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Spin-relaxation time in the impurity band of wurtzite semiconductors
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The spin-relaxation time for electrons in the impurity band of semiconductors with wurtzite crystal structure
is determined. The effective Dresselhaus spin-orbit interaction Hamiltonian is taken as the source of the spin
relaxation at low temperature and for doping densities corresponding to the metallic side of the metal-insulator
transition. The spin-flip hopping matrix elements between impurity states are calculated and used to set up a tight-
binding Hamiltonian that incorporates the symmetries of wurtzite semiconductors. The spin-relaxation time is
obtained from a semiclassical model of spin diffusion, as well as from a microscopic self-consistent diagrammatic
theory of spin and charge diffusion in doped semiconductors. Estimates are provided for particularly important
materials. The theoretical spin-relaxation times compare favorably with the corresponding low-temperature
measurements in GaN and ZnO. For InN and AlN we predict that tuning of the spin-orbit coupling constant
induced by an external potential leads to a potentially dramatic increase of the spin-relaxation time related to the
mechanism under study.
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I. INTRODUCTION

The group-III nitride and the group-II oxide semiconductors
have direct band gaps, which cover the ultraviolet to infrared
energy range [1]. In particular, the wide band gaps of AlN,
GaN, and ZnO make these materials extremely important for
optoelectronic and high-power applications. In the case of
ZnO, the present interest is also fueled by the large exciton
binding energy that allows for high efficiency light emission
up to high temperatures, by the prediction that manganese
doping induces room-temperature ferromagnetism [2,3], as
well as by the relatively simple crystal-growth technology
involved [4,5]. A key characteristic of this class of materials,
linked with very special physical properties, is that their stable
crystalline structure is of hexagonal wurtzite (WZ) type. The
light nuclei result in a small valence band splitting of otherwise
degenerate spin states, leading to a relatively weak spin-orbit
coupling, based on which long spin coherence times have been
anticipated [6]. A long spin lifetime is a necessary ingredient
for spintronics and quantum technology applications [7–10],
paving the way to all-semiconductor spintronic devices based
on this group of materials [11,12].

Despite the interesting physical properties and the tech-
nological promise of the group-III nitride and the group-II
oxide semiconductors (and their alloys) with WZ structure,
the corresponding spin properties have been less extensively
studied, at the experimental and theoretical levels, than in the
case of III-V cubic zincblende (ZB) semiconductors. In the
latter context, detailed measurements have been performed for
n-doped GaAs, yielding very long spin lifetimes (of the order
of hundreds of nanoseconds) at low temperatures [13–15].
In particular, density-dependent measurements yielded the
longest spin-relaxation times for doping concentrations in
the neighborhood of the critical one for the metal-insulator
transition (MIT). This intriguing behavior has contributed
to the sustained theoretical interest that ZB materials have

received [16]. In the regime of longest spin-relaxation times,
for doping densities between the critical one and that where
the impurity band hybridizes with the conduction band, a
theoretical description based in mechanisms relating spin
relaxation to momentum scattering, like Dyakonov-Perel and
Elliot-Yafet, cannot be applied from a conceptual point of
view. This regime has been addressed, at low temperature and
in the absence of magnetic field, in terms of a tight-binding
Hamiltonian [17] which incorporates spin-orbit coupling into
the Matsubara-Toyozawa model [18]. The inclusion of the
bulk Dresselhaus spin-orbit interaction resulted in a good
agreement with the observed spin lifetimes for several ZB
materials [19,20].

The existing low-temperature spin-relaxation experiments
in WZ semiconductors point to a scenario that is similar
to the ZB case. For Si-doped GaN, the dependence of the
relaxation time on both magnetic field and temperature was
found to be qualitatively similar to previous studies in n-type
GaAs, suggesting a common origin for spin relaxation in these
systems [21]. Indeed, at T = 5 K , out of three studied samples
with different doping densities, the one having a doping density
in the vicinity of the MIT yielded the longest relaxation
time (of about 20 ns). These values of the spin-relaxation
time were confirmed in the framework of a detailed study
of the properties of the MIT in GaN [22]. The spin-relaxation
time was found to exhibit a temperature-dependent maximum
as a function of doping density [23,24]. In the temperature
interval of these studies (T = 80 K to room temperature)
the electronic conductance is dominated by conduction-band
properties and therefore the spin relaxation is consistent with
the Dyakonov-Perel mechanism.

Spin-relaxation times of up to 20 ns have been measured
in doped ZnO at 30 K. Bulk and epilayer samples of different
doping densities were investigated and the longest relaxation
time was found for the bulk sample [25]. The temperature
dependence of the relaxation rate was found to be consistent
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with the Dyakonov-Perel mechanism [26]. It was noticed that
a static in-plane electric field can enhance the spin lifetime in
a quantum well geometry [27].

Aside from Refs. [21,22,25], where samples with different
impurity concentrations have been measured, there is no
systematic study of the dependence on doping density of
the low-temperature spin lifetime close to the metal-insulator
transition for the WZ materials. Most experimental data are
not for the low-temperature regime, which is where the
impurity-band physics is dominant and where the longest
lifetimes are expected.

From the theoretical point of view, the ZB and the WZ
crystal structures have the same tetrahedral nearest-neighbor
atomic coordination number and share the lack of inversion
symmetry that results in the splitting of spin-degenerate states.
The main qualitative difference between them is that the
latter presents a uniaxial anisotropy which is absent in the
former. At the level of the envelope-function approximation
this anisotropy affects the Dresselhaus spin-orbit effective
interaction in the conduction band: its cubic-in-k term becomes
anisotropic and a linear-in-k term (formally identical to the
Rashba interaction in quantum wells) appears. The linear term
has an intrinsic contribution that may depend on substrate-
dependent strain in epilayers, and an external one that can
be controlled by applying electric fields. The resulting spin
relaxation emerges from an interplay of the effects of the cubic
and the linear spin-orbit couplings, and can then be influenced
by tuning the linear coupling strength [28,29].

An important quantitative difference between the WZ
and the ZB structures is the much smaller valence-band
splitting of the former as compared with the latter. Such
a feature would generically point to a much larger spin-
relaxation time for WZ structures than in the ZB case. The
existing experiments do not validate this simplistic conclusion,
indicating the important influence on the spin-relaxation
mechanisms of the uniaxial anisotropy as well as other physical
parameters.

Spin relaxation in the conduction band of WZ structures
has been theoretically addressed, using the Dyakonov-Perel
formalism [29–31], and predicting particularly long spin
lifetimes for the case of AlN, for a narrow range of values
of the linear coupling. The temperature- and magnetic-field
dependence of the spin lifetime was investigated in Ref. [32].
The anisotropy of the spin-orbit coupling was found to yield
a dependence of the Dyakonov-Perel spin-relaxation rate
on the initial orientation [30,31,33], with a decay twice as
fast for the component along the crystal symmetry axis as
compared to in-plane spin. Such an asymmetry has also been
obtained in the context of ZB quantum wells with particular
crystal orientations [34]. The experimentally observed [25]
nonmonotonic behavior of the spin lifetime as a function
of temperature in ZnO has been explained invoking the
spin exchange between localized and extended states [30].
Alternatively, the numerical solution of Bloch equations for
n-type ZnO quantum wells yielded a maximum relaxation
time as a function of temperature, and also as a function
of carrier density for sufficiently low temperatures [35].
These theoretical studies rely on material parameters and
spin-orbit coupling constants that have been extracted from
numerical band-structure calculations [31,36–38], and there-

fore introduce a certain level of uncertainty in the theoretical
predictions.

It is important to remark that the theoretical methods used so
far to study WZ structures are not expected to be applicable to
the low-temperature physics on the metallic side of the metal-
insulator transition in the impurity band [17,18]. The rather
incomplete experimental and theoretical information on spin
physics for the impurity band of WZ semiconductors calls for
further studies to explore whether long spin-relaxation times
are possible in the vicinity of the metal-insulator transition
in the impurity band of n-doped semiconductors having WZ
crystal structure.

In this article we adapt theoretical methods developed in
Refs. [19,20] in the context of ZB semiconductors, in order
to calculate the spin-relaxation time in the metallic side of the
impurity band of WZ bulk semiconductors, and compare our
results with the experimental data available in the literature
for GaN and ZnO. We also study how far the spin-relaxation
time can in principle be extended by tuning the linear-in-k
component of the Dresselhaus spin-orbit interaction. We find
that this tuning is promising for GaN and potentially dramatic
for AlN.

From a practical point of view, the understanding of spin-
relaxation mechanisms in WZ bulk semiconductors serves
a twofold purpose. One one hand, important information
can be obtained in the cases where materials having ZB
crystal structure in the bulk turn to a WZ configuration
when nanostructured in nanorods or quantum dots [39–42].
On the other hand, even if the spin relaxation can be
considerably slowed down in semiconductor heterostructures
and nanostructures, doped bulk semiconductors are always
required for the contact layers of the devices. From the
fundamental point of view, it is important to understand how
the symmetries of the WZ structure affect the spin-relaxation
mechanisms, and also to have available a tool to better
characterize the metal-insulator transition in wide band gap
semiconductors.

This article is organized as follows. In Sec. II we in-
troduce the Hamiltonian and other basic elements of the
tight-binding model with Dresselhaus spin-orbit interaction
used to describe an electron in the impurity band of bulk
wurtzite semiconductors. In particular, we obtain the hop-
ping matrix elements of the Dresselhaus spin-orbit terms
of the Hamiltonian; details of this calculation are given
in Appendix A. Sections III and IV present, respectively,
the semiclassical and the fully quantum-mechanical self-
consistent approach to the spin-relaxation time. The latter
with three successive degrees of approximation. In Sec. V we
apply our theory to four specific semiconductors and examine
the proposed scheme for maximization of the spin lifetime.
Our conclusions are given in Sec. VI. For completeness, in
Appendix B we apply the semiclassical formula to the case of
zincblende materials. Relevant Fourier transforms are given in
Appendix C.

II. HAMILTONIAN AND HOPPING AMPLITUDE MATRIX

The envelope-function approximation for conduction-
band electrons in WZ semiconductors incorporates the
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crystal lattice-scale physics into the effective one-body
Hamiltonian [43,44]

H = H0 + HD + Hextr, (1a)

H0 = p2

2 m∗ + V (r), (1b)

HD = HD,1 + H3, (1c)

Hextr = λ σ · ∇V × k. (1d)

The spin-independent part H0 is determined by the effective
mass (m∗) and the electrostatic potential V (r) including all
potentials aside from that of the crystal lattice. We note p
the momentum operator, k = p/h̄, and σ the vector of Pauli
matrices. The Dresselhaus (intrinsic) term HD, enabled by
the bulk inversion asymmetry, comprises in the case of WZ
semiconductors, the linear- [45] and the cubic-in-k [36,37]
components, respectively given by

HD,1 = αD (kyσx − kxσy), (2a)

H3 = γ (bk2
z − k2

x − k2
y)(kyσx − kxσy), (2b)

and therefore depends on three material-dependent constants,
namely αD, γ , and b. These parameters are in some cases
only partially known, as will be discussed in our treatment
of specific materials in Sec. V. The extrinsic term Hextr of
Eq. (1d) has the same form as the spin-orbit interaction in
vacuum, but with a material-dependent renormalized coupling
constant λ. External potentials translating into an electric field
in z direction result in a Rashba contribution to Hextr that
has the same linear-in-k form of HD,1, with a prefactor αR

that depends on λ. While such a field cannot be significant in
the bulk case, perpendicular electric fields in thin films might
play a role. In the latter case, the strain induced on the film
by the substrate could be an additional mechanism to modify
the linear-in-k coupling. The linear-in-k contributions can be
jointly treated by defining a Hamiltonian H1 given by (2a), but
with a coupling coefficient

α = αD + αR. (3)

Separating between Dresselhaus and Rashba contributions
with the same functional form is generically a challenge that
has been experimentally addressed in the case of ZB quantum
wells with the application of an external magnetic field [46].
Given the uncertainties in the material parameters, we will
not attempt such a separation in our theoretical treatment
of the WZ structure and we will express our results as a
function of the tunable parameter α. In the literature, H1

is often simply referred to as the “Rashba” Hamiltonian
[36,47], while the cubic-in-k contribution H3 is labeled as
the “Dresselhaus” term. We will avoid here this somewhat
misleading nomenclature.

The potential arising from the ionized donor impurities is
given by

Vimp(r) =
∑
m

Vm(r) = −
∑
m

e2

ε|r − Rm| , (4)

where ε is the dielectric constant of the semiconductor and Rm

represents the impurity positions. Its contribution to Hextr has
been shown to be extremely weak in the case of ZB structures
[17], and we expect the same considerations to also hold in the
WZ case. Therefore, it will not be considered in our theoretical
analysis. On the other hand, the potential Vimp(r) strongly
affects the orbital motion of the electrons, and will be the only
contribution to V (r) that we will keep in Eq. (1b).

The potential Vm(r) gives rise to hydrogenic states cen-
tered at the impurity m, with a ground-state wave-function
φm(r) = φ(|r − Rm|). The anisotropy of the WZ crystal lattice
induces a uniaxial anisotropy, of about 10%, in the effective
masses and the dielectric constants [1,48,49]. We will neglect
the resulting small deformation of the hydrogenic impurity
wave functions [50], adopting the standard isotropic ground-
state wave-function φ(r) = (1/

√
πa3) exp (−r/a), where a =

a0ε/m∗ is the effective Bohr radius, with a0 being its bare
value. The electronic ground states of the different sites m

provide a restricted basis {|mσ 〉} to describe the electron
jumping between impurity centers (σ = ± corresponds to
a spin projection of ±h̄/2 in the z direction). Choosing as
energy origin the ground-state energy, the Hamiltonian in this
restricted space can be expressed as

H =
∑
m′ �=m

∑
σ ′,σ

|m′σ ′〉Vσ ′,σ (Rm′m) 〈mσ |, (5)

where Rm′m = Rm′ − Rm. In the following we neglect the
overlaps between different states m �= m′ and thereby treat
{|mσ 〉} as an orthonormal basis, which is justified in the regime
that we are interested in (i.e., for moderate doping densities
and energies close to the center of the impurity band) [51,52].
Like in the ZB case, the hopping amplitudes can be generically
expressed through a 2 × 2 matrix in the spin subspace [20]

V(r) =
(
V0(r) + iCz(r) iCx(r) + Cy(r)
iCx(r) − Cy(r) V0(r) − iCz(r)

)
. (6)

The spin-independent hopping amplitudes are those of the
Matsubara-Toyozawa model [18]

V0(r) = −V0

(
1 + r

a

)
e−r/a. (7)

We note r = (x,y,z) and r = |r|, while V0 = 2E
(0)
Rym

∗/ε2

corresponds to twice the binding energy of the impurity sites
(E(0)

Ry = 13.6 eV is the Rydberg energy).
The matrix elements of the linear-in-k spin-orbit Hamilto-

nian H1 are

〈m′σ ′|H1|mσ 〉 = α〈m′σ ′|kyσx − kxσy |mσ 〉
= αδσ ′,σ (〈m′|ky |m〉 − iσ 〈m′|kx |m〉). (8)

We use the notation σ = −σ , and thus σx |σ 〉 = |σ 〉 and
σy |σ 〉 = iσ |σ 〉. Applying the operators kx = −i∂x and ky =
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−i∂y we obtain

〈m′σ ′|H1|mσ 〉 = σα

a
δσ ′,σ

×
∫

dr φ∗
m′ (r)

(x−Xm) + iσ (y−Ym)

|r−Rm| φm(r).

(9)

In Appendix A we perform the analytical integration which
results in

〈m′σ ′|H1|mσ 〉 = σα

3a2
δσ ′σ Rm′m sin θ eiσφ

×
(

1 + Rm′m

a

)
e−Rm′m/a, (10)

where Rm′m = Rm′m(sin θ cos φ x + sin θ sin φ y + cos θ z).
As shown in Appendix A, the matrix elements of the cubic-

in-k term

〈m′σ ′|H3|mσ 〉 = γ 〈m′σ ′|(bk2
z − k2

x − k2
y)

× (kyσx − kxσy)|mσ 〉 (11)

can be cast in the form

〈m′σ ′|H3|mσ 〉 = − σγ

3a3
δσ ′,σ

Rm′m

a
sin θ eiσφ e−Rm′m/a

×
{

5 − b + [(b + 1) cos2 θ − 1]
Rm′m

a

}
.

(12)

According to Eqs. (10) and (12), in the case of the WZ
crystal structure, we have Cz(r) = 0 and Cj (r) = C(1)

j (r) +
C(3)

j (r) for j = x,y, with

C(1)
x (r) = αy

3a2

(
1 + r

a

)
e−r/a, (13a)

C(1)
y (r) = − αx

3a2

(
1 + r

a

)
e−r/a, (13b)

and

C(3)
x (r) = − γy

3a4

{
5 − b +

[
(b + 1)

(z

r

)2
− 1

]
r

a

}
e−r/a,

(14a)

C(3)
y (r) = γ x

3a4

{
5 − b +

[
(b + 1)

(z

r

)2
− 1

]
r

a

}
e−r/a.

(14b)

In what follows we calculate the spin-relaxation rate
in the above-defined model, using two different theoretical
approaches.

III. SEMICLASSICAL APPROACH TO THE
SPIN LIFETIME

The spatial diffusion of electrons through the network of
impurities is accompanied by a corresponding dynamics of the

electronic spin. The spin-orbit coupling implies that the spin
is not conserved in a hopping event between two impurities.
In this section we present the derivation of the spin-relaxation
rate based on the concept of spin diffusion on the Bloch sphere
that occurs when the electron undergoes diffusive motion in
real space. Identifying the electron spin with a continuous
vector of fixed norm in three-dimensional space amounts to a
semiclassical description of the spin diffusion.

A. Diffusion on a sphere

The evolution of the electron spin can be assimilated to a
random walk on a sphere with a mean squared rotation angle
χ2 in each step of the random walk. From an initial spin
orientation S0 (the electron spin in units of h̄/2) corresponding
to a distribution of absolute certainty that the point is at a given
position on the sphere, the resulting distribution after a random
walk of N (t) steps after a time t is given by [53]

ρ(ϑ,t) =
∞∑

n=0

2n + 1

4π
exp

[
−1

4
n(n + 1)V (t)

]
Pn(cos ϑ).

(15)
Here ϑ is the angular distance from the initial orientation,
Pn are the Legendre polynomials, and V (t) = N (t)χ2 is the
variance of the corresponding plane motion. For steps being
associated with hopping events occurring with a rate τ−1

c , one
has N (t) = t/τc and then V (t) = (t/τc)χ2.

The mean projection of the resulting spin orientation S(t)
on the initial orientation is given by

S(t) · S0 = 2π

∫ π

0
dϑ sin ϑ cos ϑ ρ(ϑ,t). (16)

With the expression (15) and using the orthogonality of the
Legendre polynomials, one finds an exponential decay of the
mean spin projection

S(t) · S0 = exp

(
− t

τs

)
, (17)

with the spin-relaxation rate

1

τs
= 1

2

χ2

τc
(18)

that depends on the hopping rate and the mean-square spin-
rotation angle.

B. Spin rotation in a hopping event

We consider an initial state where the electron is localized
on the impurity m with a spin state |I 〉 (not necessarily a state
|σ 〉 oriented along the z axis). The initial spin expectation
value writes

Si = 〈I |σ |I 〉. (19)

The final spin state |F 〉 after a hop to impurity m′ is obtained
as

|F 〉 = V(Rm′m)|I 〉, (20)
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where V(Rm′m) is the hopping matrix given by Eq. (6). The
final spin expectation value is computed as

Sf = 〈F |σ |F 〉
〈F |F 〉 , (21)

and the spin rotation angle αm′m related to the hopping event
can be extracted from the scalar product with the initial spin
orientation as

cos αm′m = Sf · Si. (22)

Using (20) and the general form of the matrix elements (6), we
calculate the spin rotation. To lowest order in the spin rotation
components of V(r), that we assume to be small as compared
to the spin-independent hopping terms Cj (r) 	 V0(r), and
therefore having small rotation angles with cos α ≈ 1 − α2/2,
we get the result

α2
m′m ≈ 4

V2
0 (Rm′m)

{
C2

x (Rm′m) + C2
y (Rm′m) + C2

z (Rm′m)

− [Cx(Rm′m)Si,x + Cy(Rm′m)Si,y

+ Cz(Rm′m)Si,z]2

}
, (23)

which depends on the initial spin orientation Si. An average
over the initial spin orientation based on a homogeneous
distribution over the surface of the Bloch sphere yields the
mean square rotation angle occurring in a hopping event

〈α2
m′m〉 ≈ 8

3V2
0 (Rm′m)

[
C2

x (Rm′m) + C2
y (Rm′m) + C2

z (Rm′m)
]
.

(24)

C. Impurity averaged rotation angle

In order to use the result of the diffusion on a sphere (18), we
need the average square spin rotation angle for hops between
any pair of impurities. Towards the evaluation of that average,
we start with the probability that a hop from the initial impurity
m ends at a given impurity m′,

Pm′m = V2
0 (Rm′m)∑

m′′ �=m V2
0 (Rm′′m)

. (25)

We have neglected the small corrections due to the spin-
dependent hopping terms Cj (r). Weighting the mean square
spin rotation angle (24) with this probability leads to an
impurity and spin-orientation averaged squared spin rotation
angle

〈α2〉 =
∑
m′ �=m

Pm′m 〈α2
m′,m〉

= 8

3

∑
m′ �=m

[
C2

x (Rm′m) + C2
y (Rm′,m) + C2

z (Rm′,m)
]

∑
m′ �=m V2

0 (Rm′m)
.

(26)

We identify the squared mean rotation angle χ2 used in the
formalism of the diffusion on a sphere with the average
of (26) over impurity configurations. This impurity average
is obtained through the replacement of the sums over final
positions by integrals over the spatial vector between initial

and final site, weighted by the constant density of impurities
ni, yielding

χ2 = 8

3

∫
dr ni

[
C2

x (r) + C2
y (r) + C2

z (r)
]

∫
dr niV2

0 (r)
. (27)

Defining the inverse hopping rate from the time τc when the
occupation of a site is halved [19,42], we have∫

dr niV2
0 (r) = h̄2

2τ 2
c

. (28)

Replacing the denominator of (27) using (28) and plugging
the result in the diffusion expression (18), we get the mean
spin-relaxation rate〈

1

τs

〉
= 8niτc

3h̄2

∫
dr

[
C2

x (r) + C2
y (r) + C2

z (r)
]
. (29)

The spin-independent hopping is dominated by V0(r) [see
definition after Eq. (6)]. Those terms are the hopping elements
of the Matsubara-Toyozawa model [18]. Using this form in
(28), one gets the hopping time [19]

τc = h̄√
14πV 2

0 nia3
, (30)

and the general expression of the mean spin-relaxation rate in
terms of the model parameters as〈

1

τs

〉
= 8

√
nia3

3
√

14πh̄V0

∫
dr
a3

[
C2

x (r) + C2
y (r) + C2

z (r)
]
, (31)

with the general property that the relaxation rate is proportional
to the square root of the dopant density.

D. Application to materials with wurtzite crystal structure

The expression (31) for the spin-relaxation rate is com-
pletely general, only relying on the form (6) of the hopping
amplitudes. The dominant spin-dependent terms depend on
the crystal structure, and the application of the semiclassical
spin-diffusion formalism to zincblende materials is presented
in Appendix B.

For wurtzite materials, the spin parts of the hopping matrix
elements have significant contributions from both, the linear-
in-k and the cubic-in-k terms in the spin-orbit coupling. Using
the expressions of Eqs. (13) and (14) in the general formula
for the averaged spin-relaxation rate (31) and performing the
integral over hopping vectors, one gets with the hopping time
(30) the mean spin-relaxation time in wurtzite structures〈

1

τs

〉
= 8

√
π√

14 h̄V0

√
nia3E2

soc, (32)

where we introduced the material-dependent energy Esoc

associated to the spin-orbit coupling and given by

Esoc ≡
(

α2

a2
− 38 − 6b

27

αγ

a4
+ 142 − 38b + 9b2

189

γ 2

a6

)1/2

.

(33)

The first term is due to the linear-in-k spin-orbit coupling and
the second and third terms appear due to the presence of the
cubic-in-k contribution.
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FIG. 1. Spin lifetime as a function of the ratio between the
linear-in-k and the cubic-in-k spin-orbit coupling parameters, for
b = 4, within the semiclassical approach (black dotted line), the
simplest self-consistent approximation (dashed brown line), and the
loop-corrected self-consistent approximation (solid line). The first
two results are universal in terms of their density dependence [see
Eqs. (34) and (54)], while the result for the LCSCA depends on the
doping density. The three solid curves correspond to n1/3

i a = 0.25
(blue), 0.29 (green), and 0.33 (red).

As discussed in Sec. II, while the cubic coupling strength
γ is a material parameter, the linear coupling constant α

is composed of an intrinsic component αD and an extrinsic
Rashba component αR. Thus, α can be affected by external
influences like strain or an electric field, and its value can
be controlled and optimized in the search for maximum
spin lifetime. Our general result (32) implies a minimal
spin-relaxation rate of〈

1

τs

〉min

= 8
√

π√
14 h̄V0

γ 2

a6

√
nia3

1307 − 228b + 180b2

5103

≈ 2.4

√
nia3

h̄V0

γ 2

a6
(34)

occurring for the optimal value αopt given by

αopt = 19 − 3b

27

γ

a2
≈ 0.26

γ

a2
, (35)

where we have assumed b = 4 for the evaluation of the
approximate numerical values.

Defining the spin lifetime as the inverse of the mean
relaxation rate (32), one gets the Lorentzian dependence on the
linear coupling strength α depicted in Fig. 1, with a maximum
spin lifetime τmax corresponding to the inverse of the minimal
relaxation rate (34). The relaxation time has a pronounced
maximum as a function of α with high values close to αopt.
The width at half maximum of the Lorentzian dependence of
the lifetime on α is given by

�α = 2
γ

a2

√
1307 − 228b + 180b2

5103
≈ 1.6

γ

a2
. (36)

A similar strongly peaked dependence of the spin lifetime
on the linear coupling has been obtained [29] for conduction-
band electrons in wurtzite semiconductors based on the
Dyakonov-Perel mechanism. The presentation of Fig. 1 in

terms of dimensionless quantities is universal and can be used
for different materials once their characteristic constants are
determined.

E. Anisotropy of the spin-relaxation rate

It can however be noticed that the spin-orbit coupling is
anisotropic in wurtzite structures, with Cz(r) = 0. If we fix
the initial spin orientation along the z axis in (23), instead of
averaging over the initial spin direction, we get the squared
mean rotation angle

χ2
z ≈ 4

V2
0 (r)

[
C2

x (r) + C2
y (r)

]
, (37)

and thus a (longitudinal) spin-relaxation rate

1

τs,z
= 3

2

〈
1

τs

〉
(38)

that is enhanced by a factor of 3/2. In contrast, when the initial
spin orientation is in the x-y plane, a reduced (transverse)
spin-relaxation rate of

1

τs,x−y

= 3

4

〈
1

τs

〉
(39)

is obtained. Thus, the initial relaxation is twice as fast for a
spin oriented along the symmetry axis [0001] of the crystal
than for a spin perpendicular to that axis. Such an anisotropy
of the spin relaxation does not occur in zincblende structures
where the components of the spin-orbit coupling do not have
a preferential direction (see Appendix B).

The factor 2 appearing in the ratio between τs,x−y and τs,z

is a general feature of the WZ structure, and it is in line with
the anisotropic electron spin relaxation measured [33] in bulk
GaN at a temperature T = 80 K , in the regime where the
Dyakonov-Perel mechanism sets the spin lifetimes.

IV. SELF-CONSISTENT APPROACH

The semiclassical approach to the spin lifetime presented in
the previous section has been shown to be extremely successful
in the case of ZB materials [19], as it gives good account
of the existing measurements and the results of microscopic
theories. For the low-temperature spin relaxation in the WZ
materials, the experimental situation is somewhat uncertain,
and microscopic theories have not been developed. The
microscopic approach developed for the case of ZB structures
[20] uses self-consistent approximations where the locator
expansion for the one- and two-particle Green functions (and
their irreducible components) fulfill important constraints, like
particle conservation [54–56]. We present in this section dif-
ferent schemes of the self-consistent approximation applicable
to the WZ crystal structure. While the general features of
the diagrammatic perturbation theory are the same as in the
ZB case, the reduced symmetry of the WZ structure leads to
considerably different results.

The impurity-averaged retarded (advanced) Green function
G(±)(ε) can be written in terms of the corresponding self-
energy �(±)(ε) through Dyson equation

G(±)(ε) = 1

z± − �(±)(ε)
. (40)
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We note z± = ε ± iη, with η an infinitesimal positive quantity.
G(±) and �(±) are understood as on-site, and the impurity
average makes the choice of the site irrelevant. Moreover,
these matrices are proportional to the 2 × 2 identity matrix,
and this is why the spin indices are not explicit.

The intensity propagator � is a two-Green function object
that, according to the Bethe-Salpeter equation, writes as

�σ ′
1σ

′
2,σ1σ2 (ε,ω,r) = G(+)(ε1) G(−)(ε2)

[
δσ ′

1,σ1δσ ′
2σ2δ(r)

+
∑
σ ′′

1 σ ′′
2

∫
dr′′ �σ ′

1σ
′
2,σ

′′
1 σ ′′

2 (ε,ω,r′′)

×Uσ ′′
1 σ ′′

2 ,σ1σ2 (ε,ω,r − r′′)
]

, (41)

in terms of its irreducible component U . We note ε = (ε1 +
ε2)/2 and h̄ω = ε1 − ε2 the semi-sum and the difference of
the energies ε1 and ε2 of the two Green functions defining
�, and r the vector difference between the positions of the
impurities defining the Green functions. The interest of the
intensity propagator is that it allows us to obtain the probability
distribution governing the spatial and spin diffusion

P σ ′σ (ε,t,r) = ni

ρ(ε)

h̄

2π

∫ +∞

−∞
dω e−iωt �σ ′σ ′,σσ (ε,ω,r),

(42)

where ρ(ε) denotes the impurity-averaged density of states,
obtained as

ρ(ε) = −ni

π
Im{G(+)(ε)}. (43)

From Eqs. (13) and (14) (together with Cz = 0) it
follows that the hopping amplitude matrix V(r) de-
fined in Eq. (6) fulfills V(x,y,z) = ei

φ

2 σzV(x ′,y ′,z)e−i
φ

2 σz

with x ′ = cos(φ)x − sin(φ)y and y ′ = sin(φ)x + cos(φ)y and
V(x,y,z) = σyV(x, − y,z)σy . These transformation proper-
ties dictate that the Fourier transform of the matrix U has
the following form for q = 0:

Ũ (ε,ω,0) =

⎛
⎜⎝

ũ1(ε,ω) 0 0 ũ2(ε,ω)
0 ũ3(ε,ω) 0 0
0 0 ũ3(ε,ω) 0

ũ2(ε,ω) 0 0 ũ1(ε,ω)

⎞
⎟⎠.

(44)

Restricting ourselves to the two-dimensional subspace of
diagonal spin density operators (entries ++ and −− of the
matrix Ũ ), we obtain the probability-conserving condition, as
well as the longitudinal relaxation rate (in the z direction) [20]

1

τs,z(ε)
= 4πρ(ε)

h̄ni
ũ2(ε,0). (45)

The remaining subspace (entries +− and −+) provides
the damping of coherences in the chosen representation,
corresponding to the transverse relaxation rate (in the x and y

directions)

1

τs,x−y(ε)
= 2πρ(ε)

h̄ni
[ũ1(ε,0) + ũ2(ε,0) − ũ3(ε,0)]. (46)

The access to the energy-dependent spin-relaxation rates
provided by the self-consistent approximation is important in
order to be able to address not only the case of uncompensated
semiconductors (with a half-filled impurity band), but also
that of weak compensation. In addition, it is a necessary
information for treating the hot-electron condition that might
arise from the initial spin injection [16].

A. Simplest self-consistent approximation

In the simplest self-consistent approximation (SSCA) the
locator expansion for the self-energy is restricted to the only
term that represents a processes where the electron hops from
site m to another site m′′ �= m, and then back to m. Therefore,

�(±)(ε) = β G(±)(ε), (47)

with

β = ni

∫
drV(−r)V(r) = 7π nia

3V 2
0

(
1 + 3E2

soc

7V 2
0

)
, (48)

where Esoc has been defined in Eq. (33).
The self-consistent retarded self-energy �(+)(ε) with neg-

ative imaginary part reads

�(+)(ε) = 1
2

(
z+ − i

√
4β − z2+

)
, (49)

and, according to Eq. (43), the resulting density of states is
given by the semicircle law

ρ(ε) = ni

√
4β − ε2

2πβ
�(4β − ε2), (50)

where � stands for the Heaviside door function. Since, within
this approximation, the impurity band is symmetric around the
energy origin, the Fermi energy is εF = 0.

The irreducible component U of the intensity propagator
compatible with the simplest approximation (47) for the self-
energy is such that

Uσ ′
1σ

′
2,σ1σ2 (ε,ω,r) = niVσ ′

1σ1 (r)[Vσ ′
2σ2 (r)]∗, (51)

and it can thus be expressed as the tensor product U (ε,ω,r) =
niV(r) ⊗ V∗(r). In Fourier space we have

Ũ (ε,ω,q) = ni

∫
dk

(2π )3
Ṽ(k+) ⊗ Ṽ∗(k−), (52)

where Ṽ(k) stands for the Fourier transform of the hopping
amplitude matrix given in Appendix C, and k± = k ± q/2.

According to Eqs. (44) and (51),

ũ1 = ũ3 = ni

∫
dr V2

0 (r) = 7πnia
3V 2

0 , (53a)

ũ2 = ni

∫
dr Vσ ,σ (r)[Vσ,σ (r)]∗ = 3πnia

3E2
soc. (53b)

From (45), (48), and (50) the longitudinal relaxation rate
for electrons at the Fermi energy εF is

1

τs,z(εF)
= 12

√
π√

7h̄V0

√
nia3

E2
soc[

1 + 3E2
soc

7V 2
0

]1/2 , (54)
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and the transverse relaxation rate is

1

τs,x−y(εF)
= 1

2

1

τs,z(εF)
. (55)

The term that multiplies 1/V 2
0 in the denominator of Eq. (54)

stems from the small correction of the density of states due to
the spin-orbit coupling. Neglecting such a term, and taking into
account the numerical factors of Eqs. (38) and (39) relating
the averaged spin-relaxation rate with the longitudinal and
transverse ones, we see that the semiclassical and the simplest
self-consistent approaches yield the same functional form for
the relaxation rates, with only a difference of 1/

√
2 between

the prefactors. Such a difference is not surprising, since in the
semiclassical approach the exact definition of the relaxation
time is to some extent arbitrary. For instance, the hopping time
τc is defined in (28) as the time when the occupation of a
site is halved while a somewhat different criterion would have
been equally adequate. Within the diagrammatic approach, the
hopping time can be expressed in terms of the imaginary part
of the self-energy as follows [20]:

τc = − h̄

2Im
{
�(+)(ε)

} , (56)

which, when taking into account Eqs. (48) and (49), differs
from (28) again by a factor

√
2. In total, the simplest self-

consistent approximation exactly reproduces the semiclassical
approach with hopping time τc defined according to (56).

B. Loop-corrected self-consistent approximation

The simplest self-consistent approximation developed in
Sec. IV A needs to be complemented by adding the terms of
the locator expansion that represent processes in which the
electron visits more than one impurity before hopping back to
the starting one. Such an improvement constitutes the so-called
loop-corrected self-consistent approximation (LCSCA) [20],
which for the spinless case, amounts to the approach used by
Matsubara and Toyozawa [18] in order to obtain the density of
states in the impurity band, as well as the conductivity within
the diffusion approximation.

Since the self-energy is now expressed as a geometrical
series representing hopping events, Eq. (40) can be written as
a self-consistent equation for �(±)(ε),

�(±)(ε) = ni

∫
dk

(2π )3

[Ṽ (±)(k)]2

z± − �(±)(ε) − niṼ (±)(k)
, (57)

where we note Ṽ (+)(k) = Ṽ(k), Ṽ (−)(k) = Ṽ∗(k). This equa-
tion needs to be numerically solved. Since the spin-orbit
coupling only gives a small correction to the density of states,
we solve for �(±)(ε) in Eq. (57) trading Ṽ (±)(k) by Ṽ0(k).

The loop-corrected sequence translates into a renormalized
hopping amplitude matrix

F̃ (±)(ε,k) = Ṽ (±)(k)

I2 − ni G(±)(ε) Ṽ (±)(k)
, (58)

with I2 the 2 × 2 unit matrix. Thus, the irreducible component
of the intensity propagator takes the form (52), but with the
hopping amplitude matrix now replaced by the effective one

[20]. That is,

Ũ (ε,ω,q) = ni

∫
dk

(2π )3
F̃ (+)(ε1,k+) ⊗ F̃ (−)(ε2,k−). (59)

Neglecting the spin-orbit flipping terms in the denominator of
(58) results in

ũ2(ε,0) = ni

∫
dk

(2π )3

|C̃x(k)|2 + |C̃y(k)|2∣∣1 − niG(+)(ε)Ṽ0(k)
∣∣4 . (60)

Performing the angular integrals

ũ2(ε,0) = 1024

945
niγ

2a2
∫ ∞

0
dk

1∣∣1 − niG(+)(ε)Ṽ0(k)
∣∣4

× k4(
1 + k2a2

)8

{
35

(
6
αa2

γ
− 1

)2

− 14k2a2(29 − 6b)

(
6
αa2

γ
− 1

)

+ k4a4
[
1235 − 12(31 − 9b)b

]}
, (61)

and the longitudinal spin-relaxation rate follows from Eq. (45)
after the k integration. From (61) we readily see that, similarly
to the SSCA, the spin-relaxation time within the LCSCA has
a Lorentzian dependence on the variable αa2/γ . However,
contrary to the simpler approximation, the density dependence
is not universal in the parameter nia

3. As in the SSCA
approximation, we have ũ1 = ũ3, and therefore the same
relationship (55) between the longitudinal and the transversal
relaxation times.

In Fig. 1 we present the LCSCA spin-relaxation times in
dimensionless variables for three different impurity densities
(solid lines). For low values of αa2/γ , the relaxation time
decreases as the doping density increases. Such a behav-
ior is in line with that of the ZB case in the metallic
side of the MIT [19,20]. The optimal values of αa2/γ

that maximize the spin-relaxation time are close to those
of the simpler approximations. Interestingly, the linear-in-
k term of the WZ structure induces a crossover value
beyond which the relaxation times increase with impurity
density.

C. Repeated-scattering-corrected self-consistent approximation

The LCSCA can be improved by the inclusion of cross dia-
grams in the locator expansion for the self-energy that describe
the repeated scattering from selected impurities. The so-called
repeated-scattering-corrected self-consistent approximation
(RSCSCA) [20] restricts the repeated scattering to just a pair of
impurities, allowing for arbitrary loops between them [repre-
sented by the renormalized hopping amplitude (58)]. The irre-
ducible component of the intensity propagator in the RSCSCA
has an expression considerably more complicated than that of
Eq. (59) since, even restricting to a pair of repeatedly visited
impurities, there is an important proliferation of contributing
diagrams.

The RSCSCA results (not shown) are very close to those
of the LCSCA, leaving aside the high-energy tail of the
impurity band, as well as the very low densities, for which the
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TABLE I. Material parameters and resulting spin-relaxation times. The effective masses m∗ and the dielectric constants ε are taken from
Ref. [1], while the spin-orbit interaction coefficients α, γ , and b are extracted from the quoted references. The spin lifetime τs and the maximum
spin lifetime τmax

s are calculated within the loop-corrected self-consistent approximation (LCSCA) of Sec. IV B at the density that corresponds
to the Mott criterion n1/3

c a ≈ 0.25 for the metal-insulator transition. For the former, the tabulated value of α is used, while for the latter the
optimal value αopt arising from the LCSCA is adopted.

Material m∗ ε a (Å) V0 (meV) α (meV Å) γ (meV Å
3
) b τs (ns) αopt (meV Å) τmax

s (ns)

GaN 0.19 10.1 29 50 4.5 [47] 400 [59] 3.959 [36] 5 0.2 150
ZnO 0.22 7.8 19 98 2.2 [60] 320 [36] 3.855 [36] 15 0.35 38
InN 0.10 15.0 77 13 13.1 [31] 354 [31] 4.885 [31] 1 0.02 1.8 × 104

AlN 0.28 8.5 16 104 −0.72 [31] 6.445 [31] 3.767 [31] 118 0.01 4.0 × 104

repeated scattering is more relevant [57]. Since our approach
is restricted to impurity densities larger than the critical
one for the metal-insulator transition, the latter case does
not apply to our study. Since we work with uncompensated
or weakly compensated samples, the first case is also not
relevant.

It is interesting to remark that, while the quantitative
improvements of the RSSCA with respect to the LCSCA are
generically small in the range of parameters that we work
with, the magnitude of these corrections depends on the value
of the linear-in-k α coefficient. For small values of α, where
the spin-relaxation time is close to τmax

s , the corrections are of
the order of 10%, while for larger values of α the correction
practically vanishes. The latter result is a consequence of the
fact that for large α the integral leading to ũ2 is dominated
by the small k values, which in turn are associated with
large values of r , where the repeated scattering is not
relevant.

V. SPIN-RELAXATION TIMES IN GaN, ZnO, InN, AND AlN

Direct comparison with the few available low-temperature
data of spin-relaxation times in WZ materials is hindered
by the limited knowledge of some material parameters and
the uncertainty on certain experimental conditions, like the
excess doping density beyond the critical one or the tuning
of the linear-in-k spin-orbit coupling constant induced by
an electrostatic potential. Moreover, the exact nature of the
MIT in wide gap WZ doped semiconductors has rarely been
experimentally investigated, other than in the case of GaN
[22]. For these materials, the standard Mott criterion, as well
as more refined calculations [49,58], only provide a qualitative
estimate of the critical densities.

Despite these limitations, we verify that our theoretical
model yields the appropriate order of magnitude of the
spin-relaxation times for particularly important materials.
We then analyze the improvements that can be made on
the spin-relaxation time by adjusting the tunable linear-in-k
coupling constant α, along the lines of the proposal made in
Ref. [31] to reduce Dyakonov-Perel relaxation in wurtzite
quantum wells. In Table I we summarize the used material
parameters and present results for the spin-relaxation times
obtained within the framework of the LCSCA. The differences
with the other calculational schemes are not particularly
important, especially in the regime of large αa2/γ , where
the linear-in-k term dominates the spin relaxation.

The quoted effective masses m∗ and dielectric constants ε

are direction-averaged values, i.e., m∗ = (m‖ + 2m⊥)/3, with
m‖ and m⊥ being, respectively, the longitudinal and transverse
effective masses with respect to the c axis of the WZ structure
[1]. These parameters determine the effective Bohr radius a

and the spin-independent hopping amplitude V0, according
to a = a0ε/m∗ and V0 = 2E

(0)
R m∗/ε2, where a0 and E

(0)
R are,

respectively, the bare values of the Bohr radius and the Rydberg
energy of an isotropic hydrogen atom [50].

The values of the spin-orbit interaction coefficients α, γ ,
and b were taken from the quoted references. Whenever
known, the experimentally determined values were used. For
instance, in the case of GaN we chose for the cubic-in-
k spin-orbit coupling constant the experimental value [59]

γ = 400 meV Å
3
, instead of the prediction arising from tight-

binding band-structure calculations [36] γ = 330 meV Å
3
.

Similarly, for the linear-in-k spin-orbit coupling constant
we use the value α = 4.5 meV Å determined from weak
antilocalization measurements [47], rather than the result
α = 9 meV Å arising from ab initio computations [61,62]. In
the case of ZnO we used the experimental value [60] α =
2.2 meV Å instead of α = 1.1 meV Å given by band-structure
calculations [45].

The values of τs in Table I are extracted from the data
of Fig. 1, using the material-dependent physical parameters
and setting the doping density to the critical one, according
to the Mott criterion n

1/3
c a ≈ 0.25. The column αopt indicates

the value of the linear-in-k coupling constant for which the
relaxation time is maximum. The last column τmax

s gives the
value of the spin-relaxation time obtained when the linear-in-k
coupling constant takes the value αopt, and sets up an upper
bound for the times than can be achieved by tuning the
contribution arising from αR by the application of an external
voltage in the z-axis direction. The electrical tuning of the
Rashba spin-orbit interaction can be very large. In particular,
twofold [63] and sixfold [64] tuning of the Rashba coefficient
have been reported in InAs nanowires. In the case of bulk and
epilayer wurtzite materials, estimating the extent of the tuning
span is not simple and remains a task for future investigations.
The values of τmax

s listed in Table I therefore indicate potential
improvements, realizable under the condition that α can be
tuned to the required value αopt. The width �α at half
maximum of the Lorentzian dependence of the lifetime, given
approximately by Eq. (36), indicates how close α has to be
to αopt in order to obtain a lifetime that is of the order of the
optimal value τmax

s .
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Our theory is expected to be valid for densities between
the critical Mott-transition density nc and the density for
which the impurity band hybridizes with the conduction
band, given by n

1/3
h a ≈ 0.43 [18]. For the four materials

introduced in Table I we obtain the following density ranges
of validity of our theory. GaN: 6.4 × 1017–3.26 × 1018, ZnO:
2.28 × 1018–1.6 × 1019, InN: 3.42 × 1016–1.74 × 1017, AlN:
3.81 × 1018–1.94 × 1019, where all densities are expressed in
cm−3.

For GaN, the calculated τs is of the same order as
the measured maximum spin-relaxation time of around
20 ns at low temperature [21,22], and the discrepancy
between them could be due to the uncertainty in the
precise value of α [47,61,62,65]. In particular, the large
number of dislocations reported by Ref. [21] might affect
the anisotropy of the crystal and thereby the linear spin-
orbit coupling. Furthermore, we see that tuning α from
4.5 meV Å to αopt = 0.2 meV Å leads to a 30-fold increase
of the spin-relaxation time related to the mechanism under
study.

ZnO is the other material for which low-temperature
spin-relaxation experimental data are available. Values of τs

around 20 ns at T = 30 K have been reported [25], albeit
for a sample with a density of 1.26 × 1015 cm−3, which is
very low compared to the critical MIT density. With this
caveat, we remark the good agreement between our theoretical
prediction and the measured value of the spin lifetime in ZnO.
The comparatively larger theoretical estimation of τs in ZnO
with respect to GaN is essentially due to the fact that, in the
case of ZnO, the value of α is closer to the optimum value
αopt already without external field and, in addition, the width
�α at half maximum of the Lorentzian dependence of the
lifetime, see Eq. (36), is larger (�α = 1.4 meV Å for ZnO
as compared to �α = 0.8 meV Å for GaN). On the other
hand, the upper bound τmax

s for ZnO is considerably smaller
than for GaN, mainly due to the proportionality of τmax

s to
a6 (see the universal scaling indicated in the unit of τs in
Fig. 1).

InN and AlN represent extreme cases in terms of their
spin-orbit parameters. While the value of αD of InN is large,
the one corresponding to AlN is very small, and close to αopt.
Furthermore, AlN is peculiar in the sense that the theoretical

value [31] for the cubic coupling γ = 6.445 meV Å
3

is very
small in comparison with the values of other materials
discussed. Note that, for both materials, the optimized spin-
relaxation time τmax

s arising from the spin-orbit mechanisms
described in Eqs. (1) and (2) is extremely high. In the case
of InN this is mainly due to the large value of the Bohr
radius a, while for AlN it is due to the small magnitude
of γ . Thus, these two materials are promising candidates
to obtain long spin-relaxation times, especially AlN which
would require only a weak tuning of α. The small values
of the optimization window �α for InN and AlN, 0.1 and
0.04 meV Å, respectively, translate into very narrow and tall
peaks for the α dependence of the spin-relaxation time. A
similar conclusion was obtained from a theoretical study of
spin relaxation in the conduction band at high temperatures
[29], where a very high and narrow peak was found in
the α dependence of the spin lifetime, with a maximum

value of up to 0.5 μs at room temperature. To the best of
our knowledge, no measurements of the low-temperature
spin-relaxation time near the metal-insulator transition in the
impurity band have been reported for these two interesting
semiconductors.

VI. CONCLUSIONS

We have theoretically studied spin relaxation in the metal-
lic regime of the impurity band in semiconductors with
wurtzite crystal structure. We adapted theoretical concepts
previously developed and successfully applied in the context
of zincblende semiconductors. Our basic model is solved
using two approaches, namely, a semiclassical one and a
fully quantum-mechanical microscopic theory. The latter is
pursued at three levels of self-consistent approximation:
the simplest (SSCA), the loop-corrected (LCSCA), and the
repeated-scattering-corrected (RSCSCA), incorporating pro-
gressively higher-order terms of the spin-orbit interaction in a
diagrammatic locator expansion.

The anisotropic nature of the wurtzite structure gives rise
to a corresponding anisotropy in the spin-relaxation time.
The interplay between the linear- and cubic-in-k terms of the
spin-orbit Hamiltonian leads to a richer scenario of physical
behavior, as compared with the case of zincblende materials
which only have cubic terms. The obtained theoretical results
are generically expressed in terms of material-dependent
parameters and can thus be applied to different wurtzite
semiconductors of practical interest. We emphasize that our
theory contains no adjustable parameters, and all comparisons
with experiment have been done using the most reliable
material parameters available in the literature.

The theoretical estimates of the spin-relaxation time ob-
tained with the LCSCA were shown to be of the same order
of magnitude as the available experimental data on GaN and
ZnO. At the quantitative level, while the theory underestimates
somewhat the spin lifetime for GaN found in experiments, it
gives a fairly accurate result for ZnO. The discrepancy between
theory and experiment for GaN calls for further investigation
of this important material. Although the scenario for ZnO looks
at this point more consistent than that for GaN, experimental
data for ZnO with densities closer to the MIT would be
needed to draw definite conclusions. With an eye to potential
spintronic applications, we also analyzed the maximization
of the spin-relaxation time made possible by adjusting the
linear-in-k term of the spin-orbit interaction, and showed that
radical improvements could be made for GaN and AlN, leading
to lifetimes given by the discussed mechanism that are so long
that another mechanism can be expected to dominate the spin
relaxation.
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APPENDIX A: CALCULATION OF HOPPING MATRIX ELEMENTS

In this Appendix we calculate analytically the matrix elements of the spin-orbit Hamiltonian between hydrogenic impurity
states. For the linear-in-k term we change the integration variables in Eq. (9) by shifting the origin of coordinates to Rm, and we
call Rm′m = Rm′ − Rm, obtaining

〈m′σ ′|H1|mσ 〉 = σα

a
δσ ′σ

∫
dr φ(r − Rm′m) φ(r)

(
x + iσy

r

)

= σα

a
δσ ′σ (Ix,m′m + iσ Iy,m′m). (A1)

We have defined

Ix,m′m =
∫

dr φ(r − Rm′m) φ(r)
x

r
= 1

πa3

∫
dr e−|r−Rm′m|/a e−r/a x

r
, (A2a)

Iy,m′m =
∫

dr φ(r − Rm′m) φ(r)
y

r
= 1

πa3

∫
dr e−|r−Rm′m|/a e−r/a y

r
. (A2b)

We write Rm′m = (Xm′m,Ym′m,Zm′m) = Rm′m(sin θ cos φ x + sin θ sin φ y + cos θ z), and then Eq. (A2a) takes the form

Ix,m′m = 1

πa3

∫
dr e−

√
(x−Xm′m)2+(y−Ym′m)2+(z−Zm′m)2/a e−

√
x2+y2+z2/a x√

x2 + y2 + z2
, (A3)

The rotation of the coordinate system by (θ,φ) induces a coordinate change characterized by the transformation⎛
⎜⎝

x

y

z

⎞
⎟⎠ =

⎛
⎜⎝

cos θ cos φ − sin φ sin θ cos φ

cos θ sin φ cos φ sin θ sin φ

− sin θ 0 cos θ

⎞
⎟⎠
⎛
⎜⎝

x ′
y ′
z′

⎞
⎟⎠. (A4)

Performing the corresponding change of coordinates, the integral in (A3) becomes

Ix,m′m = 1

πa3

∫
dr′ e−

√
x ′2+y ′2+(z′−Rm′m)2/a e−r ′/a

(
x ′ cos θ cos φ − y ′ sin φ + z′ sin θ cos φ

r ′

)
. (A5)

The cylindrical symmetry around the z′ axis calls for a further change of variables in favor of the cylindrical coordinates (ρ,α,z):

Ix,m′m = 1

πa3

∫
dz dρ dα ρ e−

√
ρ2+(z−Rm′m)2/a e−

√
ρ2+z2/a

(
ρ cos α cos θ cos φ − ρ sin α sin φ + z sin θ cos φ√

ρ2 + z2

)
. (A6)

The integration over α only leaves the last term, and then

Ix,m′m = 2

a3
sin θ cos φ

∫
dz dρ e−

√
ρ2+(z−Rm′m)2/a e−

√
ρ2+z2/a ρz√

ρ2 + z2
= 2 sin θ cos φ I1(Rnm/a). (A7)

Analogously we get

Iy,m′m = 2

a3
sin θ sin φ I1(Rnm/a), (A8)

and collecting both terms in Eq. (A1) we get

〈m′σ ′|H1|mσ 〉 = 2σα

a
δσ ′σ sin θ (cos φ + iσ sin φ) I1(Rnm/a). (A9)

The integral I1 can be solved exactly:

I1(ξ ) = 1

6
(ξ + ξ 2) e−ξ , (A10)

leading to the matrix element of the linear Dresselhaus spin-orbit coupling of Eq. (10).
The cubic-in-k matrix elements (11) can be written as

〈m′σ ′|H3|mσ 〉 = γ δσ ′,σ 〈m′| b kyk
2
z − iσbkxk

2
z − k2

xky + iσk3
x − k3

y + iσkxk
2
y |m〉. (A11)
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We have six terms of the form 〈n|kik
2
j |m〉, where i,j = x,y,z (i and j may be equal). After acting with the differential operators

on the hydrogenic states we get

〈m′|kik
2
j |m〉 = i

a2
〈m′| (xi − Xm′i)(xj − Xmj )2

|r − Rm′ ||r − Rm|2
(

1

a
+ 1

|r − Rm| − |r − Rm|
(xj − Xmj )2

)
|m〉. (A12)

The remaining calculation is lengthier than the one of the linear-in-k matrix element, but it follows the same steps: (i) a shift of
the origin of coordinates to Rm, (ii) a rotation of the coordinate system, and (iii) a switch to cylindrical coordinates. Rather than
writing all the details of this procedure, we just make explicit the analytical expression of some useful two-dimensional integrals:

Ip,q(ξ ) = 1

ap+q−1

∫
dz dρ

e−
√

ρ2+(z−ξa)2/a e−
√

ρ2+z2/a√
ρ2 + (z − ξa)2 (ρ2 + z2)3/2

(
a +

√
ρ2 + z2

)
ρp zq, (A13a)

Ip(ξ ) = 1

ap+1

∫
dz dρ

e−
√

ρ2+(z−ξa)2/a e−
√

ρ2+z2/a√
ρ2 + (z − ξa)2

√
ρ2 + z2

ρ zp. (A13b)

Using the integrals I 3,1(ξ ) = ξ

3 e−ξ , I 1,3(ξ ) = ( ξ

2 + ξ 2

3 )e−ξ , I 3,0(ξ ) = e−ξ , I 1,2(ξ ) = 1
2 (1 + ξ ) e−ξ , I 0(ξ ) = e−ξ , and I 1(ξ ) =

ξ

2 e−ξ , we obtain for the cubic matrix element (12).

APPENDIX B: APPLICATION OF THE SEMICLASSICAL
APPROACH TO ZINCBLENDE SEMICONDUCTORS

In the case of impurities in semiconductors with zincblende
crystal structure, the spin-orbit coupling yields the symmetric
form [19,20]

Cx(r) = − γ

3a5r
x(y2 − z2)e−r/a, (B1a)

Cy(r) = − γ

3a5r
y(z2 − x2)e−r/a, (B1b)

Cz(r) = − γ

3a5r
z(x2 − y2)e−r/a, (B1c)

where γ is the Dresselhaus spin-orbit coupling strength. Using
these expressions in (31) and performing the spatial integral,
one gets with (30) the final result for the spin-relaxation time
in zincblende structures〈

1

τZB
s

〉
= 8

√
14π

147

γ 2

a6V0h̄

√
nia3, (B2)

where the value of the numerical prefactor is approximately
0.36, correcting the one of Eq. (18) in Ref. [19].

APPENDIX C: FOURIER TRANSFORM OF THE HOPPING
AMPLITUDE MATRIX

The diagrammatic expansions are more easily performed in
reciprocal space, therefore it is useful to work with the Fourier
transform of the hopping amplitude matrix

Ṽ(k) =
(
Ṽ0(k) + iC̃z(k) iC̃x(k) + C̃y(k)
iC̃x(k) − C̃y(k) Ṽ0(k) − iC̃z(k)

)
. (C1)

The spin-independent part is given by

Ṽ0(k) = − 32a3πV0

(1 + a2k2)3
. (C2)

In the case of the WZ crystal structure we have C̃z(r) = 0,
and thus C̃j (k) = C̃(1)

j (k) + C̃(3)
j (k) for j = x,y. These Fourier

transforms can be readily done by a rotation of the integration
variables that places the new z axis in the direction of the wave
vector k:

C̃(1)
x (k) = 64αa3πi

(1 + (ka)2)4
ky, (C3a)

C̃(1)
y (k) = − 64αa3πi

(1 + (ka)2)4
kx, (C3b)

C̃(3)
x (k) = −32πiaγ ky

[
1 + a2

(
7k2 − 6(1 + b)k2

z

)]
3(1 + a2k2)4

,

(C4a)

C̃(3)
y (k) = 32πiaγ kx

[
1 + a2

(
7k2 − 6(1 + b)k2

z

)]
3(1 + a2k2)4

.

(C4b)

These analytical expressions allow us to perform the relevant
integrals of our work, like those of Eq. (61).
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