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Kinetic Monte Carlo approach to nonequilibrium bosonic systems

T. C. H. Liew,! H. Flayac,? D. Poletti,® I. G. Savenko,*>® and F. P. Laussy’8
! Division of Physics and Applied Physics, School of Physical and Mathematical Sciences,
Nanyang Technological University, 21 Nanyang Link, Singapore 637371
2 Institute of Theoretical Physics, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
3Singapore University of Technology and Design, 8 Somapah Road, 487372 Singapore
4Center for Theoretical Physics of Complex Systems, Institute for Basic Science, Daejeon 34051, Republic of Korea
3Nonlinear Physics Centre, Research School of Physics and Engineering, The Australian National University, Canberra ACT 2601, Australia
SITMO University, Saint Petersburg 197101, Russia
"Russian Quantum Center, Novaya 100, 143025 Skolkovo, Moscow Region, Russia
8 Faculty of Science and Engineering, University of Wolverhampton, Wulfruna St, Wolverhampton WV1 1LY, United Kingdom
(Received 8 May 2017; revised manuscript received 1 September 2017; published 18 September 2017)

We consider the use of a kinetic Monte Carlo approach for the description of nonequilibrium bosonic systems,
taking nonresonantly excited exciton-polariton condensates and bosonic cascade lasers as examples. In the former
case, the considered approach allows the study of the cross-over between incoherent and coherent regimes, which
represents the formation of a quasicondensate that forms purely from the action of energy relaxation processes
rather than interactions between the condensing particles themselves. In the latter case, we show theoretically
that a bosonic cascade can develop an output coherent state.
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I. INTRODUCTION

Although Bose-Einstein condensation (BEC) was origi-
nally defined as an effect taking place in thermal equilibrium,
it is striking to see that the concept has been generalized to
nonequilibrium systems. For example, the BEC of photons in a
cavity [1] has been reported and several groups have studied the
BEC of exciton-polaritons (hybrid light-matter quasiparticles)
appearing in semiconductor microcavities [2—4]. Here BEC is
characterized [5] by the spontaneous formation of coherence,
typically measured by the transition of the second-order
coherence function with increasing particle density, as reported
by several experimental groups [6—12].

The physics of nonequilibrium condensates has been shown
to be radically different from that of equilibrium systems,
where condensates may form in nonground states [13] or
multiple states [14] and have distributions undescribable by
a single temperature.

The theoretical description of nonequilibrium condensates
typically requires an explicit treatment of energy relaxation
processes. Such processes compete with dissipative processes,
which cause particles to be lost from the system before reach-
ing the ground state. The dynamical interplay of relaxation
and dissipation ultimately determines the steady state of the
system. Energy relaxation mechanisms have been handled
previously in exciton-polariton systems using semiclassical
Boltzmann equations [15-18] or introduced phenomenolog-
ically into mean-field equations [19-22]. Methods treating
energy relaxation from first principles have also been devel-
oped based on stochastic sampling of mean-field equations
[23] or their hybridization with the Boltzmann equations
[24]. However, these methods do not account for quantum
fluctuations, which are needed for the unified treatment of
nonequilibrium condensation below and above threshold. In
principle, density-matrix approaches [25] (possibly supple-
mented with Monte Carlo techniques [26]) are applicable to
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this task; however, in practice they are only feasible for systems
with small numbers of particles and modes [27]. Bosonic
cascade lasers [28,29], which may operate with millions of
particles, have been treated with stochastic sampling of the
positive-P distribution [30,31]; however, such a method is only
accurate in the case of an initial coherent state.

In the present paper we employ a kinetic Monte Carlo
approach based on quantum Boltzmann equations for the
description of nonequilibrium multimode open quantum sys-
tems. The kinetic Monte Carlo approach has been developed
under different names in different fields, including vacancy
migration in binary ordered alloys [32], the Ising model [33],
and chemical reactions [34]. A good overview of the method
can be found in Ref. [35]. The approach allows stochastic
sampling of the quantum particle distribution function and
allows the treatment of systems with up to hundreds of modes
with possibly thousands of particles each. From the particle
distribution functions we have full access to the coherence
statistics, as characterized by the second-order correlation
function. We apply the technique to two specific examples:
polariton condensation in one-dimensional microwires and
terahertz lasing in bosonic cascade lasers.

In the former case we are able to describe the gradual cross-
over from incoherent population of excited states to partial
coherence in nonground states and the formation of a fully
coherent BEC with increasing particle density. The responsible
energy relaxation processes are described from first principles,
accounting for polariton-phonon scattering and the scattering
of polaritons with hot exciton states [15]. Aside from these
interaction processes, it is notable that additional interactions
between the condensing particles themselves are not required
for the formation of a condensate (which is consistent with the
original equilibrium theory of BEC of the ideal gas).

In the case of bosonic cascade lasers, we access theoreti-
cally the coherence of the lasing mode and show that it can be
useful for terahertz lasing with high quantum efficiency.

©2017 American Physical Society
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II. GENERIC KINETIC MONTE CARLO APPROACH

We start with the consideration of a set of M discrete
modes with populations ny, n, . . ., ny. The probability of the
system being in any particular state at time ¢ is Py, »,.. »,, ().
The probability distribution contains sufficient information
to calculate the quantum expectation values of a variety of
quantities, in particular those with operators that commute
with the number operator. For example, one can calculate

(i) =D Paynsrey o (111, ey
(7O =Y Payng oo (O] )

Clearly the probability distribution Py, 4, ., (t) does not
contain all the information on the state of the system, which
would require the full quantum density matrix. However, from
the above we can gain access to the second-order correlation
function g ,,(f) = (nl.z(t))/(ni(t))z, which is the parameter
typically used to measure the coherence of a given mode. The
above prescription can also be easily generalized to the case of
nonzero time delay and cross-correlations between different
modes.

The calculation of the quantum probability distribution can
be based on the quantum Boltzmann master equation, with
generic form

dPnl,nz ..... nM(t)
dt

- Pnl,nz ..... Niyeuny nM(t)(ni + ])] (3)

The first term represents stimulated scattering processes be-
tween modes, where W;_, ; is the bare (spontaneous) scattering
rate from mode i to mode j. In an exciton-polariton system, this
term would include phonon emission (or absorption) processes
as well as scattering processes involving hot excitons [15].
These processes introduce a temperature dependence of the
system via the temperatures of phonon or exciton baths.

The second and third terms represent decay and incoherent
or nonresonant pumping of the modes, at rates t; and I,
respectively. Their form is consistent with the Liouvillian
operator for the full quantum density matrix, written in
Ref. [36] for the case of incoherent or nonresonant pumping. In
principle other scattering processes (e.g., parametric scattering
processes [37]) can also be included, where the generic form
is the coupling of one probability in the distribution to another.

Equation (3) can be simulated numerically given W,_, ;,
7;, and I'; using the kinetic Monte Carlo approach. First, we
define an initial state:

m). “

(ny,ny, ...
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Equation (3) defines the scattering rates to other possible
states to which the above state can jump. A probability
distribution of possible jumps to other states is associated with
the scattering rates and a random quantum jump is selected
from the probability distribution. The jump time defines the
amount of time the system spends in the original state, from
which the calculation of expectation values can be updated.
Then the process is repeated until the end of the time range of
the calculation. The process is then further repeated sampling
over different quantum trajectories characterized by different
stochastic quantum jumps. The system is able to attain a steady
state, characterized by constant average expectation values.
This is because nonlinear loss processes [38] have effectively
been accounted for in the quantum Boltzmann equations; when
a given mode becomes highly occupied, the probability for it
to lose particles increases such that its occupation is bounded.

Since we neglect off-diagonal elements in the density
matrix, we note that our approach is, strictly speaking, valid
only when the system is not too far above the condensation
threshold and the various scattering processes can be obtained
accurately from single-particle wave functions. Far above
threshold, polaritons are typically modeled with the mean-
field Gross-Pitaevskii equation, where first-order coherence
is assumed. Here, we are interested in the behavior crossing
the threshold. In principle, polariton-polariton scattering could
renormalize the energy dispersion and alter the various energy
relaxation rates; however, this does not affect the general trend
of relaxing to the lowest available state, which is why we
will obtain results consistent with experiments even above
threshold.

Given that the range of validity of the quantum Boltzmann
approach is the same as that for standard classical Boltzmann
equations, the quantum Boltzmann equations can always be
reduced to classical ones, depending on the quantities of
interest. Our motivation for working with quantum Boltzmann
equations is that they give access to second-order correlations.

III. NONEQUILIBRIUM CONDENSATION IN
POLARITON MICROWIRES

Exciton-polariton systems are short-lived bosonic quantum
systems that are subject to weak energy relaxation processes.
Consequently they are exemplary nonequilibrium quantum
systems. They have been experimentally shown to form
Bose-Einstein condensates [2—4], yet they may also become
trapped in nonground states [39] or form non-ground-state
condensates [13].

For simplicity, we will consider a one-dimensional exciton-
polariton system or microwire [40]. The study of partial
energy relaxation processes in such systems is particularly
relevant to the study of polariton condensate transistors [41,42]
and the control of spin currents for spintronics [43,44]. The
main energy relaxation mechanisms in this system arise
from polariton scattering with acoustic phonons [45] and the
scattering of polaritons with high momentum exciton states
that can be considered as a reservoir [15] (provided that we
are not interested in the coherence statistics of these excitons).
The scattering processes are illustrated in Fig. 1.

The calculation of the polariton-phonon scattering rates is
shown in Appendix A. For typical parameters we find the
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FIG. 1. Polariton energy relaxation mechanisms illustrated on the
low-momentum polariton dispersion (blue/solid). The green/dashed
curve illustrates the high-momentum exciton dispersion.
(a) Polariton-phonon scattering. (b) Polariton-exciton scattering.
(c) Polariton-polariton to polariton-exciton scattering. (d) Polariton

pumping.

result shown in Fig. 2 for a temperature of 5 K. Due to the
reduced density of states in a one-dimensional system, as
compared to planar two-dimensional microcavities, we find
that the polariton-phonon scattering rates are small, below
neV. Given that typical polariton decay rates are at least
10 neV in typical microcavities, polariton-phonon scattering
alone is insufficient to describe the relaxation of polaritons
in one-dimensional systems. Even accounting for bosonic
stimulation, very large polariton occupation numbers or very
high lifetime microcavities [46] would be needed to make
polariton-phonon scattering dominant.

For this reason, it is important to account for the polariton-
exciton scattering processes illustrated in Figs. 1(b)-1(d). The
calculation of these rates is outlined in Appendix B. The
process in Fig. 1(b) adds to the scattering rates W;; introduced
in Eq. (3). The processes in Fig. 1(c) require the addition of
new terms in the quantum Boltzmann equation [Eq. (3)] of the
form

Wit Py o1, it L1,y (O + D + Dy (5)

We assume that the incoherent pumping processes of the
system can be derived primarily from the process in Fig. 1(d)
to provide I';. It should be noted that the rates of the pumping

0.01_0.02
[ m— ]
neV

-0 -5 0 5 10 -0 -5 0 5 10
ky (um™) ki (um™")

FIG. 2. Polariton-phonon scattering rates from mode k; to k.
(a) Polariton relaxation processes. The scattering to k = 0 modes is
larger than that of other modes due to the larger density of states at
k = 0in aone-dimensional system. (b) Polariton excitation processes,
requiring nonzero temperature.
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FIG. 3. (a) Time dependence of (n(¢)) of the ground state below
threshold. (b) Corresponding time dependence of g»(¢). (c) Time
dependence of (n(t)) for the ground state (k = 0) above threshold.
(d) Corresponding time dependence of g,(¢). In each panel the light
shaded region represents the statistical error, corresponding to one
standard deviation.

processes and the scattering process illustrated in Fig. 1(b)
are proportional to the occupation of exciton reservoir states,
which is modeled with a Boltzmann distribution of the form

Rex k = nexeithz/(szkBT)v (6)
where my is the exciton effective mass (taken as 0.22 times the
free-electron mass in GaAs based microcavities) and 7y is a
parameter representing the maximum occupation of a state in
the thermal exciton reservoir. This parameter can be taken as a
measure of the strength of incoherent pumping in the system,
which would be controlled experimentally via the intensity
of a nonresonant laser or current from an electrical injection
mechanism.

Given the aforementioned scattering rates for typical
microcavity parameters (given in the Appendices) we obtain
the time dependence of the average occupation of the ground
state below threshold shown in Fig. 3(a). Here the system is
evolved from an initial vacuum state. The average occupation
remains below unity and the state is incoherent with g, = 2
[Fig. 3(b)]. The shown quantities are here obtained after
averaging over more than 10° quantum jumps. By studying
the statistical variation over different runs, one can obtain an
estimate for the error in the obtained quantities. Since for larger
occupations one has to sample a larger number of different
states, the statistical error in the occupations is larger.

Above threshold, we find a large occupation of the ground
state developing after an initial stabilization time, as shown in
Fig. 3(c). This is accompanied by the formation of coherence
characterized by g, = 1, as shown in Fig. 3(d). While the
statistical error in g; is very large when the occupation numbers
are small, which corresponds to a small denominator in calcu-
lating g, and consequently large effects of small fluctuations
in (n), the statistical error above threshold becomes small and
indistinguishable in the plot.

We stress that while we have accounted for polariton-
phonon scattering, this does not affect significantly our results,
in which polariton-exciton scattering is the dominant and
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FIG. 4. (a—g) Momentum distribution of polaritons in the long-
time (continuous-wave excitation) limit for increasing pumping
intensity, represented by the maximum reservoir occupation number,
nex. (h) Dependence of the second-order correlation function, g,
(circles and left-hand scale), and the average occupation number,
(n) (squares and right-hand scale), for the highest occupied state
as a function of the reservoir occupation number. While there is a
significant statistical error below threshold, the error bars narrow
upon condensation.

sufficient energy relaxation mechanism. This is consistent with
earlier works [15,27].

In addition to describing the behavior of polaritons below
and above threshold, the kinetic Monte Carlo theory is able to
access the cross-over between the incoherent and condensed
regimes. Figure 4 illustrates the change in the momentum
distribution of polaritons on the polariton dispersion. As the
pumping intensity is increased, the various energy relaxing
scattering mechanisms become more and more stimulated.
This is captured as a gradual overcoming of the bottleneck
region [39], before full condensation is obtained at large
pumping strength. Here the large majority of polaritons collect
in the system ground state and full coherence is characterized
by g = 1.

It is worth noting that the obtained phenomenon of con-
densation is obtained here without direct interactions between
condensing particles. The interactions that we introduce are
only to provide a physical mechanism of energy relaxation,
but in principle any mechanism of energy relaxation would
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generate similar behavior. The considered system is thus
a nonequilibrium analog of the noninteracting ideal gas. It
should be noted, though, that here we are considering a
confined system, in which the quantized modes in k correspond
to the levels discretely modeled in our approach.

While we have focused on the second-order coherence,
polariton condensates are typically also characterized by the
appearance of a first-order spatial coherence, which decays
exponentially with distance [47,48]. As our technique neglects
off-diagonal terms in the density matrix we are unable
to access this property, which could be treated with other
techniques [49,50].

IV. COHERENCE FORMATION IN BOSONIC
CASCADE LASERS

A bosonic cascade laser is composed of a series of
equidistant energy levels and was originally proposed for
the high efficiency generation of terahertz-frequency radiation
[28]. Potential realizations making use of parabolic quantum
wells are in experimental development [29]. When a particle
is excited in a particular level of the cascade it is assumed
that it can undergo a radiative transition to the next level in
the cascade. Thus, in the case that the radiative transition is at
terahertz frequency, one can have a high quantum efficiency
process where an optical quantum of energy injected into the
system undergoes multiple energy relaxing processes resulting
in the emission of many terahertz-frequency photons. The
terahertz emission processes are typically weak in strength, but
they can become enhanced by bosonic final-state stimulation
at high occupation numbers. When the system is placed inside
a terahertz cavity, it has been assumed that the result will be the
generation of a coherent terahertz mode although the theory
of such a process has not been attempted.

The bosonic cascade laser can be described by the quantum
Boltzmann rate equations:

..... nynr

A=l
M

+ W = Puonnsmns o1 (2 4 Dp
A=2

+ Pﬂ],...,ll;\,l—l,n)_ﬂ’l ..... nM,nT_ln}\._l(n)h + l)nT
+ Pnl.“.,n;,|+1,n,\—1 ..... nM,nT+1(nA—1 + l)n)\(nT + 1)
- Pnl,...,m,l,n;\ ..... nM,nT(nA—l + l)n)»(nT + 1)]

AAAAA m+1,...,ny,nr (nk + 1)

+
Q| =
M-
5’“0

1
+ f_[Pnl ..... nM,n1-+1(nT + 1) - nTPnl,...,nM,nT]v (7)
T

where M bosonic levels have populations n, ny, . . ., ny, and
nr is the number of terahertz photons in the terahertz cavity.
We assume for simplicity an equal pumping rate of all levels in

125423-4



KINETIC MONTE CARLO APPROACH TO ...

(a) (b)

107 10°
10 __10°
8 &
< 105 < 10t
4
10 102
10°
10° 10* 10° 10® 107 10 10* 10° 10® 107
() Pr (d) Pr
2.0‘“‘““’“0’“ > 20
e
516 i ‘o
1.4 . E"
C
1.2 ] ég; 0.5
1.0 o

. 0.0
10 10* 10° 10% 107 10 10* 10° 108 107
Pr Pr

FIG. 5. Kinetic Monte Carlo simulation of a bosonic cascade laser
with M = 10 levels. (a) Power dependence of the level occupations.
(b) Power dependence of the terahertz mode occupation. (c) Power
dependence of the second-order correlation function of the terahertz
mode. (d) Power dependence of the quantum efficiency of terahertz
generation. In all panels the points show results from kinetic Monte
Carlo simulation, while the solid curves in (a), (b), and (d) show
the result of the solution of the classical Boltzmann equations (see
Appendix C).

the cascade by a coherent driving of strength Py. 7 is the decay
rate of bosons in each level, t7 is the decay rate of terahertz
photons, and W is the nearest-neighbor level scattering rate,
which is assumed here independent of the level index for
simplicity. Rather than repeating the detailed calculation of
the scattering rate, we take the value of Wt = 8.3 x 1077
consistent with Refs. [28,31]. Since our main objective is to
derive the formation of coherence, that is, lasing in the terahertz
mode, we will consider a fixed value of t7 = 0.1t rather than
presenting a detailed dependence on all parameters.

Figure 5 shows results from the kinetic Monte Carlo
modeling of a bosonic cascade of M = 10 levels. The mode
occupations agree fully with the result from the corresponding
classical Boltzmann rate equations; however, the kinetic Monte
Carlo approach provides an additional access to the second-
order correlation function. This reveals the smooth transition
from an incoherent to a coherent state of terahertz photons in
the terahertz cavity.

For completeness we also calculated the quantum efficiency
of terahertz emission, which we define as the ratio of the
number of terahertz photons emitted by the system to the
number of optical frequency photons put into the system [28].
This is equivalent to the ratio of the terahertz photon emission
rate (ny/tr) to the total system pumping rate (M Py):

o —.
M Py

®

The cascade geometry allows terahertz lasing to appear
with quantum efficiency exceeding unity, in the regime of
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stimulated scattering despite the weak spontaneous scattering
rates in the system.

V. CONCLUSION

The kinetic Monte Carlo approach offers an efficient nu-
merical simulation of quantum Boltzmann equations, suitable
for the description of nonequilibrium bosonic systems. Such an
approach offers access to the second-order correlation function
and allows us to study its dynamics across nonequilibrium
phase transitions. As an example, we considered the behavior
of the second-order correlation function in one-dimensional
exciton-polariton microwires. Here we are able to treat
the cross-over from an incoherent state, to populating a
nonground state, to a ground quasicondensate. While we
required interactions between polaritons and hot excitons
to provide a mechanism of energy relaxation from first
principles, interactions between the condensing polaritons
themselves were not required to generate the condensate. We
also studied the formation of coherence in a bosonic cascade
laser geometry, verifying the possibility of coherent terahertz
emission with quantum efficiency exceeding unity.

We hope that the kinetic Monte Carlo approach can also
serve in the description of partial energy relaxation and
coherence formation in a variety of other exciton-polariton
systems. In particular, we anticipate that the quantum optics
of geometries confined with static potentials [4,51-54] and
self-induced traps [55,56], where transitions were observed
between nonground and ground quasicondensates, would be
accessible.

ACKNOWLEDGMENTS

T.C.H.L. was supported by the Singaporean Ministry
of Education—Singapore Academic Research Fund Tier-
2 project (Project No. 2015-T2-1-055) and Tier-1 project
(Project No.2016-T1-1-084). D.P. was supported by the Singa-
porean Ministry of Education—Singapore Academic Research
Fund Tier-2 project (Project No. MOE2014-T2-2-119). .G.S.
was supported by IBS-R024-D1, the Australian Research
Council’s Discovery Projects funding scheme (Project No.
DE160100167), and the President of Russian Federation
(Project No. MK-5903.2016.2). FP.L. was supported by the
POLAFLOW ERC Project No. 308136.

APPENDIX A: POLARITON RELAXATION MEDIATED BY
ACOUSTIC PHONONS

The phonon-assisted scattering rate between two polariton
states involving excitons of wave vectors k; and k; is computed
following Ref. [45] as

L. |Ak]? +¢2
puV  |hug,|
Il s [l 1 2
x [a I (| AR (g2) — an I (|AKDTH(g2)]
(A1)

X (k)X (k)|

Wik -k =

where Ak = k; —Kk; and ¢, is the projection of the phonon
momentum on the vertical axis. We use here typical GaAs
material parameters: p = 5318 kg/m? is the material den-
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sity, and L, =10 nm and V = 7w R?L, are the quantum
well thickness and volume (for a microcavity radius R),
respectively. u = 3350 m/s is the speed of sound, and a. =
—7eV and a, = 2.7 eV are the lattice deformation potentials
induced by phonons at the locations of electrons and holes,
respectively. [ e” , and I are the overlap integrals of the
phonon wave functions with the electron and hole wave
functions, respectively, in the in-plane and growth directions.
They are expressed as

5372
me

1 (|AK)) = |:1+<—'h|Ak|aB):| . (A2)

’ me + my,

n? . (qZLZ>
D Sin
q:L; [7.[2 _ (qzsz) ] 2

2

I}(q) = (A3)

where m. = 0.067m¢ and my = 0.18m( are the effective
masses of electrons and holes in terms of the free-electron
mass mg and ag = 10 nm is the exciton Bohr radius. Finally,
X (K) is the excitonic fraction defined as

2

V4 + | Eyk)/Qk|

where E(K) is the polariton dispersion relation and Qz = 10
meV is the Rabi splitting.

X(K) =

(A4)

APPENDIX B: POLARITON RELAXATION MEDIATED BY
HOT EXCITONS

The matrix elements of scattering between polariton and
hot-exciton states are obtained from Fermi’s “golden rule”
following Ref. [15]. The scattering rate of the process
illustrated in Fig. 1(b), from a polariton state of wave vector
k) and exciton state of wave vector k3 to a polariton state of
wave vector k, and an exciton state of wave vector k4, is given
by

W 271'( Lmy ><6E3a12;
o T T\ a2 k) S
Here the factor in the first parentheses on the right-hand side
is an average of the initial and final exciton density of states
in one dimension (assuming a parabolic exciton dispersion).
The factor in the second parentheses is the matrix element of
exciton-exciton scattering [57], with Ep the exciton binding
energy, ap the exciton Bohr radius, and S a normalization area.
Nex.k; 15 the occupation of excitons in initial state k3. For each
combination of wave vectors k; and k,, k3 and k4 are obtained

from energy and momentum conservation:

2
> nex,ky (Bl)

2mx Ek — Ek kl _k2
ky = ! 2 _ s B2
TR 2k —ky) 2 @2
ky = ky — ky -+ ks (B3)

where E; represents the polariton dispersion.
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Similar expressions can be used for the processes in
Figs. 1(c) and 1(d). We note that in the case of Fig. 1(c) one
should sum over a few different processes that can satisfy the
energy and momentum (phase-matching) conditions.

APPENDIX C: CLASSICAL BOLTZMANN EQUATIONS
FOR THE BOSONIC CASCADE

In the classical regime, the quantum cascade can be
modeled by a set of classical rate equations [28] for the mode
occupations n,,

an
dt

= Py+ Wlny_1(ny + Dnr

ny

—ny(ny—1 + D(nr + 1)] o (CDH

dl’l)\
e Py + Wn,_1(n;, + Dnr

—n(m—1+ Dnr +1)

+ 41y + D(ng + 1)

n,

—n,(ny41 + Dnrl — - (€2)

di’ll
I = Py+ Wlny(n; + D(ny + 1)

—ni(nz + Dng] — ’% (C3)

where 1 < A < M, and for the terahertz mode occupation ny:

dl’lT

2
— =W ij[nx(m_l + D(ng + 1)

nr

—n,—1(n;, + Dnr] — . 4

Equations for the steady state are readily obtained by setting
the time derivatives to zero:

P()‘[ + WrnM_lnT

ny = , C5
M Wrnr + 1+ np_1) + 1 €5
Pyt + Wr[(mp—1 +naronr + niga]
n, = , (Co)
WrQnr +1+mn 1 —nyy1) + 1

P, W 1
n = 0T + Wrt(nr + )nz’ 7

Whnr —ny) +1

we¥ M a _
— T s (L mny, (C8)

Wt(n, —ny) + i

A simultaneous solution to this set of equations can be
easily found by starting from an initially unoccupied state
and evaluating the quantities n; and ny iteratively until the
equations become consistent. The result of this procedure gives
rise to the solid curves in Figs. 5(a), 5(b) and 5(d), which are in
agreement with the result of full kinetic Monte Carlo modeling.
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