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Plasmons in graphene nanoribbons
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We calculate the dielectric function and plasmonic response of armchair (aGNRs) and zigzag (zGNRs)
graphene nanoribbons using the self-consistent-field approach within the Markovian master equation formalism
(SCF-MMEF). We accurately account for electron scattering with phonons, ionized impurities, and line-edge
roughness and show that electron scattering with surface optical phonons is much more prominent in GNRs
than in graphene. We calculate the loss function, plasmon dispersion, and the plasmon propagation length in
supported GNRs. Midinfrared plasmons in supported (3N+2)-aGNRs can propagate as far as several microns at
room temperature, with 4–5-nm-wide ribbons having the longest propagation length. In other types of aGNRs
and in zGNRs, the plasmon propagation length seldom exceeds 100 nm. Plasmon propagation lengths are much
longer on nonpolar (e.g., diamondlike carbon) than on polar substrates (e.g., SiO2 or hBN), where electrons scatter
strongly with surface optical phonons. We also show that the aGNR plasmon density is nearly uniform across
the ribbon, while in zGNRs, because of the highly localized edge states, plasmons of different spin polarization
are accumulated near the opposite edges.
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I. INTRODUCTION

Surface plasmon polaritons or simply plasmons are col-
lective oscillations of free carriers at the surface of good
conductors [1,2]. They can be guided below the diffraction
limit, i.e., their wavelength is shorter than the free-space
wavelength of electromagnetic waves with the same frequency
[1]. Plasmons have been studied for many applications,
such as integrated nanophotonics [3–5], metamaterials [6–9],
sensing [10,11], photovoltaics [12], and metasurfaces [13–15].
Plasmons were first experimentally realized at the interface of
a noble metal, such as gold or silver, and a dielectric [16].
In metals, plasmons are mostly in the visible part of the
electromagnetic spectrum, owing to the high carrier density
[17]. Two key shortcomings of metal plasmonics are a lack
of tunability of the plasmon frequency and large plasmon loss
(small plasmon propagation length) [17].

Graphene plasmonics [18–26] offers several advantages
over metal plasmonics. First, graphene plasmons are found
in the terahertz-to-midinfrared frequency range, which is
important for application in security, communications, and
sensing. Second, carrier density in supported graphene is
tunable by a back gate, which enables electrostatic control of
graphene’s electronic and optical properties [27,28]. However,
the electron scattering mechanisms present in supported
graphene significantly degrade the plasmon propagation length
[29]. One solution is to reduce plasmon damping and improve
the plasmon propagation length by lowering the system
dimensionality, from two-dimensional (2D) graphene to quasi-
one-dimensional (quasi-1D) graphene nanoribbons (GNRs).

Supported GNRs provide almost the same interesting plas-
monic features as graphene, with the added benefit of a less dis-
sipative environment for electrons, owing to the low electronic
density of states and thus lower electron scattering rates. GNRs
have different electronic and optical properties than pristine
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graphene and have been studied for applications such as
resonators [30] and field-effect transistors [31,32]. Plasmons in
wide GNRs have been experimentally measured [18,20,33,34].
However, in order to minimize electron scattering and obtain
the best electronic and plasmonic properties, we need to
look at ultranarrow GNRs (width < 10 nm), where very few
subbands are involved in electron transport. Ultranarrow GNRs
can be fabricated by top-down methods [35](conventional
lithography [36], local-probe lithography [37–39], or chemical
synthesis [40]) or bottom-up synthesis [41–45]. To date,
there have been no experimental reports on the plasmon
behavior in these structures. On the theoretical front, previous
studies of plasmons in ultranarrow GNRs have relied on
the random-phase approximation to treat electron-electron
interaction and have either assumed ballistic (scattering-free)
electron transport [46–54] or have employed the relaxation-
time approximation for a simplified treatment of scattering
[55,56]. However, electrons in GNRs are subject to several
concurrent scattering mechanisms that are both inelastic and
anisotropic and whose rates have widely varying dependencies
on the electron energy; consequently, the relaxation-time
approximation with a single energy-independent relaxation
time is not accurate for treating dissipation in GNRs [29].

In this paper, we calculate the optical and plasmonic
response of ultranarrow GNRs by employing an accurate and
computationally affordable technique: the self-consistent-field
approach within a Markovian master equation formalism
(SCF-MMEF) for the single-electron density matrix [29].
SCF-MMEF captures interband electron-hole-pair generations
and all the concurrent electron scattering mechanisms, such as
with intrinsic phonons, ionized impurities, surface optical (SO)
phonons, and line-edge roughness (LER). The technique uses
the Bloch wave functions and dispersions calculated via the
third-nearest-neighbor tight binding with a nonorthonormal
basis and, in the case of zigzag GNRs, also a Hubbard term
to account for the strong electron-electron interaction and
spin polarization (Appendix A). We calculate the dielectric
function, loss function, as well as the plasmon dispersion
and propagation length in supported armchair GNRs (aGNRs)
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FIG. 1. Schematic of a GNR of length L and width W lying on a
dielectric substrate of width WS and thickness TS .

and zigzag GNRs (zGNRs) on various dielectric substrates
[polar SiO2 and hBN and nonpolar diamondlike carbon
(DLC)]. We show that the SO-phonon scattering rates (the
interaction Hamiltonian between electrons and SO phonons in
quasi-one-dimensional systems is derived in Appendix C) is
at least as prominent as ionized-impurity scattering in GNRs,
unlike in bulk graphene, where impurity scattering dominates
(Sec. II); this has repercussions on the plasmonic response in
supported GNRs. In the midinfrared, at room temperature, and
for typical sheet carrier densities (up to 1013 cm−2), plasmons
in supported (3N+2)-aGNRs of width 4–5 nm can propagate
as far as several microns (Sec. III). In other types of aGNRs and
in zGNRs, plasmons are strongly damped and the propagation
length seldom exceeds 100 nm. Plasmon propagation lengths
are much longer on nonpolar (e.g., diamondlike carbon) than
on polar substrates (e.g., SiO2 or hBN), where electrons scatter
strongly with surface optical phonons. Also, we obtain the
plasmon distribution profile from the SCF-MMEF. aGNR
plasmons are distributed almost uniformly across the ribbon
(Sec. III). Owing to the highly localized edge states, zGNR
plasmons are spin polarized and different spin polarizations are
accumulated near the opposite edges of the ribbon (Sec. IV).
We conclude with Sec. V.

II. ELECTRON SCATTERING IN GNRs
SCF-MMEF OVERVIEW

We analyze a graphene nanoribbon of width W and length
L, placed on a substrate of thickness Ts and width WS � W

(Fig. 1). It is assumed that a back gate can be used to tune
the carrier density and Fermi level in the GNRs and that
both n-type (Fermi level in the conduction band; electrons
are majority carriers) and p-type (Fermi level in the valence
band; holes are majority carriers) GNRs are accessible. In
order to calculate the dynamic dielectric response and plasmon
properties of GNRs, we need to compute the full dynamic
dielectric function, ε(q,ω), where q is the wave number in the
GNR length direction (along x in Fig. 1) and ω is the angular
frequency. In short, this task requires the knowledge of the
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FIG. 2. Electron scattering rates for different mechanisms vs
energy with respect to the top of the valence band for an n-type
35-zGNR on SiO2. The active scattering mechanisms are longitudinal
acoustic (LA) phonons, ionized impurities (II), line-edge roughness
(LER), longitudinal optical (LO) phonons, and surface optical (SO)
phonons from the polar substrate. The impurity density is Ni =
4 × 1011 cm−2. The LER is assumed to be exponentially correlated,
with an rms height of 0.2 Å and a correlation length of 3 nm.

electron dispersion and Bloch wave functions for the quasi-1D
GNR, as well as an accurate account of all the electron
dissipative pathways. In GNRs, there are several competing
scattering mechanisms with different energy dependencies;
some of them, like SO-phonon scattering, are both anisotropic
and inelastic. Therefore, methods like the Mermin-Lindhard
dielectric function [22,57] that rely on the relaxation-time ap-
proximation fail to capture the dissipation accurately. Instead,
we use the SCF-MMEF, which was previously successfully
applied to graphene [29], in order to calculate the dielectric
function ε(q,ω) for GNRs. The SCF-MMEF provides an
equation of motion for the single-particle density matrix of the
electron system interacting with a perturbing electromagnetic
field and a dissipative environment. The equation of motion is
Markovian and guarantees that the density matrix will remain
positive throughout the evolution. From it, in the frequency do-
main, we can obtain the information about off-diagonal terms,
the so-called coherences, which are critical for calculating
the polarization and from it the susceptibility and dielectric
function. The dissipative terms in the SCF-MMEF equation
of motion capture scattering much more rigorously than the
relaxation-time approximation. Details of the calculations are
given in Appendix B, as well as in Ref. [29].

Here, we will focus on building an intuitive understanding
of the strength of different scattering mechanisms in GNRs.
Therefore, we use Fermi’s golden rule to calculate the
electron scattering rates (see Appendix C) for the different
mechanisms in a representative n-type armchair GNR of width
approximately 4 nm on the SiO2 substrate (Fig. 2). It is
important to note that electron-SO-phonon scattering is the
most prominent mechanism in GNRs at typical carrier and
impurity densities; this is unlike in bulk graphene, where
impurity scattering dominates. (We derive the appropriate
form of the Hamiltonian for the interaction between the
quasi-1D electrons in the GNR and the 2D SO phonons
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FIG. 3. (a) Schematic of an aGNR, denoting different bond
lengths at the edge and near the middle. Several dimers are encircled.
aGNRs are classified based on the number of dimers in a unit cell.
(b)–(d) Energy dispersions of a (b) 37-aGNR, (c) 36-aGNR, and (d)
35-aGNR.

from the substrate in Appendix C 3). The relatively high
SO-phonon scattering rates in narrow GNRs occur because
the momentum conservation across the GNR is relaxed and
each electron transition in narrow GNRs can be mediated by
many SO-phonon modes. The wider the ribbon, the fewer SO
phonons aid an electron transition, and, in the limit of very
wide ribbons (W → ∞), the momentum conservation across
the ribbon is recovered and the 2D SO-phonon scattering holds.
The high relative importance of electron-SO-phonon scattering
means that the dielectric function and plasmonic response in
narrow supported GNRs are much more sensitive to the choice
of a substrate than those of bulk graphene or wide GNRs.

III. PLASMONS IN ARMCHAIR GNRs

Armchair GNRs (aGNRs) can be categorized in three
groups based on the number of dimers in a unit cell: 3N,
3N+1, and 3N+2 (N is a positive integer). (3N+2)-aGNRs
have the smallest band gap and are semimetallic; the rest are
semiconducting. Representative band structures for the three
types of aGNRs of width 4–5 nm, obtained using third-nearest-
neighbor tight binding that accounts for bond shortening near
the edge that accompanies hydrogen termination, are depicted
in Fig. 3. Details of the band structure calculation can be
found in Appendix A 1; the agreement with the results of
first-principles calculation [58] is excellent.

Based on the SCF-MMEF (see Appendix B), we calculate
the dynamic dielectric function ε(q,ω). In the ballistic regime
(no scattering), the imaginary part of the dielectric function
is zero and the plasmon dispersion is obtained from the zeros
of the real part of the dielectric function [46–52]. However, in
the presence of scattering, the imaginary part of the dielectric
function is no longer zero. In order to obtain the plasmon
dispersion, we follow the maximum of the loss function, which
is proportional to −�{ 1

ε(q,ω) } and is directly measured in exper-
iment. The loss function has a peak of finite height and width at
the plasmon resonance. The higher and narrower the peak, the
lower the dissipation, and the farther the plasmons can propa-
gate. The plasmon propagation length, Lp, quantifies plasmon
loss. Lp = 1/�q, where �q is the half width at half maximum
of the loss-function peak in the wave-number direction.

FIG. 4. (a)–(c) Loss functions in 3N+1, 3N, and 3N+2 n-type
aGNRs of similar widths: (a) 37-aGNR, (b) 36-aGNR, and (c)
35-aGNR. Substrate is SiO2, the sheet electron density is ns =
7 × 1012 cm−2, and the impurity density is Ni = 4 × 1011 cm−2.
(d) The plasmon spatial distribution (i.e., induced charge density
distribution) at different atomic sites throughout a unit cell of the
35-aGNR at the star-marked plasmon resonance from (c). Blue
is negative, red is positive, and larger circle radius means greater
absolute value of the induced charge density near a site.

In Fig. 4, we show the loss functions for the same three
aGNRs as in Fig. 3, which are placed on an SiO2 substrate.
All aGNRs have the same sheet electron density (ns = 7 ×
1012 cm−2). Just by inspecting the loss functions, we expect
the plasmons in (3N+2)-aGNRs to have significantly longer
propagation lengths than other types of aGNRs, which we will
discuss in more detail below.

Using the SCF-MMEF, we also calculate the induced
charge distribution. The induced charge density distribution
at the plasmon resonances corresponds to the plasmon
distribution. In Fig. 4(d), we see the plasmon distribution
at the star-marked plasmon resonance from Fig. 4(c). The
distribution is nearly spatially uniform.
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FIG. 5. Plasmon propagation length Lp for different types of
a-GNRs on (a) SiO2, (b) hBN, and (c) DLC. The electron sheet
density is ns = 7 × 1012 cm−2. The impurity densities are Ni = 4.0 ×
1011 cm−2 (SiO2), 0.9 × 1011 cm−2 (hBN), and 4.2 × 1011 cm−2

(DLC). These impurity densities were chosen to yield the room-
temperature electron mobilities of 2500 cm2

Vs (SiO2), 9900 cm2

Vs (hBN),

and 3000 cm2

Vs (DLC), which were reported in measurements of several
groups for bulk graphene [29]. The dips in the Lp curves correspond
to the hybrid plasmon-SO-phonon modes.
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FIG. 6. Plasmon propagation length Lp vs sheet electron density
for different-width (3N+2)-aGNRs on SiO2 at the frequency ω =
0.2 eV (above the highest SO-phonon angular frequency). (Inset)
Fermi energy vs width for (3N+2)-aGNRs at the sheet electron
density ns = 7 × 1012 cm−2.

Figure 5 shows the plasmon propagation length for different
types of aGNRs on SiO2, hBN, and diamond-like carbon
(DLC) with the same sheet carrier density. There are two
important points that can be inferred from the figure: (1)
Among the three substrates, DLC provides the least dissipative
environment for plasmons. As DLC is a nonpolar material,
SO-phonon scattering is absent and the electron mobility is
high. (2) (3N+2)-aGNRs have significantly (at least an order
of magnitude) longer Lp than other aGNR types. The reason
is that (3N+2)-aGNRs have the smallest band gap and lightest
electron effective mass and a large separation between the first
and second subband in both the conduction and valence bands,
which means infrequent intersubband scattering. In contrast,
(3N+1)-aGNRs not only have heavy electrons, but the first
two conduction subbands are very close to one another, which
results in frequent intersubband scattering and more plasmon
damping (thus a shorter propagation length).

In Fig. 5, we see the effect of ribbon width. As the
width increases, Lp increases, reaches a maximum, and
then decreases. To get a better understanding, we plot the
(3N+2)-aGNRs plasmon propagation length as a function of
the sheet carrier density (ns) for different widths at frequency
ω = 0.2 eV (Fig. 6). Lp has a maximum in terms of the
sheet carrier density. The reason is that, by increasing the
sheet carrier density, the Fermi energy rises until it reaches
the second conduction subband. Thereafter, the Fermi level
does not rise and more subbands get involved, so intersubband
scattering rates increase. For wider ribbons, the maximum
of the plasmon propagation length appears at lower sheet
carrier densities, because the second conduction subband has
a lower energy in wider GNRs. The inset of Fig. 6 shows the
dependence of the Fermi level on the width of the ribbon for
ns = 7 × 1012 cm−2. The maximal propagation length occurs
when the Fermi level reaches the second conduction subband.

We calculated the static (dc) conductivity of (3N+2)-
aGNRs on different substrates for different carrier densities
(Fig. 7). We see that, for typical values of the sheet carrier
density, the conductivity is highest for the 32–41-aGNRs,
which corresponds to 4–5-nm width. The impurity densities
are chosen so as to yield the room-temperature electron
mobilities of 2500 cm2

Vs (SiO2), 9900 cm2

Vs (hBN), and 3000 cm2

Vs
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FIG. 7. Static conductivity (in the units of σ0 = e2/h) vs width
for (3N+2)-aGNRs at different carrier densities. The impurity
densities are the same as in Fig. 5: Ni = 4.0 × 1011 cm−2 (SiO2),
0.9 × 1011 cm−2 (hBN), and 4.2 × 1011 cm−2 (DLC), chosen to yield
experimentally reported room-temperature electron mobilities of
2500 cm2

Vs (SiO2), 9900 cm2

Vs (hBN), and 3000 cm2

Vs (DLC). Note that
the GNR conductivity on the nonpolar DLC is the same as on polar
hBN, despite the bulk mobility (and thus conductivity) being over
three times higher on hBN than on SiO2.

(DLC), which were reported in measurements of several
groups for bulk graphene [29]. In supported bulk graphene,
ionized-impurity scattering dominates and limits carrier mo-
bility. However, in GNRs, SO-phonon scattering is very strong
(Fig. 2), so the conductivity of electrons in aGNRs on the
nonpolar DLC is higher than on the polar hBN, even though
the bulk mobility on hBN is more than three times higher (the
impurity density is nearly five times lower) than in DLC. The
strong SO-phonon scattering is also the reason that peaks in
the GNR conductivity on SiO2 [Fig. 7(a)] are slightly shifted
toward the narrower ribbons.

In Fig. 8, we focus on the (3N+2)-aGNRs of different
widths on DLC. The sheet electron density ns is kept constant.
Without SO-phonon scattering, we can see two clear plasmon

FIG. 8. (a–c) Loss functions of (3N+2) n-type aGNRs of
different widths on the nonpolar DLC substrate: (a)29-aGNR, (b)
35-aGNR, and (c) 41-aGNR. The sheet electron density is ns =
3 × 1012 cm−2 and the impurity density is Ni = 4.2 × 1011 cm−2.
Note the two plasmon branches in the ultranarrow aGNR (a), which
merge into one when width is increased while keeping ns constant.
The two branches are only visible on nonpolar substrates.
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FIG. 9. (a) Schematic of a zGNR. (b) Energy dispersion for a 20-
zGNR. (c) Spin distribution across the 20-zGNR. “Up” and “down”
refer to two opposite spin orientations.

branches in the narrowest aGNR [Fig. 8(a)]. With increasing
width, the two branches merge into one [Figs. 8(b), 8(c)]. The
first branch, occurring at lower energies, emerges because of
intrasubband excitations in the first conduction subband, while
the second branch is related to interband excitations between
the first conduction subband and the first valence subband.
However, the two branches are distinct and visible only for
a low Fermi level, far from the second subband; that means
either low ns or small width W (EF depends on the line density
nsW ). As we are keeping ns constant and increasing W in
Fig. 8, the Fermi level increases and the interband excitations
get weaker (fewer empty states in the conduction band) and
their rates become comparable to those of intraband excitations
(both intra- and intersubband); consequently, the two branches
merge.

IV. PLASMONS IN ZIGZAG GNRs

Single-electron dispersions for zGNRs are obtained using
the third-nearest-neighbor tight binding (3NN TB), with an
added Hubbard term in the Hamiltonian to capture the electron-
electron interaction between electrons of opposite spins. The
implementation details are given in Appendix A 2. Figure 9
shows the dispersions for a 20-zGNR. The 20-zGNR has a
width of 4.1 nm, comparable to that of the 35-aGNR (width
4.2 nm), which has the best plasmonic response among aGNRs.
Note that the electron and hole subband dispersions near the
gap are fairly flat, i.e., both electron and hole masses in
the lowest subband are high, with electrons being heavier
(me = 0.18m0 and mh = 0.08m0; m0 is the rest mass of a
free electron). As a result, the densities of states (DOS) in
the conduction and valence subbands are also high. At typical
carrier densities observed in experiment (of order 1012 cm−2),
the Fermi level is inside the gap for back-gate bias resulting in
electrons as majority carriers, because electron DOS in the first
subband is very high. In the case of holes as majority carriers,
the Fermi level enters the valence band, as the hole DOS in the
first subband is lower. Consequently, p-type zGNRs are more
metallic than the n-type zGNRs, which has repercussions on
the plasmonic response.

Figures 10(a) and 10(b) show the loss function for n-
type and p-type 20-zGNRs, respectively, supported on SiO2,
with a sheet carrier density of 7 × 1012 cm−2 (the same
density we analyzed for aGNRs) and the impurity density of

FIG. 10. Loss function of 20-zGNRs on SiO2. (a) n-type, with
a sheet electron density ns = 7 × 1012 cm−2 and (b) p-type, with a
sheet hole density ps = 7 × 1012 cm−2. Impurity density in (a) and
(b) is Ni = 4 × 1011 cm−2. (c) Plasmon distribution across a unit
cell of the p-type 20-zGNR for two opposite spin orientations at the
plasmon resonance denoted with a star in panel (b).

Ni = 4 × 1011 cm−2. In the case of the n-type zGNR, the plas-
mon resonance is barely visible. It is much more pronounced
for the p-type zGNR, whose response is more akin to that of
a metal because the Fermi level is inside the valence band.
Figure 10(c) shows the plasmon spatial distribution (i.e., the
induced charge density) across the zGNR for the star-marked
plasmon resonance from Fig. 10(b). It is noteworthy that we
have spin-polarized edge plasmons in p-type zGNRs at typical
carrier densities. Because plasmons in zGNRs fall in the mid-
infrared range and are accumulated near the edges, they could
couple strongly with the vibrational modes of nearby biochem-
ical molecules, such as proteins and DNA [59]. Therefore,
p-type zGNRs might be a promising material for biosensing.

Plasmons in zGNR have short propagation lengths, as
evidenced by the broad resonances in the loss function
(Fig. 10); the short propagation lengths stem from the high
electron and hole DOS and the resulting high scattering rates
for these particles. In Fig. 11, we show the propagation
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FIG. 11. Plasmon propagation length vs frequency for the p-type
20-zGNR on SiO2, hBN, and DLC. ps = 7 × 1012 cm−2.
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length versus frequency for the p-type 20-zGNR on different
substrates. The propagation lengths are overall very short (tens
of nanometers) and are lower on polar substrates (SiO2 and
hBN) than on the nonpolar DLC. The plasmon propagation
length drops precipitously at the frequencies corresponding to
substrate SO phonons, similar to what we observed in Fig. 5
for a-GNRs, which further underscores the importance of this
scattering mechanism in the plasmonic response of GNRs.

V. CONCLUSION

In summary, we employed the SCF-MMEF along with
accurate electron dispersions and Bloch wave function ob-
tained using 3NN TB to calculate the plasmon dispersion
and propagation lengths in narrow GNRs on polar (SiO2

and hBN) and nonpolar (DLC) substrates. For narrow GNRs,
SO-phonon scattering is considerably more effective than other
mechanisms. For typical sheet carrier and impurity densities
and at room temperature, semimetallic (3N+2)-aGNRs have
the best plasmonic properties among all GNRs. Plasmons
in 4–5-nm-wide (3N+2)-aGNRs can propagate as far as a
few microns, with the nonpolar DLC substrate supporting
the longest propagation lengths. The plasmonic response of
zGNRs is weak, but zGNRs feature midinfrared spin-polarized
plasmons localized near the edges, which might hold promise
for the detection of biomolecules.
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APPENDIX A: GNR BAND STRUCTURE

We assume that a GNR of length L (along x) and width
W lies in the z = d plane, as shown in Fig. 1. A substrate of
dielectric constant εs(ω) = ε0κs(ω) fills the z < 0 half-space.
The substrate volume is Vs = LWsTs , where L, Ws , and Ts are
its length, width, and thickness, respectively.

To calculate the energy dispersion and wave functions, we
use the tight-binding Hamiltonian

He = HTB ≡
∑

Rn
i ,Rm

j ,ν

(
tRn

i ,Rm
j
c
†
Rn

i ν
cRm

j ν + H.c.
)
, (A1)

where c
†
Rn

i ν
and cRn

i ν
are electron creation and destruction

operators at atomic site Rn
i with spin ν, respectively. Rn

i =
Xn + r i with Xn being the position vector of the nth unit cell,
and r i being the position vector of the ith atomic site in the unit
cell. The eigenkets and eigenenergies of He are represented as
|klν〉 and εklν , respectively. k is the wave vector along the x

axis, l is the band index, and ν denotes the spin orientation.
The TB wave function reads

|klν〉 = 1√
Nuc

∑
Rm

j ν

eikx̂·Rm
j Cklν,j c

†
Rm

j ν |∅〉, (A2)
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FIG. 12. Band gap versus width for 3N, 3N+1, and 3N+2 aGNRs
as obtained from first principles within the LDA approximation [58]
(dashed line) and from our tight-binding calculation (solid line).

where |∅〉 is the vacuum state. To obtain |klν〉 and εklν ,
we write the secular equations derived from the Schrödinger
equation

〈∅|cr i νHe|klν〉 = εklν〈∅|cr i ν |klν〉,∀r i , (A3)

and solve them as a generalized eigenvalue
problem. However, to do so, the hopping energies
γRn

i ν,Rm
j η = 〈∅|cRn

i ν
HTBc

†
Rm

j ν |∅〉δν,η and overlap elements

〈∅|cRn
i ν

c
†
Rm

j ν |∅〉 are required. It should be noted that in

general, c
†
Rn

i ν
|∅〉 does not generate an orthonormal basis. So,

we define the overlap matrix S as

SRn
i ν,Rm

j η = 〈∅|cRn
i ν

c
†
Rm

j ν |∅〉δν,η. (A4)

1. aGNRs

In aGNRs, we drop the spin quantum number, as the
solutions are spin degenerate. The values we used for γ and
S are from Ref. [60] and benchmarked against first-principles
calculations in Ref. [58]:

neighbor γ (eV) S
1st 2.78 0.117
2nd 0.15 0.07
3rd 0.095 0.023

(A5)

Because there is no translational symmetry in the y

direction, the bonds lengths are not all the same (see Fig. 3).
The bond lengths at the edges of the hydrogen-passivated
aGNRs are assumed to be 0.97acc, acc = 1.42 Å being the bulk
carbon-carbon bond length (Fig. 3). To calculate the overlap
integrals of (kl|k + ql′), we define S̃ as

S̃jν,iη =
∑
m

SRm
j ν,r i ηe

i k+k′
2 x̂·(r i−Rm

j ), (A6)

then the overlap integrals are

(klη|k + q,l′η) = C̃†
klηS̃C̃klη, (A7)

where C̃ vector is defined as C̃klη,i = Cklη,i . In Fig. 12, we
see that there is excellent agreement between the tight-binding
calculation and the density functional theory (DFT) calculation
within the local-density approximation (LDA).
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2. zGNRs

In order to capture the strong electron-electron interaction
in the zGNRs, we amend HTB with the Hubbard Hamiltonian
within the mean-field approximation

He = HTB + U
∑
Rn

i ,ν

c
†
Rn

i ν
cRn

i ν

〈
c
†
Rn

i ν̄
cRn

i ν̄

〉
, (A8)

where U is the Hubbard factor, ν̄ is the opposite of spin
ν, and 〈·〉 denotes the zero-temperature expectation value
corresponding to the many-particle ground state

|GS〉 =
(∏

klν

ψ̂
†
klν

)
|∅〉, (A9)

where ψ̂
†
klν creates an electron at state |klν〉. In a nonorthonor-

mal basis, c
†
Rn

i ν
cRn

i ν
and the number operator nRn

i ν
are not

necessarily equal. The overlap matrix S is Hermitian and
positive definite, so it can be decomposed as S = UDU†,
where U is a unitary matrix, and D is a positive-definite
diagonal matrix. As a result,S 1

2 , andS− 1
2 are well defined. The

orthonormal basis of C† operators may be obtained through
the so-called Lowdin transformation,

C
†
Rm

j ν =
∑

i

(S− 1
2 )Rn

i ν,Rm
j νc

†
Rn

i ν
. (A10)

One can prove {cRν,c
†
R′ν ′ } = SRν,R′ν ′ . Knowing the anticom-

mutation relation, we obtain

〈
c
†
Rn

i ν
cRn

i ν

〉 =
∑
kl

∣∣∣∣∣∣
∑
Rm

j η

eikx̂·(Rm
j −Rn

i )

√
Nuc

SRn
i ν,Rm

j ηCklη,m

∣∣∣∣∣∣
2

.

(A11)

The number operator is nRn
i ν

= C
†
Rn

i ν
CRn

i ν
. So, the expectation

value of the number of electrons at a specific site is

〈
nRn

i ν

〉 =
∑
kl

∣∣∣∣∑
Rm

j η

eikx̂·(Rm
j −Rn

i )

√
Nuc

(S 1
2 )Rn

i ν,Rm
j ηCklη,m

∣∣∣∣
2

.

(A12)

In our calculations for zGNRs, U = −2.2 eV, while the γ

and S values are from Ref. [61]:

neighbor γ (eV) S
1st 2.78 0.117
2nd 0.09 0.045
3rd 0.27 0.065

(A13)

We neglect the off-diagonal terms due to the Hubbard term.
For calculating the overlap integrals of (klν|k + ql′ν), we use
equations (A6) and (A7). In Fig. 13, we see the excellent
agreement between the tight-binding calculation and the
density functional theory (DFT) calculation within the local-
density approximation (LDA) [58].

APPENDIX B: SCF-MMEF IN 1D

In Ref. [29], we derived the SCF-MMEF for a quasi-
two-dimensional system. Here, we re-derive the SCF-MMEF
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FIG. 13. Band gap and the gap at K point versus width for zGNRs
as obtained from first principles within the LDA approximation [58]
(dashed line) and from our tight-binding calculation (solid line).

for a quasi-one-dimensional system. It should be noted that
the SCF-MMEF can be generalized for nanoislands and
nanodisks, which are essentially large molecules and thus
quasi-zero-dimensional.

The induced charge density in GNRs can be written as

nind(x,y,z,t) = nl(x,t)

[
1

W



(
y

W

)]
δ(z). (B1)

The inhomogeneous electromagnetic wave equation describ-
ing the induced potential energy is[

∂

∂2z
+ ∂

∂2y
+ (iQ)2

]
Vind(q,y,z,ω)

= − e2

εrε0
nl(q,ω)

[
1

W



(
y

W

)]
δ(z), (B2)

where we took the temporal Fourier transform and the spatial
Fourier transform over the x coordinate. Also, (iQ)2 = εrω

2

c2 −
q · q. We use the standard Green’s function analysis to solve
Eq. (B2):

V ind(q,z = 0,ω) = −e

2πεrε0
nl(q,ω)I(q), (B3)

where the overbar denotes the average along the width of

the system, i.e., V = ∫ W
2

− W
2

V (y). To simplify the notation,

henceforth we drop the overbar and z = 0 but keep in mind that
the potential energies are at averaged over y at z = 0. Also, in

Eq. (B3) I(q) = ∫ 1
2

−1
2

∫ 1
2

−1
2

dη′dηK0(W |q(η − η′)|), where K0 is

the modified Bessel function of the second kind. We define the
linear polarization as

Pl(q,ω) = −enl(q,ω)

VSCF(q,ω)
, (B4)

where VSCF is the self-consistent field, i.e., the sum of external
and induced fields. The susceptibility reads

χ (q,ω) ≡ Vind(q,ω)

VSCF(q,ω)
= −e

2πεrε0
I(q)Pl(q,ω), (B5)
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and consequently the dielectric function is

ε(q,ω) = 1 + e

2πεrε0
I(q)Pl(q,ω). (B6)

Also, by solving the continuity equation, we obtain the
conductivity

σ (q,ω) = −ieωW

q2
Pl(q,ω). (B7)

To obtain the dielectric function [Eq. (B6)] and conductivity
[Eq. (B7)], we need to know the linear polarization. We obtain
Pl quantum mechanically. The induced charge density in the

second quantization representation is

n(r,ω) = − e

Nuc

∑
k,q,l′,l

u∗
k+ql′(r)ukl(r)e−iq·r〈c†k+ql′ckl〉(ω).

(B8)

So, the linear polarization in the second quantization represen-
tation reads

Pl(q,ω) = −e

L

∑
k,l′,l

〈c†klck+ql′ 〉
VSCF(q,ω)

(kl|k + ql′). (B9)

To calculate
〈c†kl ck+ql′ 〉
VSCF(q,ω) , we exploit the SCF-MMEF [29]:

(εkl − εk+ql′ + h̄ω)〈c†klck+ql′ 〉 = (fkl − fk+ql′ )(k + ql′|kl)Veff(q,ω)

+ ih̄
∑

k′mm′v
εk′m=εkl ∓ h̄ωv

W±
k′−k,v ± �Wk′−k,vfkl∣∣ ∂εk′,m

∂k′
∣∣ (k + ql′|k′ + qm′)(k′m|kl)〈c†k′mck′+qm′ 〉

+ ih̄
∑

k′mm′v
εk′+qm′ = εk+ql′ ∓ h̄ωv

W±
k′−k,v ± �Wk′−k,vfk+ql′∣∣ ∂εk′+q,m′

∂k′
∣∣ (k + ql′|k′ + qm′)(k′m|kl)〈c†k′mck′+qm′ 〉

− ih̄
∑

k′mm′v
εk′m′=εkm ± h̄ωv

W±
k′−k,v ± �Wk′−k,vfk′m′∣∣ ∂εk′,m′

∂k′
∣∣ (km|k′m′)(k′m′|kl)〈c†kmck+ql′ 〉

− ih̄
∑

k′mm′v
εk′+qm=εk+qm′ ± h̄ωv

W±
k′−k,v ± �Wk′−k,vfk′+qm∣∣ ∂εk′+q,m

∂k′
∣∣ (k + ql′|k′ + qm)(k′ + qm|k + qm′)〈c†klck+qm′ 〉.

(B10)

By discretizing the Brillouin zone, Eq. (B10) can be written in the matrix form and solved numerically for X .

EX = F + ih̄(R − R′ − R′′)X . (B11)

Each pair (q,ω) results in its own Eq. (B11). The matrices and vectors in Eq. (B11) are defined as

E{kl′l}{k′m′m} = δ{kl′l}{k′m′m}(εkl − εk+ql′ + h̄ω), (B12a)

X{kl′l} = 〈c†klck+ql′ 〉, (B12b)

F{kl′l} = (fkl − fk+ql′)(k + ql′|kl), (B12c)

R{kl′l}{k′m′m} =
∑

v

εk′m=εkl ∓ h̄ωv

W±
k′−k,v ± �Wk′−k,vfkl∣∣ ∂εk′,m

∂k′
∣∣ (k + ql′|k′ + qm′)(k′m|kl)

+
∑

v

εk′+qm′ = εk+ql′ ∓ h̄ωv

W±
k′−k,v ± �Wk′−k,vfk+ql′∣∣ ∂εk′+q,m′

∂k′
∣∣ (k + ql′|k′ + qm′)(k′m|kl),

R′{kl′l}{km′l} =
∑
k′mv

εk′+qm=εk+qm′ ± h̄ωv

W±
k′−k,v ± �Wk′−k,vfk′+qm∣∣ ∂εk′+q,m

∂k′
∣∣ (k + ql′|k′ + qm)(k′ + qm|k + qm′),

R′′{kl′l}{kl′m} =
∑
k′m′v

εk′m′ =εkm ± h̄ωv

W±
k′−k,v ± �Wk′−k,vfk′m′∣∣ ∂εk′ ,m′

∂k′
∣∣ (km|k′m′)(k′m′|kl). (B12d)
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The set of variables {kl′l} corresponds to a position in
the X vector. Equation (B11) is solved for X for every
(q,ω). We introduce a vector V as V{kl′l} = (kl|k + ql′), so
the polarization is

Pl(q,ω) = −2e

L
VTX . (B13)

The factor of 2 captures the spin degeneracy, like in aGNRs.
In the case of zGNRs, where the spin degeneracy is broken,
Eq. (B10) should be solved for each spin orientation
separately, and the total linear polarization is the sum of the
linear polarization corresponding to each spin. By knowing
Pl , we calculate the dielectric function [Eq. (B6)] and the
conductivity [Eq. (B7)].

APPENDIX C: INTERACTION HAMILTONIAN IN
QUASI-1D SYSTEMS

As before, we assume that a GNR of length L (along x)
and width W lies in the z = d plane, as shown in Fig. 1. A
substrate of dielectric constant εs(ω) = ε0κs(ω) fills the z < 0
half-space. The substrate volume is Vs = LWsTs , where L,
Ws , and Ts are its length, width, and thickness, respectively.
For calculation of the electron energy dispersion and the Bloch
wave functions, see Appendix A.

For each perturbation operator [δV(r)], we define M(q) =
δV (q) as the interaction strength. δV (q) is the Fourier transfer
of δV(r) over x and the overline denotes the average over y. All
the interaction Hamiltonians can be written in the following
general form

Hint =
∑
kq,l′l

Mint(q)(k + ql′|kl)c†k+ql′ckl ⊗ Bq,v, (C1)

where c and c† are the electron annihilation and creation
operators, respectively. For phononic mechanisms Bq,v =
bq,v + b

†
−q,v , while b and b† are the phonon annihilation

and creation operators, respectively. The overlap integrals are
defined as (k + ql′|kl) = ∫

uc
d3ru∗

k+ql′(r)ukl(r). The details
of their calculation is in Appendix A. For nonphononic
mechanisms, Bq,v is an identity operator. Based on Fermi’s
golden rule, the scattering rate [�±

v (kl)] for the mechanism v is

�±
v (kl) =

∑
l′

εk′ l′=εkl ± h̄ωv

2

∣∣∣∣∂εk′l′

∂k′

∣∣∣∣
−1

W±
k′−k,v|(k′l′|kl)|2,

(C2)

where W±
k′−k,v is the scattering weight. For the phononic

mechanisms, W±
k′−k,v = L

2h̄
|Mint(k′ − k)|2(Nv + 1

2 ± 1
2 ), Nv

being the number of vth-type phonons. + and − signs corre-
spond to absorption and emission processes, respectively. For
the nonphononic mechanisms, W±

k′−k,v = L
4h̄

|Mint(k′ − k)|2.

1. Electron scattering with intrinsic phonons

The scattering weight for the acoustic (LA) and nonpolar
optical (LO) phonons can be readily written as

W±
k′−k,LA = 1

2

D2
LAkBT

2h̄�v2
s

,

W±
k′−k,LO = 1

2

(
NLO + 1

2
± 1

2

)
D2

LO

2�ωLO
, (C3)

where � is the line mass density of the GNR. We ap-
proximate ωq,LA = vs |q| where vs = 2 × 104 m

s , and ωq,LO =
ωLO = 194 meV. DLA = 12 meV and DLO = 50 eV

nm are the
deformation potentials. We assume the LA phonon scattering
elastic.

2. Electron scattering with ionized impurities

The bare potential energy seen at z = d due to an impurity
located at Ri = (xi,yi,zi) in the substrate is

δV (q,y)|Ri
= −e2K0(|q

√
(y − yi)2 + (d − zi)2|)
2πε0κbL

e−iqxi ,

(C4)

where we took the Fourier transform with respect to x. κb =
1+κs (ω=0)

2 denotes the background permittivity and K0(·) is
the second type modified Bessel function. To find the total
electric potential energy, we should take a sum of Eq. (C4) over
the location of all impurities. But, we only know the average
density of impurities. So, we take an average of �(q) over
all possible ensemble of impurities, ({Ri }’s) [62]. Here, we
assume that impurities are distributed uniformly on the z = 0
plane with the sheet density of Ni . For a uniform distribution
the average over all possible ensemble of impurities vanishes,
so we approximate �(q,y) with its rms. After taking an average
over y, including the screening, and in the limit of W � Ws ,
the interaction strength [Mii(q) = δV (q)] is

Mii(q) =
√

Ni

L

−e2
[ ∫ Ws

2

− Ws
2

dyK0(|q
√

y2 + d2|)2
] 1

2

2πε0κbε(q,ω = 0)
.

(C5)

Accordingly, the scattering weight is

W±
k′−k,ii = 1

4

Nie
4

4π2h̄ε2
0κ

2
b

∫ Ws
2

− Ws
2

dyK0
(|k − k′|

√
y2 + d2

)2

|ε(k − k′,ω = 0)|2 .

(C6)

3. Electron scattering with surface optical phonons

Applying the electromagnetic boundary conditions yields
the dispersion relation of κs(ω) + 1 = 0, which its solutions
are the surface optical modes, ωSO. SO phonon modes for
hBN and SiO2 are provided in Ref. [29]. Assuming that the
substrate has only one transverse optical mode, κs(ω) = κ∞ +
ω2

TO(κ0−κ∞)
ω2

TO−ω2 , ωSO and ωTO are related by

ω2
SO(κ∞ + 1) = ω2

TO(κ0 + 1). (C7)

Now, we calculate the electric potential due to SO phonons. In
the nonretarded regime, the electric potential can be written as

�(r) =
∑

Q

aQe−Q|z|+i Q·ρ, (C8)

where r = ρ + zẑ (the cylindrical coordinates). Q = QQ̂ is
a two-dimensional vector on the xy plane, i.e., Q ≡ Qxx̂ +
Qyŷ. The polarization, the dynamic equation of motion, and
the electric displacement field in the crystal lattice are given
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by

P(r) = e∗Nuc,sV
−1
s u(r), (C9a)

−μω2u(r) = −μω2
TOu(r) + e∗ E(r), (C9b)

D(r) ≡ ε0κs(ω)E(r) = ε0κ∞ E(r) + P(r). (C9c)

Vs and Nuc,s are the volume and the number of unit cells of
the substrate, respectively. u(r) is the relative displacement of
two adjacent atoms, with the reduced mass of μ. Incorporating
Eqs. (C9c) and (C8) into Eq. (C9a), we obtain∑

Q

aQQ(ẑ + iQ̂)eQz+i Q·ρ�(−z) = e∗Nuc,su(r)

Vsε0(κ∞ + 1)
.

(C10)

Considering the above equation, here is an ansatz for the
displacement operator of mode Q, uQ(r):

uQ(r) = uQeQz+i Q·ρ√
Nuc,s

(ẑ + iQ̂)�(−z)BQ, (C11)

where �(z) is the heavyside step function, and BQ = bQ +
b
†
− Q . The total displacement is u(r) = ∑

Q uQ(r). Yet, uQ

needs to be determined. The energy of each mode is (2NSO +
1) h̄ωSO

2 . Also, the average energy of each mode over time is
half the potential energy and half the kinetic energy. So for
each mode of u Q(r) we can write [63–71]∫

d3r
1

2
�sω

2
SO〈uQ(r)uQ

†(r)〉 = 1

2
(2NQ + 1)

h̄ωQ

2
,

(C12)

�s is Nuc,sμ

Vs
. We solve the above equation for uQ , replace it in

Eq. (C11), and get

u(r) =
∑

Q

√
h̄QeQz+i Q·ρ

√
2�sAsωSO

(ẑ + iQ̂)�(−z)BQ . (C13)

Also, by using Eq. (C7), we solve Eqs. (C9) for e∗ at ω = ωSO:

e∗2 = μVsω
2
SO

Nuc,s
ε0(κ∞ + 1)2

(
1

κ∞ + 1
− 1

κ0 + 1

)
. (C14)

Incorporating Eq. (C14) and Eq. (C13) into Eq. (C10), we
solve for aq and substitute it in Eq. (C8) to get

�(r) =
∑

Q

√
2πh̄

e2As

�√
Q

e−Q|z|+i Q·ρ, (C15)

where �2 = e2ωSO
4πε0

( 1
κ∞+1 − 1

κ0+1 ). Consequently, the interac-
tion Hamiltonian is

δV(r) =
∑

Q

√
2πh̄

As

�√
Q

e−Q|z|+i Q·ρBQ . (C16)

We take the Fourier transform of δV(r) with respect to x at
z = d, take an average over y, and change variables to obtain

δV(q) = �

√
2πh̄

As

∑
q ′

e−d
√

q2+q ′2

4
√

q2 + q ′2 sinc

(
q ′W
2π

)
B(q,q ′),

(C17)

where sinc( q ′W
2π

) = sin( q ′W
2 )( q ′W

2 )−1. The equation of motion
of any electronic operator is at least parabolic in terms of δV(q).
Also, the SO-phonon modes are assumed to be dispersionless,
i.e., the number of SO phonons are independent of their wave
vector. So, we can rewrite the interaction strength as

MSO(q) =
√

h̄

L

�

ε(q,ω = 0)

×
[ ∫

dQy

e
−2d

√
q2+Q2

y√
q2 + Q2

y

sinc2

(
QyW

2π

)] 1
2

,

(C18)

and yet, nothing changes in the equation of motion of electronic
operators. The sinc2( q ′W

2π
) term in Eq. (C18) is a window

function which mimics the momentum conservation along
the width of the ribbon. Unlike narrow ribbons, for wide
ribbons (larger W ) this window function narrows down and
asymptotically goes to the Dirac delta function as W → ∞.
The scattering weight is

W±
k′−k,SO = �2

(
NSO + 1

2 ± 1
2

)
2|ε(k − k′,ω = 0)|2

×
[ ∫

dQy

e−2d
√

q2+Q2
y√

q2 + Q2
y

sinc2

(
QyW

2π

)]
.

(C19)

4. Electron scattering from line-edge roughness

The charge density can be assumed as n = −en0
( y

W
)δ(z),

where n0 is the surface carrier density, δ(·) denotes the Dirac
delta function, and 
(.) denotes the rectangular function [1
for its argument being within (0,1), 1/2 for argument equal to
0 or 1, and zero elsewhere]. The change in the carrier density
due to the line-edge roughness, �(x), at one edge is [72]

δn(r) = �(x)
∂n

∂y
= −en0�(x)δ

(
y − W

2

)
δ(z), (C20)

which causes the electric potential energy of

δV (r) =
∫∫∫

d3r ′ e
2n0�(x ′)δ

(
y ′ − W

2

)
δ(z′)

4πε0κb|r − r ′| . (C21)

We take the Fourier transform of δV (r) with respect to x at
z = 0, and then we take an average over y. So the interaction
strength for the LER is

MLER(q) = e2n0

πε0κb

�(q)
∫ W

2

− W
2

dyK0
(
q
∣∣y − W

2

∣∣)
Wε(q,ω = 0)

, (C22)

where �(q) is the Fourier transform of the LER function. Here,
we consider an exponential correlation function:

〈�(x)�(0)〉 = �2e
− |x|

ξ ,|�(q)|2 = 1

L

2�2ξ

1 + q2ξ 2
, (C23)
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where � and ξ are the rms roughness and the correlation length, respectively. The scattering weight is

W±
k′−k,LER = 1

4

e4n2
0

h̄π2ε2
0κ

2
b

[
2�2ξ

1 + (k − k′)2ξ 2

][ ∫ 1
0 dηK0(|k − k′|Wη)

]2

|ε(k − k′,ω = 0)|2 . (C24)
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(2009).
[23] X. Lin, N. Rivera, J. J. López, I. Kaminer, H. Chen, and M.
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