
one reservoir and two spin channels are available in the other.

125425-10



INFLUENCE OF IMAGE FORCES ON THE INTERLAYER . . . PHYSICAL REVIEW B 96, 125425 (2017)

Consider the case when both spin bands are active in the left
electrode and only one works in the right lead:

Q+
x,z = 4h̄2

me

k+
l k+

r 
2e−2
d

[
2 + (k+
l )2][
2 + (k+

r )2]
, (A6)

Q+
y = 4h̄2

me

k+
l 
2[
|k−

r | − (k+
r )2]e−2
d

[
2 + (k+
l )2][
2 + (k+

r )2](
 + |k−
r |) . (A7)

The expression for an electron in a minority spin band can
be obtained with the substitutions Q−

x,z = −Q+
x,z(k

+
l → k−

l ),
Q−

y = Q+
y (k+

l → k−
l ).

In the opposite case, when only one spin band is active in
the left electrode and two spin bands are available in the right
electrode, we have

Q+
x = 4h̄2

me

k+
l 
2(k+

r −k−
r )(
2 − k+

r k−
r )e−2
d

[
2 + (k+
l )2][
2 + (k+

r )2][
2 + (k−
r )2]

, (A8)

Q+
y = −4h̄2

me

k+
l 
3[(k+

r )2 − (k−
r )2]e−2
d

[
2 + (k+
l )2][
2 + (k+

r )2][
2 + (k−
r )2]

, (A9)

Q+
z = 4h̄2

me

k+
l 
2(k+

r +k−
r )(
2 + k+

r k−
r )e−2
d

[
2 + (k+
l )2][
2 + (k+

r )2][
2 + (k−
r )2]

. (A10)

The formulas are the same as for the two-band case (considered
first), but down-spin electrons are absent in the left lead in this
case and Q−

x,y,z = 0.
The last case is related to the situation when there are

no states in both spin bands in the right electrode. The right
electrode behaves as an insulator in this energy region. In this
case, there is no electron flow across the barrier and Q+,−

x,z = 0.
The y component is not zero:

Q+
y = −4h̄2

me

k+
l 
2(| k+

r | − |k−
r |)e−2
d

[
2 + (k+
l )2][
 + | k+

r |](
 + |k−
r |) , (A11)

Q−
y = 4h̄2

me

k−
l 
2(| k+

r | − |k−
r |)e−2
d

[
2 + (k−
l )2](
 + | k+

r |)(
 + |k−
r |) . (A12)

Spin current created by an electron incident on the barrier
from the right electrode can be found by the following
relations: Qx |right = −Qz|left(k

±
l ↔ k±

r ). The sign − occurs
because the electron moves in the opposite direction in
comparison to the electron in the left electrode. At the same
time, Qy |right = Qy |left(k

±
l ↔ k±

r ).
The IEC effect is related to the y component of the spin

current. To calculate the constant J , one has to sum the spin
current Qy over all spin and orbital states in both leads. To
calculate the y component of the spin current created by the

left lead electrons, we use the equation

Ql
y = 1

8π2

∑
i

∫ ki
F

0
dkk

[(
ki
F

)2 − k2
]
Qi

y. (A13)

To simplify formulas, we omit the factor h̄2/2m below. In
the above equation, we use in Q+

y the following quasimo-

mentums: k+
l = k, k−

l =
√

k2 − 2Jsd, k+
r = √

k2 − eV , k+
r =√

k2 − (eV + 2Jsd). Spin current Q−
y should be used with

k+
l =

√
k2 + 2Jsd, k−

l = k, k+
r =

√
k2 − (−2Jsd + eV ), and

k−
r = √

k2 − eV . For each energy E = k2, we calculate the
effective barrier thickness deff and the inverse decay length,

eff . The effective barrier thickness is defined by intersection
of potential Eq. (5) with energy level E = k2. At the same
energy, we determine the effective barrier height.

Spin current created by the right electrode Qr
y is given

by the same equation but we introduce k+
r = k, k−

r =√
k2 − 2Jsd, k+

l = √
k2 + eV , k−

l =
√

k2 + (eV − Jsd) for
majority spin channel and k+

r =
√

k2 + 2Jsd, k−
r = k, k+

l =√
k2 + (2Jsd + eV ), and k−

l = √
k2 + eV for minority spin

channel. The effective barrier thickness and height are calcu-
lated in the same manner as for the left electrode.

Total y component of spin current is given by Qtot
y =

Ql
y + Qr

y .
To calculate the x component of the spin current, we sum

only over the electron producing the charge current. Thus, we
have for V > 0

Qtot
x = 1

8π2

∑
i

∫ ki
F

0
dkkF i(k)Qi

x, (A14)

where

F i(k) =
{

V,
(
ki

F

)2 − k2 > eV,(
ki

F

)2 − k2, overwise.
(A15)

We use the same quasimomentums as in the case of the
y component of spin current produced by electrons in the left
electrode. For V > 0, the right electrode does not contribute to
the x component of the spin current. For negative bias V < 0,
we have

Qtot
x = 1

8π2

∑
i

∫ ki
F

0
dkkF i(k)Qi

z. (A16)

Note that for negative bias only the right electrode contributes
to the x component of the spin current. Therefore, we introduce
the same quasimomentums as we use for calculating the
y component of spin current carrying by electrons in the right
lead but with V → −V . Note that to calculate the x component
of the spin current at negative bias we use Qz. This is due to
relations introduced above.
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