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Light propagation in quasiperiodic dielectric multilayers separated by graphene
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The study of photonic crystals, artificial materials whose dielectric properties can be tailored according to
the stacking of its constituents, remains an attractive research area. In this article we have employed a transfer
matrix treatment to study the propagation of light waves in Fibonacci quasiperiodic dielectric multilayers with
graphene embedded. We calculated their dispersion and transmission spectra in order to investigate the effects
of the graphene monolayers and quasiperiodic disorder on the system physical behavior. The quasiperiodic
dielectric multilayer is composed of two building blocks, silicon dioxide (building block A = SiO2) and titanium
dioxide (building block B = TiO2). Our numerical results show that the presence of graphene monolayers reduces
the transmissivity on the whole range of frequency and induces a transmission gap in the low frequency region.
Regarding the polarization of the light wave, we found that the transmission coefficient is higher for the transverse
magnetic (TM) case than for the transverse electric (TE) one. We also conclude from our numerical results that
the graphene induced photonic band gaps (GIPBGs) do not depend on the polarization (TE or TM) of the
light wave nor on the Fibonacci generation index n. Moreover, the GIPBGs are omnidirectional photonic band
gaps, therefore light cannot propagate in these structures for frequencies lower than a certain value, whatever
the incidence angle. Finally, a plot of the transmission spectra versus chemical potential shows that one can, in
principle, adjust the width of the photonic band gap by tuning the chemical potential via a gate voltage.
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I. INTRODUCTION

The study of photonic crystals (PCs), which are artificial
materials whose dielectric properties are subject to design and
control according to the stacking pattern of its constituents,
started in the 1990s, with the pioneer works of Yablonovitch
[1] and John [2], and it remains an attractive research area (for
details about theoretical, experimental, and numerical tech-
niques, see Refs. [3–8]). In these structures the propagation of
light can be controlled through a periodic modulation of the
dielectric constant, which is analogous to the propagation of
electrons in crystals, with the photon being responsible for the
propagation and processing of information along the system
[9]. PCs are currently used in many technological applications
[3–5] such as waveguides, optical fibers, optical computing
devices, lasers, and solar cells.

Often hailed as a wonder material due to its impressive
physical properties, graphene has opened several venues of
basic science exploration and it is a material that has a
tremendous technological potential [10]. In graphene, carbon
atoms with sp2 hybridization are strongly and densely attached
creating a planar hexagonal crystalline lattice which makes
it a material that has the exotic property of being a two-
dimensional arrangement with thickness of a single atom
[11,12]. The honeycomb lattice structure of graphene and its
two sublattices are responsible for a variety of novel physical
phenomena [13,14]. Among the unique physical properties of
graphene [15], we highlight lightness and rigidity, and high
thermal [16,17] and electrical conductivity [10]. Graphene
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has been considered for potential technological applications
in telecommunication, flexible displays, and batteries, and in
the production of electronic devices with good heat dissipation
[18–20]. Very recently several research groups have been
investigating materials composed of photonic crystals and
graphene, giving rise to a new research area: graphene
nanophotonics [21,22]. In particular, it has been shown that
embedding graphene between adjacent layers of a periodic
dielectric multilayer, allows tailoring photonic band gaps in
the dispersion relation of the structure [23].

After the discovery of quasicrystals by Shechtman and
co-workers in 1984 [24], a great interest in the so-called
quasiperiodic disorder was aroused [25–30]. Because of his
work on quasicrystals, which created a wide field of research
in condensed matter, Shechtman was awarded the Nobel Prize
for Chemistry in 2011 [31]. One of the most important reasons
for that is because quasiperiodic systems can be defined
as an intermediate state between an ordered crystal and a
disordered solid. On the theoretical side, a wide variety of
particles, namely, electrons, phonons, plasmon-polaritons, and
magnons, have been studied in quasiperiodic systems [32].
On the experimental side, in a pioneer work in the 1990s,
Munzar and collaborators studied GaAs/GaAlAs Fibonacci
superlattices. Those authors theoretically and experimentally
studied the reflectance and electronic multifractal spectra of
the system [33]. In particular, multilayered dielectric structures
arranged in a quasiperiodic fashion are called photonic
quasicrystals [34] (PQCs), which present a fundamental role
for the next generation of optical devices [35].

In this work we investigate the propagation of photons in
dielectric multilayers, arranged according to the Fibonacci
quasiperiodic sequence, with embedded graphene sheets.
The aim of this work is twofold: We investigate (i) the
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competition between graphene induced band gaps and those
ones produced by Bragg reflections and (ii) the effects of
long-range correlation induced by the quasiperiodic disorder.
This paper is organized as follows. In Sec. II we discuss
the theoretical model with emphasis on the description of
the Fibonacci quasiperiodic sequence and the transfer matrix
technique, which is employed to simplify the algebra that
can otherwise be quite involved. The numerical results for
dispersion relation and transmittance, illustrating the band
gaps, are discussed in Sec. III. Section IV is devoted to discuss
the physical origin of the graphene induced band gaps. Finally,
our findings are summarized in Sec. V.

II. PHYSICAL MODEL

Our model describes two isotropic nonmagnetic dielectric
materials A and B, with permittivity εA and εB and thickness
dA and dB , respectively, as described in Fig. 1. The graphene
layers, embedded between adjacent dielectric layers, present a
frequency-dependent conductivity [36–38],

σg(ω) = σ intra
g (ω) + σ inter

g (ω), (1)

with

σ intra
g (ω) = i

e2

πh̄(h̄ω + i�)
{μc + 2kBTK ln[e(−μc/kBTK ) + 1]},

(2)

FIG. 1. Structure of the one-dimensional photonic crystal com-
posed by alternating dielectric layers A and B. The graphene
monolayers are embedded between two consecutive layers.

and

σ inter
g (ω) = i

e2

4πh̄
ln

[
2|μc| − (h̄ω + i�)

2|μc| + (h̄ω + i�)

]
. (3)

Here e is the electronic charge, h̄ = h/2π is the reduced
Planck’s constant, kB is the Boltzmann’s constant, TK is the
temperature in Kelvin, � the damping constant of graphene
and μc is the chemical potential, which can be controlled
by a gate voltage. The intraband contribution is due to
scattering from phonons, electrons, and impurities, while the
interband contribution is due to electron-hole recombination.
In particular h̄ω is much smaller than the chosen chemical
potential, so that the interband contribution is neglectable [39].

In Fig. 2 we plot the real and imaginary parts of σg

as a function of reduced frequency, � = ω/ω0, with ω0 =
2πc/λ0 ≈ 31.4 THz, for a central wavelength λ0 = 60 μm.
The real part does not have a strong dependence on the
frequency, but the imaginary part shows a strong dependence
in the low-frequency region. As we will show later, the
imaginary part of σg is directly associated with reflection of
electromagnetic waves.

The multilayers considered in this work are composed by
two dielectric building blocks A and B, which are arranged
according to the quasiperiodic Fibonacci sequence [40]. The
nth generation of the Fibonacci sequence can be obtained by
appending the (n − 2)th generation to the (n − 1)th one, i.e.,

Sn = Sn−1Sn−2 (with n � 2). (4)

This algorithm construction requires initial conditions which
are chosen to be S0 = B e S1 = A. The Fibonacci generations
can also be alternatively obtained by an iterative process from
the substitution rules (or inflation rules) A → AB and B → A,
in such a way that the first Fibonacci generations are

S0 = [B], S1 = [A], S2 = [A|B], S3 = [A|B|A],

S4 = [A|B|A|A|B], S5 = [A|B|A|A|B|A|B|A].

FIG. 2. Surface conductivity σg (in units of e2/4h̄) of graphene
as a function of the reduced frequency � = ω/ω0. The dashed blue
(solid red) line represents the real (imaginary) part of σg . From the
figure, we can expect effects of graphene on the light propagation in
the range � � 1.
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In a given Fibonacci generation Sn, the total number of
building blocks is given by the Fibonacci number Fn, which is
obtained by the relation,

Fn = Fn−1 + Fn−2 (n � 2), (5)

with F0 = F1 = 1. As the generation index increases (n � 1),
the ratio Fn/Fn−1 approaches φ, an irrational number known
as the Golden Mean, such that

φ = lim
n→∞

Fn

Fn−1
= 1 + √

5

2
. (6)

For the photonic quasicrystals considered here, whose unit
cell is given by the Fibonacci generation Sn, repeated N times,
the transfer matrix Mn which relates the amplitude of the
electromagnetic wave at the interfaces is given by [36,41,42]

Mn = (MAMB · · · MBMA)N =
(∏

Mj

)N

, (7)

with

MTE
j (dj ,ω) =

⎡
⎣ cos(kzj dj )

σg cos(kzjdj ) + iqj sin(kzjdj )

(
i
qj

)
sin(kzjdj )

cos(kzjdj ) + ( iσg

qj

)
sin(kzjdj )

]
, (8)

and

MTM
j (dj ,ω) =

[
cos(kzjdj ) − iσgqj sin(kzjdj )

iqj sin(kzjdj )

−σg cos(kzjdj ) + (
i
qj

)
sin(kzjdj )

cos(kzjdj )

]
. (9)

Here qj = − kzj

ωμ0
(for TE waves) and qj = kzj

ωε0εj
(for TM

waves). Also, kzj is the z component of the wave vector within
medium j (j = A or B), which is given by [43]

kzj =
{

i
[
εj(ω/c)2 − k2

x0

]1/2 (
εj(ω/c)2 � k2

x0

)
,

i
[
k2
x0 − εj (ω/c)2

]1/2 (
εj (ω/c)2 < k2

x0

)
,

(10)

where εj is the dielectric constant of medium j, c is the speed
of light in vacuum, and kx0 is the x component of the incoming
wave vector.

The coefficients of transmission T , reflection R, and
absorption A are obtained from the elements of the transfer
matrix Mn, corresponding to the nth generation of the
Fibonacci sequence, and are given by [36]

T =
∣∣∣∣ 2q0

qtM11 + q0M22 − M21 + q0qtM12

∣∣∣∣
2

, (11)

R =
∣∣∣∣qtM11 − q0M22 − M21 + q0qtM12

qtM11 + q0M22 − M21 + q0qtM12

∣∣∣∣
2

, (12)

and

A = 1 − T − R. (13)

Here Mij are the elements of the transfer matrix Mn and q0, qt

are the q parameters of the incoming medium and outgoing
medium, respectively.

The dispersion relation of the electromagnetic waves
propagating in the quasiperiodic structure is given by [9]

cos(QD) = (
1
2

)
Tr[Mn], (14)

where Q is the Bloch wave vector, D = N × Dn is the size
of the multilayer (Dn is the unit cell size of the nth Fibonacci
generation), and Tr[Mn] is the trace of the transfer matrix Mn.

III. NUMERICAL RESULTS

Let us now present our numerical results to illustrate the
optical transmission spectra and dispersion relation of the
Fibonacci quasiperiodic photonic crystal. We consider the
same parameters used in Ref. [43], i.e., those appropriate
for silicon dioxide (building block A = SiO2) and titanium
dioxide (building block B = TiO2). We also consider the indi-
vidual layers as quarter-wave layers, for which the quasiperi-
odicity is expected to be more effective [44], with central
wavelength λ0 = 60 μm. These conditions yield a thickness
dj = 60/4nj μm (j = A or B), such that nAdA = nBdB ,
providing dA ≈ 10.34 μm and dB ≈ 6.52 μm. Their refractive
index around the central wavelength λ0 are nA = √

εA = 1.45
and nB = √

εB = 2.30, respectively. We consider the photonic
quasicrystal surrounded by vacuum, such that ε0 = εt = 1 at q0

and qt . Here, we assume the surface conductivity of graphene
given by Eq. (1) with μc = 0.2 eV, � = 0 eV, and TK = 300 K.

FIG. 3. Transmission spectra as a function of the reduced
frequency � = ω/ω0 for normal incidence with (red solid line)
and without (blue dashed line) graphene monolayers at the in-
terfaces. (a) Second generation, with N = 4 ([A|B]4), (b) third
generation, with N = 4 ([A|B|A]4), (c) for fourth generation, with
N = 3 ([A|B|A|A|B]3), and (d) for fifth generation, with N = 3
([A|B|A|A|B|A|B|A]3). The presence of the graphene between the
dielectric layers reduces the transmissivity on the whole frequency
range. Moreover, it induces a transmission gap in the low-frequency
region (� � 0.38).
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A. Transmittance and dispersion relation for normal
incidence (θ = 0◦)

In Fig. 3 we show the transmittance versus reduced fre-
quency � = ω/ω0, with ω0 = 2πc/λ0, for normal incidence,
with (red solid lines) and without (blue dashed lines) graphene
at interfaces. Figure 3(a) is the second Fibonacci generation
(the periodic case) with N = 4 (4 × F2 = 8 building blocks),
Fig. 3(b) corresponds to the third Fibonacci generation with
N = 4 (4 × F3 = 12 building blocks), Fig. 3(c) is the fourth
Fibonacci generation with N = 3 (3 × F4 = 15 building
blocks), and Fig. 3(d) corresponds to the fifth Fibonacci
generation with N = 3 (3 × F5 = 24 building blocks). We
observe from Fig. 3 that the presence of the graphene mono-
layers between the dielectric layers reduces the transmissivity
on the whole range of frequency. Moreover, it induces a
transmission gap in the low-frequency region (� � 0.38).
On the other hand, for � > 0.38 the position or width of
the transmission gaps are not substantially modified by the
presence of the graphene monolayers. These features can be
explained, according to Fig. 2, because the effects of the
surface conductivity of graphene are expected to be more
effective in the low frequency region. From Fig. 3 we conclude
that the graphene induced band gap does not depend on the
Fibonacci generation index n.

Figure 4 shows the plots of |(1/2)Tr[Mn]| (on top) and
dimensionless Bloch wave vector QD/π (on bottom), versus
the reduced frequency � = ω/ω0, for the first Fibonacci gen-

FIG. 4. Plots of |(1/2)Tr[Mn]| (top) and dimensionless Bloch’s
wave vector QD/π (bottom) versus the reduced frequency � = ω/ω0

for the first Fibonacci generation with graphene at the interfaces and
N = 10 ([A]10).

eration (SiO2) with N = 10 (10 × F1 = 10 building blocks),
with (red solid line) and without (blue dashed line) graphene
monolayers. We observe the presence of photonic band gaps
from the insets of Fig. 4 (green stripes in the figure) which
are not present in the absence of graphene, as expected.
Therefore, these photonic band gaps are exclusively due to the
presence of the graphene monolayers at the interfaces. These
graphene induced photonic band gaps (GIPBG) are unusual
because they do not come from Bragg reflections. We observe
three GIPBGs: The first one is wider, for � � 0.38, and the
other two are around � ∼ 2.0 and � ∼ 4.0, respectively. The
low-frequency GIPBG is wider because the effects of graphene
are expected to be more pronounced in the low-frequency
region as discussed in Sec. II (and shown in Fig. 2).

In Fig. 5 we show the plots of |(1/2)Tr[Mn]| (on top)
and dimensionless Bloch wave vector QD/π (on bottom),
versus the reduced frequency � = ω/ω0, for [Fig. 5(a)]
second (which corresponds to the periodic photonic crystal)
and [Fig. 5(b)] third generations of the Fibonacci sequence,
both cases with N = 4, i.e., 4 × F2 = 8 building blocks and
4 × F3 = 12 building blocks, respectively. Now we observe
ordinary gaps produced by Bragg reflections, which are
slightly shifted to higher frequencies and are depicted by gray
stripes in the figure. We also observe GIPBGs (green stripes
in the figure): one wider for � � 0.38 and two narrower gaps.
The insets in the figure show the GIPBGs in detail. The insets
in Fig. 5(b) show only the gaps formed by graphene because
they are narrower and difficult to visualize. The spectra for
the second and third Fibonacci generations are qualitatively
similar, except for the number of gaps, which is expected
due to the different unit cell sizes. We should remark that the
wider GIPBG for � � 0.38 is independent of the Fibonacci
generation. Therefore, we conclude that the wider GIPBG is
exclusively due to the presence of the graphene monolayers
at the interfaces, and it is not related to the long-range effects
induced by the quasiperiodic substitutional sequence.

FIG. 5. Same as Fig. 4 for the (a) second and (b) third generations
of the Fibonacci sequence, with N = 4 for both cases.
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FIG. 6. Distribution of the allowed photonic bandwidths for
the Fibonacci photonic quasicrystal as a function of the Fibonacci
generation index n.

In order to characterize the self-similar behavior of the
photonic spectra, in Fig. 6 we present the allowed photonic
bandwidth distribution versus the Fibonacci generation index
n, for normal incidence. The insets show amplifications of
some regions of the spectra. It is easy to observe that the
insets reveal a self-similar behavior of the allowed photonic
bandwidths. This is an expected behavior and it is considered
the basic signature of quasiperiodic systems.

B. Transmittance for oblique incidence (θ �= 0)

Let us now consider the more general case of oblique
incidence. In Fig. 7 is shown the transmissivity spectra for
the Fibonacci photonic crystal, with embedded graphene,
for some specific values of the angle of incidence (θ =
0◦, 25◦, 50◦, and 75◦), for second, third, fourth, and fifth
Fibonacci generations, considering transverse electric (TE)
polarization. We observe that GIPBGs (green stripes in the
figure) are also omnidirectional photonic band gaps, i.e., the
light cannot propagate in the structures for � � 0.38 whatever
is the angle of incidence. We also observe the usual band gaps
(gray stripes in the figure), produced by Bragg reflections,
which are also omnidirectional photonic band gaps. Regarding
the transmissivity, the transmission coefficient decreases as
the angle of incidence increases for all generations of the
Fibonacci sequence. This is because the reflection coefficient,
due to the presence of the graphene monolayers, increases. We
remark that the graphene induced omnidirectional photonic
band gap presents the same width. This ratifies that it is really
independent of the Fibonacci generation index n. On the other
hand, the usual Bragg omnidirectional photonic band gaps get
narrower and narrower as the generation index n increases.

Now, we consider the transverse magnetic (TM) polariza-
tion case with oblique incidence. We consider the same Fi-
bonacci generations (n = 2,3,4, and 5) and angles of incidence
(θ = 0◦, 25◦, 50◦, and 75◦) of the TE case. The corresponding
transmissivity spectra is illustrated in Fig. 8. We can observe,
similar to the TE case, the presence of GIPBGs (green stripes

FIG. 7. Transmission T of TE waves as a function of the reduced
frequency � = ω/ω0 for (a) second generation, with N = 4 ([A|B]4),
(b) third generation, with N = 4 ([A|B|A]4), (c) for fourth generation,
with N = 3 ([A|B|A|A|B]3), and (d) for fifth generation, with N = 3
([A|B|A|A|B|A|B|A]3).

in the figure), which are omnidirectional photonic band gaps,
for � � 0.38. We can conclude that the GIPBGs do not
depend of the polarization of light. Moreover, the usual Bragg
omnidirectional photonic band gaps are not present. It is clear
from Fig. 8 that, unlike what happens with TE polarization, the
angle of incidence has a minor influence on the transmission
coefficient.

C. Transmission spectra as a function of the reduced frequency
(�) and angle of incidence (θ )

In Fig. 9 we show the transmittance coefficient, as a function
of the angle of incidence and reduced frequency, for the first
generation of the Fibonacci sequence with N = 10 (10 × F1 =
10 building blocks). One can see in the low frequency region
the GIPBG (green stripe), which is fully independent of the
incidence angle θ . Regarding the transmission spectra, in Fig. 9
the black (white) color means a transmission coefficient equals
to 0 (1). We notice that the spectra for TM waves is “brighter”
than the spectra for the TE waves, which means that the
transmission coefficient is higher for the former than for the
latter. We can also note that the GIPBG is independent of the
polarization of light (TE or TM), as mentioned above.
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FIG. 8. Transmission T of TM waves as a function of the reduced
frequency � = ω/ω0 for (a) second generation, with N = 4 ([A|B]4),
(b) third generation, with N = 4 ([A|B|A]4), (c) for fourth generation,
with N = 3 ([A|B|A|A|B]3), and (d) for fifth generation, with N = 3
([A|B|A|A|B|A|B|A]3).

The transmission spectra as a function of the reduced
frequency � and incident angle θ , for TE and TM waves,
for the second, third, fourth, and fifth generations of the
Fibonacci sequence are shown in Fig. 10. As in Fig. 9, the

FIG. 9. Transmission spectra as a function of the reduced fre-
quency � and angle of incidence θ , for TE (left) and TM (right) waves
for the first generation of the Fibonacci sequence with graphene at
the interfaces and N = 10 ([A]10).

FIG. 10. Transmission spectra as a function of the reduced
frequency � and incident angle θ for TE (left) and TM (right) waves
for (a) second and (b) third, (c) fourth and (d) fifth generations of the
Fibonacci sequence. The number of building blocks is the same as in
Figs. 3, 7, and 8.

black (white) color means a transmission coefficient equal 0
(1). One can observe the presence of omnidirectional GIPBGs
(green stripes) and Bragg photonic band gaps (gray stripes).
Once again, our results show that GIPBGs are independent
of the Fibonacci generation index n. On the other hand, the
Bragg photonic band gaps get narrower and narrower, as the
generation index increases. The GIPBGs emerge for both TM
and TE cases, while the Bragg omnidirectional photonic band
gaps emerge only for the TE case. For all Fibonacci generations
the spectra for TM waves is “brighter” than the spectra for the
TE waves, which means that the transmission coefficient is
higher for the TM case than for the TE one, as mentioned
above.

D. Transmission spectra as a function of the reduced frequency
� and chemical potential μc, for normal incidence (θ = 0◦)

Last but not least, we consider the transmission spectra as
a function of the reduced frequency � and chemical potential
μc, with normal incidence (θ = 0◦). For normal incidence
the transmission spectra is exactly the same for both TE
and TM cases. Figure 11 shows the first generation of the
Fibonacci sequence. As before the black (white) color means a
transmission coefficient equal 0 (1). There is only one photonic
band gap in the low frequency region (GIPBG). It is interesting
to notice from Fig. 11 that we can adjust the width of the
photonic band gap in a quasiperiodic photonic crystal by tuning
of the chemical potential via a gate voltage. In fact, the width of
the GIPBG monotonically increases as the chemical potential
μc increases.

Figure 12 shows the transmission spectra for the second,
third, fourth, and fifth generations of the Fibonacci sequence.
For this case we can observe the presence of both GIPBGs
(in the low frequency region) and Bragg photonic band gaps.
As before, the GIPBG width monotonically increases as the
chemical potential μc increases, but it is independent of the
Fibonacci generation index n. On the other hand, the width
of the Bragg photonic band gap is nearly independent of
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FIG. 11. Transmission spectra as a function of the reduced
frequency � = ω/ω0 and chemical potential μc, normal incidence
(θ = 0◦), for the first generation of the Fibonacci sequence with
N = 10 ([A]10).

the chemical potential μc. However, they get narrower and
narrower as the generation index n increases.

IV. PHYSICAL ORIGIN OF THE GIPBG

Before concluding, let us take a closer look at the physical
origin of the GIPBGs. From a mathematical point of view, the
GIPBGs are associated with the trace of the transfer matrix
of the system, which has two contributions: one from Bragg
scatterings (depending only on the optical and geometrical
parameters of the PQC) and the other from the graphene
surface conductance (disappearing when σg is small) [23,36].
In the low frequency region the contribution from σg , to the
trace of the transfer matrix, is dominant and |(1/2)Tr[Mn]| > 1

FIG. 12. Transmission spectra as a function of the reduced
frequency � and chemical potential μc, normal incidence (θ = 0◦),
for (a) second, (b) third (both with N = 4) and (c) fourth, (d) fifth
(both with N = 3) generations of the Fibonacci sequence.

FIG. 13. Transmission (black line), reflection (red line), and
absorption (blue line) spectra as a function of the reduced frequency
� = ω/ω0, with normal incidence, for the periodic case. The physical
parameters used here are the same as Fig. 3.

(see Figs. 4 and 5). As a consequence, the GIPBGs emerge.
From a physical point of view, the GIPBGs are the consequence
of full reflection of the electromagnetic waves. The permittivity
of the building blocks A and B may be written as [9]

εA(B) = εTiO2(SiO2) + i
4πσg

ω
, (15)

or

εA(B) = εTiO2(SiO2) + i
4π

ω
[σg,R + iσg,I ], (16)

where σg,R and σg,I are the real and imaginary parts of the
graphene surface conductance σg , respectively. In the low
frequency region the imaginary part of σg dominates, as shown
in Fig. 2, and the permittivity takes the form,

εA(B) ≈ εTiO2(SiO2) − 4πσg,I

ω
. (17)

Therefore, once the imaginary part of σg dominates, full
reflection takes place in the low frequency region and no
electromagnetic wave is transmitted. In Fig. 13 are shown the
coefficients of transmission T , reflection R, and absorption
A of the incident electromagnetic wave for the periodic case.
From Fig. 13 we can conclude that the physical origin of
the GIPBGs is mainly due to full reflection, with absorption
playing a small role. Regarding the applications, PBGs present
a number of options to tailor the flow of light. For instance,
photonic waveguides, photonic fibers, photonic microcavities,
among others (see, for example, Ref. [23] and references
therein).

V. CONCLUSIONS

In summary, we have employed a transfer matrix treatment
to study the propagation of light waves in quasiperiodic
dielectric multilayers with graphene embedded. We calculated
their dispersion and transmission spectra to investigate the
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effects of the graphene monolayers and quasiperiodic disorder
on the system physical behavior. The quasiperiodic disorder
considered is due to the Fibonacci sequence which was used
to build the dielectric multilayer composed by two building
blocks, with graphene embedded, namely, silicon dioxide
(building block A = SiO2) and titanium dioxide (building
block B = TiO2). In our numerical results we show that the
presence of the graphene monolayers between the dielectric
layers reduces the transmissivity on the whole range of
frequency and induces a transmission gap in the low frequency
region. These graphene induced photonic band gaps (GIPBG)
are unusual because they do not come from Bragg reflections.
As a matter of fact, the physical origin of the GIPBGs is mainly
associated with full reflection of the electromagnetic waves,
with absorption playing a small role, in the low frequency
region as illustrated in Fig. 13. Regarding the polarization of
the light wave, our numerical results show that the transmission
coefficient is higher for the TM case than for the TE one. We
also conclude from our numerical results that the GIPBGs do
not depend on the polarization of light nor on the Fibonacci
generation index n. In fact, the GIPBGs are omnidirectional
photonic band gaps, i.e., the light cannot propagate in these
structures for � � 0.38 whatever is the angle of incidence.
On the other hand, Bragg photonic band gaps depend on the
polarization of light and Fibonacci generation index n. In

particular, there is no Bragg photonic band gap for the TM
case. As the generation index increases n, the Bragg photonic
band gaps get narrower and narrower. Also, the plot of the
transmission spectra versus the chemical potential shows that
there is only one photonic band gap in the low-frequency
region (GIPBG). Furthermore, it shows that we can adjust the
width of the photonic band gap in a quasiperiodic photonic
crystal by tuning of the chemical potential μc with a gate
voltage. In fact, the GIPBGs width monotonically increases as
the chemical potential μc increases. All physical phenomena
presented here can be experimentally tested and we hope that
our numerical results will stimulate experimental groups to
pursue them.
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