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Antiresonance induced by symmetry-broken contacts in quasi-one-dimensional lattices
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We report the effect of symmetry-broken contacts on quantum transport in quasi-one-dimensional lattices. In
contrast to one-dimensional (1D) chains, transport in quasi-one-dimensional lattices, which are made up of a
finite number of 1D chain layers, is strongly influenced by contacts. Contact symmetry depends on whether the
contacts maintain or break the parity symmetry between the layers. With balanced on-site potential, a flatband
can be detected by asymmetric contacts, but not by symmetric contacts. In the case of asymmetric contacts
with imbalanced on-site potential, transmission is suppressed at certain energies. We elucidate these energies of
transmission suppression related to antiresonance using reduced lattice models and Feynman paths. These results
provide a nondestructive measurement of flatband energy, which is difficult to detect.
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I. INTRODUCTION

Quantum dots are often referred to as artificial atoms, as
their electrons are confined in all spatial dimensions with dis-
cretized energy [1,2]. Likewise, coupled quantum dots can be
considered as artificial molecules or crystals [3–5]. Quantum
dot arrays are accordingly a promising candidate for artificial
lattices, which have attracted a great deal of attention recently
considering their relation to not only fundamental physics but
also various potential applications, e.g., quantum computation,
spintronics, engineering of energy bands, and topological
states in non-Hermitian lattices [6–13]. The electronic states
in ideal arrays of uniform quantum dots can be described by
discrete-level representations, such as the tight-binding model
[14,15], and electronic transport in quantum dot arrays has
been studied extensively as the electronic states can be probed
when coupling is allowed between dots and leads. In the
presence of a defect, transport shows antiresonance where
the transmission probability vanishes [16–19]; in other words,
the conducting channel is completely blocked by the defect
when the Fermi energy is right at the defect energy level.

Apart from a one-dimensional chain of quantum dots, quasi-
one-dimensional (quasi-1D) lattices have revealed peculiar
electronic states, such as flatbands. Flatband lattice models
where at least one band is completely flat over the whole
momentum space—implying zero dispersion—have attracted
considerable interest from various areas, including supercon-
ductors [20–23], optical and photonic lattices [24–28], and
exciton-polariton condensates [10,29]. The simplest flatband
lattice models are quasi-1D lattices that have translational sym-
metry in the infinite longitudinal direction and parity symmetry
in a finite transverse direction, for example cross-stitch and
tunable diamond lattices. In these lattices, the flatbands and
dispersive bands are completely decoupled because they have
odd- and even-parity symmetric eigenstates, respectively. The
odd symmetry of the flatbands produces compact localized
eigenstates with nonzero amplitude only at a finite number of
lattice sites due to destructive interference [30–33].

In this work, we study quantum transport in quasi-1D
lattices with symmetric and asymmetric contacts, which, in
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contrast to transport in 1D chains, strongly influence transport
in quasi-1D lattices. Imperfect contacts between system and
leads can be considered as defects that break the symmetries
of the lattice. We consider two cases according to the existence
of flatbands related to the balance of on-site potential. First,
when a quasi-1D lattice has flatbands due to balanced on-site
potential, it is natural that transport does not reflect flatbands
as the compact localized states in the flatbands are such that
they are unavailable for charge transfer. We show, however,
that flatbands can be detected by symmetry-broken contacts,
but not by symmetric contacts. Next, in quasi-1D lattices
with imbalanced on-site potential, although there are no
flatbands, transmission has additional dips irrespective of
the energy bands in the case of asymmetric contacts. We
explain the energies of this transmission suppression related
to antiresonance using reduced lattice models and Feynman
paths.

This paper is organized as follows. In Sec. II we describe
the energy bands and quantum transport in quasi-1D lattices
with flatbands. The results of transmission in lattices without
flatbands due to imbalanced on-site potential are presented in
Sec. III, and in Sec. IV we summarize our results.

II. QUASI-ONE-DIMENSIONAL
LATTICES—FLATBAND LATTICES

A. Cross-stitch lattices

In this section, we study the energy bands and quantum
transport in two quasi-1D lattices: a cross-stitch and a tunable
diamond lattice. Figure 1 illustrates the cross-stitch and tunable
diamond lattices. The Schrödinger equation of a quasi-1D
flatband lattice is given by

E�j = H0�j + H1�j+1 + H+
1 �j−1, (1)

where H0 is the on-site energy matrix and H1 is the nearest-
neighbor hopping matrix. The tight-binding Hamiltonian for a
cross-stitch lattice is given by

H0 =
(

εa −t

−t εb

)
, H1 =

(−d −d

−d −d

)
, (2)

where �j = (ajbj )T . On-site potential energies are εa and εb,
respectively, and hopping strengths between the two sites are d
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FIG. 1. (a) Cross-stitch lattice with two leads. Blue rectangular
boxes represent unit cells. The unit cell has two sites, a and b, with
hopping strengths d (solid lines) and t (dashed line) between the sites.
The coupling between sites and leads is γ

i(o)
a(b,c) (long-dashed line).

(b) Tunable diamond lattice with two leads. The unit cell has three
sites, a, b, and c, with hopping strengths d (solid lines) and t (dashed
line) between sites.

and t . We can set �j+1 = �je
ik and �j−1 = �je

−ik because
of the translational symmetry of the unit cells. Finally, the
Hamiltonian for the cross-stitch lattice is given by

H =
(

εa − 2d cos k −t − 2d cos k

−t − 2d cos k εb − 2d cos k

)
. (3)

Solving the eigenproblem of H when εa = εb = 0, we obtain
the energy bands for the cross-stitch lattice as

E(k) = −t − 4d cos k, EFB = t, (4)

where E(k) and EFB are dispersive and flatband energies,
respectively. Figure 2(a) shows the dispersive and flatbands
when t = d = 1.

Here, we discuss quantum transport in the quasi-1D lattices.
The system under study is composed of a cross-stitch or a
tunable diamond lattice with N unit cells, as shown in Fig. 1,
with two leads connected to the left and right end unit cells.
The Hamiltonian of this system is given by

H = HQ1D + Hlead + Hcoupling, (5)

where HQ1D, Hlead, and Hcoupling describe the quasi-1D lattice,
leads, and coupling between the lattice and leads, respectively,
and are given by

HQ1D =
N∑

i=1

H0d
†
i di +

N−1∑
i=1

(H1d
†
i+1di + H.c.), (6)

Hlead = −V0

2

∑
j �=0

(c†j+1cj + H.c.), (7)

Hcoupling = Gid
†
1c−1 + God

†
Nc1 + H.c., (8)

where d
†
j (dj ) and c

†
j (cj ) are electron creation (annihila-

tion) operators for the lattice and leads, respectively. V0/2
is hopping strength in the leads, and Gi (o) describes the

FIG. 2. (a) Energy bands for a cross-stitch lattice with a flatband (red line). (b) Transmission probabilities for a cross-stitch lattice of which
both a and b sites of the end unit cells are connected to the input and output leads. (c) Transmission probabilities for a cross-stitch lattice of
which only the a sites of the end unit cells are connected to the input and output leads. (d) Upper and lower panels show detangled Fano lattices
from a cross-stitch lattice with symmetric and asymmetric contacts, respectively, corresponding to (b) and (c). The hopping strength (dashed
lines) between Fano states fn and dispersive chain pn equals zero. (e) Energy bands for a tunable diamond lattice with a flatband (red line).
(f) Transmission probabilities for a tunable diamond lattice of which both a and b sites of the end unit cells are connected to the input and
output leads. (g) Transmission probabilities for a tunable diamond lattice of which only the a sites of the end unit cells are connected to the
input and output leads. (h) Upper and lower panels show detangled Fano lattices from a tunable diamond lattice with symmetric and asymmetric
contacts, respectively, corresponding to (f) and (g).
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coupling between the lattice and the left (right) lead. The
amplitude equations of the total Hamiltonian of Eq. (5) can be
written as

Eφ−1 = −V0

2
φ−2 + GiT �1, (9)

E�1 = H0�1 + H1�2 + φ−1G
i, (10)

E�j = H0�j + H
†
1 �j−1 + H1�j+1 (2 � j � N − 1),

(11)

E�N = H0�N + H
†
1 �N−1 + φ1G

o, (12)

Eφ1 = −V0

2
φ2 + GoT

�N, (13)

where

φj = eiqj + re−iqj (j < 0), (14)

= teiqj (j > 0). (15)

φj represents the j th sites of leads, and Gi (o) is given by

Gi (o) =
(

−γ i (o)
a

−γ
i (o)
b

)
. (16)

r and t are reflection and transmission coefficients, respec-
tively, and |r|2 + |t |2 = 1 in Hermitian cases. Finally, we
obtain the equations as follows:

− V0

2
= V0

2
r + GiT �1, (17)

−e−iqGi = eiqrGi + (H0 − E)�1 + H1�2, (18)

0 = H
†
1 �j−1 + (H0 − E)�j + H1�j+1, (19)

0 = H
†
1 �N−1 + (H0 − E)�N + eiq tGo, (20)

0 = V0

2
t + GoT

�N, (21)

where the energy of the leads is given by e±iq = −E/V0 ±
i
√

1 − |E/V0|2. Finally, we can obtain R and T for the cross-
stitch lattice from the following equation:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−V0
2

−e−iqGi

0
...
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

V0
2 GiT

eiqGi H0 − EI H1

H
†
1 H0 − EI H1

. . .
. . .

. . .

H
†
1 H0 − EI H1

H
†
1 H0 − EI eiqGo

GoT V0
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

r

�1

�2
...

�N−1

�N

t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (22)

Hamiltonians H0 and H1 are 2 × 2 matrices that de-
scribe the unit cell and the coupling between nearest
unit cells, respectively. We set V0 = 10 throughout this
paper.

Figure 2(b) shows transmission probability T = |t |2 as a
function of energy E in a cross-stitch lattice of 100 unit cells
with symmetric contacts—that is, γ i

a = γ i
b = γ o

a = γ o
b = γ ,

and t = d = 1. We set γ = 1 throughout this paper. The
transmission probability corresponds to the dispersive energy
bands because the compact localized states in the flatband
are such that they are unavailable for transmission. In lattices
including both flatbands and dispersive bands, the compact
localized part of the lattice related to flatbands can be
detangled from the dispersive part of the lattice using a generic
transformation [33]. After the transformation, we obtain the
dispersive part of the lattice and side-coupled Fano states,
where the hopping strength between them is determined by
the difference between the on-site potentials of two sites in a
unit cell. As a result, if the on-site potentials are symmetric,
there is no hopping between the dispersive part of the lattice
and the Fano states; thus, the Fano states completely decouple
from the dispersive part of the lattice. In this case, the Fano
state is the compact localized state of the flatband. Conversely,
an asymmetric potential intertwines the dispersive and Fano
states. This detangling procedure clearly shows the relation
between the local symmetry of the lattice and the compact

localized state, and it explains why the flatband state does not
contribute to transmission.

Considering a cross-stitch lattice with symmetric contacts,
the amplitude equations of the left end unit cell can be written
from Eq. (10) as

Ea1 = εaa1 − a2 − b2 − b1 − γφ−1,

Eb1 = εbb1 − b2 − a2 − a1 − γφ−1, (23)

where a1 and b1 represent the a and b sites of the left end
unit cell, and φ−1 represents the first site of the left lead.
From these equations, we obtain the end unit cell of a lattice
with dispersive degrees of freedom p1 and side-coupled Fano
states f1,

Ep1 = (ε+ − 1)p1 + ε−f1 − 2p2 −
√

2γφ−1,

Ef1 = (ε+ + 1)f1 + ε−p1, (24)

where pn = (an + bn)/
√

2, fn = (an − bn)/
√

2, ε+ = (εa +
εb)/2, and ε− = (εa − εb)/2. If ε− = 0, the side-coupled Fano
state f1 becomes a compact localized state of which energy is
ε+ + 1 because it is isolated in spite of the coupling between
the lattice and leads. In the detangled lattice in the upper panel
of Fig. 2(d), the Fano states become compact localized states
and do not affect transmission because the Fano states are
completely decoupled from the dispersive chain, i.e., ε− = 0.
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However, regarding asymmetric contacts, where γ i
a =

γ o
a = γ and γ i

b = γ o
b = 0, a sharp dip in the transmission

appears at flatband energy E = 1, as shown in Fig. 2(c).
This dip in transmission originates from the breaking of local
symmetry of the end unit cells due to the asymmetric contacts.
When we consider asymmetric contacts, Eq. (24) changes into

Ep1 = (ε+ − 1)p1 + ε−f1 − 2p2 − γ√
2
φ−1,

Ef1 = (ε+ + 1)f1 + ε−p1 − γ√
2
φ−1. (25)

If ε− = 0, the fn(n = 2, . . . ,n − 1) inside the lattice are still
compact localized states, except for f1 because of the coupling
between f1 and the lead as shown in the lower panel of
Fig. 2(d). The coupling between Fano states and leads due
to asymmetric contacts produces the dip in transmission at the
flatband energy, although most compact localized states still
exist inside the lattice. Considering the amplitude equations
for the right unit cell written from Eq. (12), we obtain the
same results. It is noted that this transmission dip can also be
considered as an antiresonance due to destructive interference,
of which position corresponds to the energy of the Fano state
[16–19].

B. Tunable diamond lattices

In the case of a tunable diamond lattice, the tight-binding
Hamiltonian is given by

H0 =
⎛
⎝ εa −t −d

−t εb −d

−d −d εc

⎞
⎠, H1 =

⎛
⎝ 0 0 0

0 0 0
−d −d 0

⎞
⎠,

(26)

where �j = (ajbj cj )T . On-site potential energies are εa , εb,
and εc, respectively, and hopping strengths between the sites
are d and t . Setting �j+1 = �je

ik and �j−1 = �je
−ik on

account of the translational symmetry of the unit cells, we
obtain the Hamiltonian for the tunable diamond lattice as

H =
⎛
⎝ εa −t −d − de−ik

−t εb −d − de−ik

−d − deik −d − deik εc

⎞
⎠. (27)

Solving the eigenproblem of H when εa = εb = εc = 0, we
obtain the energy bands for the tunable diamond lattice as
follows:

E1,2(k) = −1

2

(
t ±

√
t2 + 32d2 cos2

k

2

)
, EFB = t, (28)

where E1,2(k) and EFB are dispersive and flatband energies,
respectively. Figure 2(e) shows the dispersive and flatbands
when t = d = 1.

Considering the transport problem in the tunable diamond
lattice, Gi (o) in Eq. (16) changes into

Gi (o) =

⎛
⎜⎝

−γ i (o)
a

−γ
i (o)
b

−γ i (o)
c

⎞
⎟⎠ (29)

and H0 and H1 are now 3 × 3 matrices for the tunable diamond
lattice. Figure 2(f) shows transmission T = |t |2 as a function
of energy E in a tunable diamond lattice of 100 unit cells
with symmetric contacts, e.g., γ i

a = γ i
b = γ o

a = γ o
b = γ and

γ i
c = γ o

c = 0. The transmission probability corresponds to the
dispersive energy bands. In the case of asymmetric contacts,
where γ i

a = γ o
a = γ and γ i

b = γ o
b = γ i

c = γ o
c = 0, there is

again a dip in transmission at flatband energy E = 1, as shown
in Fig. 2(g). Transmission in tunable diamond lattices is similar
to that in cross-stitch lattices as the detangling of the flatbands
is similar, except for the c sites, as shown in Fig. 2(h).

III. QUASI-ONE-DIMENSIONAL LATTICES
WITH IMBALANCED ON-SITE POTENTIAL

In this section, we study energy bands and quantum trans-
port in quasi-1D lattices with imbalanced on-site potential.
While there are no flatbands in this case, as the symmetry for
flatbands is broken by the imbalanced on-site potential, here we
are able to find band gaps. We now consider quantum transport
in quasi-1D lattices with imbalanced on-site potential. In our
case, there is no flatband as the imbalanced potential breaks
the flatband and opens up band gaps, as shown in Figs. 3(a)
and 4(a).

A. Cross-stitch lattices

To study the effect of imbalanced on-site potential on a
cross-stitch lattice, we apply on-site potentials to the diagonal

FIG. 3. (a) Energy bands for a cross-stitch lattice with δa = −2.
(b) Transmission probability for a cross-stitch lattice of which both a

and b sites of the end unit cells are connected to the input and output
leads. (c) Transmission probability for a cross-stitch lattice of which
only the a sites of the end unit cells are connected to the input and
output leads. (d) Transmission probability for a cross-stitch lattice of
which a and b sites of the end unit cells are connected to the input
and the output leads, respectively.
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FIG. 4. (a) Energy bands for a tunable diamond lattice with
δa = 1. (b) Transmission probability for a tunable diamond lattice
of which both a and b sites of the end unit cells are connected to
the input and output leads. (c) Transmission probability for a tunable
diamond lattice of which only the a sites of the end unit cells are
connected to the input and output leads. (d) Transmission probability
for a tunable diamond lattice of which a and b sites of the end unit
cells are connected to the input and the output leads, respectively.

parts of H0 as follows:

H0 =
(

ε0 + δa −t

−t ε0 + δb

)
, (30)

where δa and δb are imbalanced on-site potential, or in other
words δa �= δb. If we apply imbalanced on-site potential, e.g.,
δa = −2, the two bands exhibit a repulsive behavior that results
in a band gap, as seen in Fig. 3(a). In this case, the flatband
disappears because the related symmetry is broken.

Figures 3(b)–3(d) shows the transmission probability T

when δa = −2 and ε0 = δb = 0 in a cross-stitch lattice with
different contact configurations. First, we consider that both
a and b sites of the end unit cells are connected with the
leads. In other words, incident waves from the left lead are
transmitted through both a and b sites of the left end unit cell
of the lattice to the right lead through both a and b sites of the
right end unit cell. In this case, the transmission corresponds
with the energy band [cf. Fig. 3(b)]. Second, we consider
the case of symmetry-broken contacts, where incident waves
from the left lead are transmitted through the left a site of
the lattice to the right lead through the right a site. In this
case, there exists a dip in transmission at E = 1, which is
irrelevant to the energy bands of the cross-stitch lattice as well
as the energy band gap [cf. Fig. 3(c)]. Finally, we consider
the case of different contacts, where incident waves from the
left lead are transmitted through the left a site of the lattice
to the right lead through the right b site. Here, two dips in
transmission appear at E = 1 and −1 [cf. Fig. 3(d)]. The last

FIG. 5. (a) Schematic diagram of the end unit cells of a cross-
stitch lattice connected to the leads. Both a and b sites are connected
to the right lead, but only the a site is connected to the left lead.
(b) Schematic diagram of the end unit cells of a tunable diamond
lattice connected to the leads. All sites are connected to the right
lead, but only the a site is connected to the left lead.

two cases of symmetry-broken contacts show additional dips
in transmissions that are irrelevant to the energy bands.

To understand the dips in transmission due to symmetry-
broken contacts in quasi-1D lattices, which cannot be ex-
plained by the energy bands of the lattices, let us reconsider
Eq. (5) in detail. The HQ1D term describing the quasi-1D
lattices can be divided into two parts, H ′

Q1D and Hend, which
represent the flatband excluding the two end unit cells and the
two end unit cells, respectively. In this case, H ′

Q1D precisely
describes the band and gap structures of the flatband lattices,
as our system is sufficiently large. Therefore, it is Hend that
produces the additional dips in transmission on account of the
asymmetric contacts between the end unit cells and leads.
Figure 5(a) depicts a reduced cross-stitch lattice with the
asymmetric contacts between leads. When the left lead is
connected to the a site only and the right lead is connected
to both a and b sites, we can obtain T from the following
equation:⎛
⎜⎜⎜⎝

−V0
2

γ i
ae

−iq

0

0

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

V0
2 −γ i

a 0 0

−γ i
ae

iq εa − E −t −γ ′
ae

iq

0 −t εb − E −γ ′
be

iq

0 −γ ′
a −γ ′

b
V0
2

⎞
⎟⎟⎟⎠

⎛
⎜⎝

r

a

b

t

⎞
⎟⎠.

(31)

For simplicity, if γ ′
a = γ ′

b = γ ′, the condition for transmission
T = 0 is Ea = εb + t when the left lead is connected to the a

site. Symmetrically, if the left lead is connected to the b site,
then the condition is Eb = εa + t . Finally, with asymmetric
contacts, the transmission in Figs. 3(c) and 3(d) dips at E = Ea

when the leads are connected to the a site of the end unit cell
and at E = Eb for a b-site connection, in addition to the band
gaps of the cross-stitch lattice.

These dips in transmission can be considered as antireso-
nance in terms of the concept of Feynman paths [14,19]. We
can obtain the retarded Green’s function Gr

a using the Feynman
path for electron transmission through the reduced lattice in
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Fig. 5(a) as

Gr
a = gr

a − gr
atg

r
b + gr

atg
r
btg

r
a − gr

atg
r
btg

r
btg

r
a + · · · (32)

= gr
a

(
1 − tgr

b

)
1 − t2gr

ag
r
b

, (33)

where gr
a = 1/(E − εa + 2i�0) and gr

b = 1/(E − εb + i�0).
The transmission function is associated with Green’s function
Gr

a(E) by the relation T (E) ∝ |Gr
a(E)|2. We can also obtain

the condition E = Ea = εb + t , where the interference of all
Feynman paths leads to antiresonance when the left lead is
connected to the a site and �0 is infinitesimal.

B. Tunable diamond lattices

Now, to study the effect of imbalanced on-site potential on
a tunable diamond lattice, we apply on-site potentials to the
diagonal parts of H0 as follows:

H0 =
⎛
⎝ε0 + δa −t −d

−t ε0 + δb −d

−d −d ε0 + δc

⎞
⎠, (34)

where δa , δb, and δc are imbalanced on-site potential. Under
symmetric conditions, e.g., when δc is a nonzero real value and
δa = δb = 0, two dispersive bands show repulsive behavior but
the flatband survives. As for asymmetric conditions, e.g., when
δa �= δb and δc = 0, the flatbands and the upper dispersive
bands demonstrate a repulsive behavior, as shown in Fig. 4(a),
because the imbalanced on-site potential breaks the symmetry
between the a and b sites, which is the origin of the flatband
in the preceding section.

Figures 4(b)–4(d) show the transmission probability T

when δa = 1 and ε0 = δb = δc = 0 in a tunable diamond
lattice with different contact configurations. This case as well
presents additional dips in transmission, which can also be
understood in the same manner as the former case. When the
left lead is connected to the a site only and the right lead is
connected to the a, b, and c sites simultaneously, as shown in
Fig. 5(b), we can obtain T from the following equation:⎛

⎜⎜⎜⎜⎝
−V0

2

γ i
ae

−iq

0
0
0

⎞
⎟⎟⎟⎟⎠ = M

⎛
⎜⎜⎜⎝

r

a

b

c

t

⎞
⎟⎟⎟⎠, (35)

where

M =

⎛
⎜⎜⎜⎜⎜⎜⎝

V0
2 −γ i

a 0 0 0

−γ i
ae

iq εa − E −t −d −γ ′
ae

iq

0 −t εb − E −d −γ ′
be

iq

0 −d −d εc − E −γ ′
ce

iq

0 −γ ′
a −γ ′

b −γ ′
c

V0
2

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(36)

For simplicity, if γ ′
a = γ ′

b = γ ′
c = γ ′, the condition for trans-

mission T = 0 is Ea = εb + t or Ea = εc + d when the left
lead is connected to the a site. As before, a b-site connection
gives the condition Eb = εa + t or Eb = εc + d. Finally, with
asymmetric contacts, the transmission in Figs. 4(c) and 4(d)
dips at E = Ea and E = Eb when the lead is connected to the
a site and the b site of the end unit cell, respectively. These
dips in transmission can also be considered as antiresonance in
terms of the Feynman path; the former condition, Ea = εb + t ,
can be obtained from the same Feynman paths as those in the
cross-stitch lattice if we consider the Feynman paths including
only a and b sites, exclusive of the c site, in Fig. 5(b). Similarly,
the latter condition Ea = εc + d can be obtained from the
Feynman paths, which include the a and c sites but exclude
the b site. As seen in Fig. 4, there are multiple antiresonances
in the tunable diamond lattice.

IV. DISCUSSION AND SUMMARY

In principle, our results demonstrating that the contacts
between a system and leads can induce various resonant
phenomena can be applied to quantum transport in diverse
situations, e.g., in the presence of defects and flatbands
[16–19,34]. If the contact does not break the intrinsic proper-
ties of the system, such as the parity symmetry of a quasi-1D
lattice, then the contact does not influence quantum transport.
In the case of a symmetry-broken contact, however, antireso-
nance indirectly reflects nonmobile states as compact localized
states, since the contact perturbs one of the flatband states at
the edge of the system. As a result, contact configurations that
break the symmetries that determine the intrinsic properties of
a quantum state play an important role in transport.

In summary, we have studied quantum transport in quasi-
one-dimensional lattices with symmetric and asymmetric
contacts. In a quasi-1D lattice with balanced on-site potential,
flatbands can be detected through asymmetric rather than
symmetric contacts, and in a lattice with imbalanced on-site
potential, transmission was suppressed at certain energies in
the case of asymmetric contacts. We have elucidated the ener-
gies of the transmission suppressions related to antiresonance
using reduced lattice models and Feynman paths. There is no
overlap between compact localized states of a flatband because
the states have nonzero amplitude only at a finite number of
lattice sites. Consequently, it is very difficult to detect flatband
energy in quantum transport because compact localized states
do not contribute to the transport. Due to the isolation
of compact localized states, however, asymmetric contacts
facilitate a nondestructive measurement of flatband energy.
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