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We present a charge self-consistent scheme combining density functional and dynamical mean field theory,
which uses Green’s functions of multiple-scattering type. In this implementation, the many-body effects are
incorporated into the Kohn-Sham iterative scheme without the need for the numerically ill-posed analytic
continuation of the Green’s function and of the self-energy, which was previously a bottleneck in multiple-
scattering-type Green’s function approaches. This is achieved by producing the Kohn-Sham Hamiltonian in the
subspace of correlated partial waves and allows to formulate the Green’s function directly on the Matsubara axis.
The spectral moments of the Matsubara Green’s function enable us to put together the real-space charge density,
therefore, the charge self-consistency can be achieved. Our results for the spectral functions (density of states)
and equation-of-state curves for transition-metal elements Fe, Ni, and FeAl compound agree very well with
those of Hamiltonian-based LDA+DMFT implementations. The current implementation improves on numerical
accuracy, compared to previous implementations where analytic continuation was required at each Kohn-Sham
self-consistent step. A minimal effort aside from the multiple-scattering formulation is required, and the method
can be generalized in several ways that are interesting for applications to real materials.
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I. INTRODUCTION

Density functional theory (DFT) [1] in conjunction with
the Kohn-Sham scheme [2] and the local density approxi-
mation (LDA) [3], or the generalized gradient approximation
(GGA) [4], to the exchange-correlation potential has shown
great success in the computation of ground-state properties of
real materials. However, the method cannot correctly describe
materials where electronic correlations are important, such
as the Mott insulators, 3d transition metals, and lanthanides.
One successful approach to improve on the description of the
electronic structure of strongly correlated materials is to merge
DFT with dynamical mean field theory (DMFT) [5–8]. Within
DMFT the complicated many-body lattice problem is mapped
self-consistently into a single quantum impurity hybridized
with an effective bath. Nowadays, impurity problems are
efficiently solved by various many-body techniques. Hence,
DMFT developed into a comprehensive, nonperturbative
and thermodynamically consistent theoretical framework for
the investigation of correlated electrons on the lattice. The
combination of DMFT and DFT, referred to as LDA+DMFT
and GGA+DMFT, respectively, has now become the state-of-
the-art method to study correlated materials [8,9].

During the last decade, various LDA+DMFT imple-
mentations have been proposed. The early implementations
employed a two-step procedure: in the first step the LDA
problem was solved using an effective one-particle Kohn-
Sham Hamiltonian and the single-particle wave functions
(Kohn-Sham basis set) were integrated into the density
functional variational approach. The corresponding Green’s
function was then obtained using the spectral representation
of the Kohn-Sham Hamiltonian. In the second step, the

interaction problem was treated, i.e., the low-energy effective
Hamiltonian was formulated within a Wannier-type basis
obtained through downfolding or, alternatively, by a suit-
able combination of Kohn-Sham basis sets. This low-energy
Hamiltonian was solved using DMFT. Some of the initial
LDA+DMFT implementations kept the effective Kohn-Sham
potential fixed, and considered only the self-consistency of the
local self-energy. Therefore, in these approaches the effect
of the self-energy on the electronic charge was neglected.
Inserting the self-energy back into the Kohn-Sham iterative
scheme allows one to converge towards self-consistency in
both the self-energy and charge. Several different basis sets
have been used as a framework for LDA+DMFT Hamiltonian-
based implementations, for example, pseudopotential plane
waves [10–19], muffin-tin orbitals [20–27], and augmented
plane waves [28–33], as well as mesh functions [34]. These
procedures follow the spirit of the spectral density functional
theory (SDFT) proposed by Savrasov and Kotliar [20], in
which a self-consistent solution of the Dyson equation is
sought. This leads to a quasiparticle Schrödinger (or Dirac)
equation with a non-Hermitian part in the Hamiltonian.

An elegant way to avoid the difficulties involved in dealing
with the non-Hermitian Hamiltonian in the SDFT formulation
of LDA+DMFT is provided by the multiple-scattering method
based on Green’s functions. Green’s function methods have the
attractive feature that they can be easily used to treat systems
such as surfaces, defects, and impurities [35,36]. They can
also be employed in connection with the coherent potential
approximation (CPA) to study substitutional disorder [37].
Common to many Green’s function methods is the problem
that the electronic eigenvalue problem is formulated as an
energy-dependent secular equation, from which it is difficult
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to extract the energy bands. Therefore, the charge density
and the total energy, the relevant quantities for the DFT
calculation, are obtained by integration of the Green’s function
along contours in the complex energy plane [38]. Some of the
first charge self-consistent implementations of LDA+DMFT
with a Green’s function formulation of the Kohn-Sham
DFT were implemented within the exact muffin-tin orbitals
(EMTO) method [39] and the Korringa-Kohn-Rostoker (KKR)
method [40,41].

One of the major goals of any self-consistent LDA+DMFT
computation is to answer the question of how the effects
of electronic correlation modify the equilibrium properties,
like lattice parameters and bulk modulus, beyond the LDA.
It is hence necessary to calculate accurate total energies
within LDA+DMFT, from which the equilibrium quantities
can be derived. Several of the ground-state quantities and
spectral properties have already been discussed [42,43] within
the Hamiltonian framework. Despite the many successes of
Green’s function based LDA+DMFT methods [41], several
numerical difficulties still remain for total-energy calculations.
When the Green’s function based LDA+DMFT scheme
is executed in practice, Padé approximants [44] (rational
polynomials) are used to pass Green’s functions from the
complex energy contour to the Matsubara frequencies, and
to return with the self-energy from the Matsubara frequencies
back to the complex contour. Aside from being sensitive to
numerical noise [45], Padé approximants may miss important
features, that can only be captured by resummation of the
continued fraction to infinite order [45–47]. In recent years,
some methods have been proposed in order to improve on the
original Padé approximation technique [48–50] to the analytic
continuation of the Green’s function, but as of yet no fully
satisfactory solution to this problem exists. Such numerical
problems are presently a bottleneck for an accurate and stable
self-consistent Green’s function based LDA+DMFT method
that can produce reliable total energies.

The success of LDA+DMFT consists in its ability to
produce a self-consistent, numerically manageable approxi-
mation for the spectral function and for lattice properties at
equilibrium. It is desirable that LDA+DMFT developments
be exact in principle, and that even approximate perturbative
solvers should give good results, irrespective of whether a
Hamiltonian or Green’s function method is used. For these
reasons, it is essential to pursue alternative methods that
improve on the numerical accuracy. In general, for a Green’s
function formulation of the LDA+DMFT the knowledge of
the noninteracting Green’s function along the imaginary axis
is required. Consequently, our primary objective of this paper
is to describe an approach which yields an accurate Green’s
function in Matsubara frequencies which can be used in the
DMFT part and, at the same time, in constructing the charge
density.

Our method makes the analytic continuation during the
self-consistent Kohn-Sham iterations unnecessary. The key
observation that triggered this method development is that
the charge density is the only ingredient needed to close
the Kohn-Sham self-consistent loop. The charge density
difference between correlated and noncorrelated calculations,
evaluated on the imaginary Matsubara axis, is taken as the
correction on the DFT level charge density. Quantities such as

eigenvalues, Green’s functions, and self-energies are only aux-
iliary quantities in this respect. In the method zMTO+DMFT
presented here, the Green’s function in Matsubara frequencies
is evaluated from the LMTO eigenstates, i.e., in the basis
of linearized partial waves. The choice to take the character
z in the denomination zMTO+DMFT is to remind of the
fact that the Green’s functions in DFT are usually computed
along a general complex contour mesh, i.e., G(z), for a given
muffin-tin potential. We implemented this scheme starting
from our previous EMTO+DMFT method [39], which has
been successfully used to study correlated systems, such as
bulk 3d and 4d transition metals and compounds [39,51–53],
and magnetic heterostructures [54,55]. For the future the
method can be used to investigate, e.g., complex transition
metals [56] and stacking faults in f -electron materials [57].
The use of a Green’s function method opens the possibility to
study systems that deviate from perfect crystalline conditions,
such as alloys and surfaces. The current method employs the
spherical approximation for the effective Kohn-Sham potential
and total energy, which makes it suitable primarily for the
close-packed systems. In the future, we plan to implement the
full-charge density (FCD) [58] technique for the total energy
in the correlated regime. However, such an extension will not
affect the way the correlation effects are included here and
will become significant only when studying anisotropic lattice
deformations at the DMFT level.

The paper is organized as follows: Sec. II gives an overview
of the muffin-tin formalism for the solution of the Kohn-
Sham equations. Section III presents the charge self-consistent
implementation, followed by results in Sec IV. A conclusion
and outlook is given in Sec. V.

II. OVERVIEW OF THE MUFFIN-TIN FORMALISM

Muffin-tin based methods have in common that they
partition space into spherical muffin tins, centered around the
ions in the lattice, and the interstitial, the area outside of the
muffin tins. Inside the muffin tins the effective potential is
assumed to be spherically symmetric, while it is taken to
be constant in the interstitial. The Kohn-Sham equations are
solved separately within these regions, and the solution for
the entire space is found by imposing boundary conditions
between the muffin tins and the interstitial. The algebraic
formulation of the matching conditions takes the form of
a secular equation, which is in general energy dependent.
Section II A describes this concept for the EMTO method.
Section II B briefly reviews the concept of basis function
linearization, which is important for the construction of the
correlated orbitals in this work.

A. Charge density and the complex contour
Green’s function in the EMTO basis set

Within the muffin-tin formalism, the effective Kohn-Sham
potential V σ

eff(r) (σ denotes the spin) in the single-electron
Kohn-Sham equations, labeled by state index j ,[∇2 − V σ

eff(r)
]
�σ

j (r) = εσ
j �σ

j (r), (1)

is approximated by spherical muffin-tin wells centered at
lattice sites R. The exchange-correlation part of V σ

eff(r) will in
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the following always be approximated by the spin-polarized
LDA, and we will from now on suppress the spin index for
simplicity. For the EMTO basis set [59–62], the one-electron
wave functions are expanded in exact muffin-tin orbitals ψ̄a

RL,

�j (r) =
∑
RL

ψ̄a
RL(εj ,rR)va

RL,j , (2)

where L ≡ (l,m) denotes the orbital and azimuthal quantum
numbers, respectively, and rR ≡ rRr̂R = r − R, where the
vector notation for the index R has been omitted. The
superscript a denotes the screening parameter. The orbitals
ψ̄a

RL are linear combinations of partial waves φa
LR(rR), which

are normalized solutions of the radial Schrödinger eqution
inside the muffin tins with spherical potential Veff(rR),

∂2rRφRl(z,rR)

∂r2
R

=
[
l(l + 1)

r2
R

+ Veff(rR) − z

]
rRφRl(z,rR),

(3)

and of the solutions in the interstitial region [62]. The angular
momentum sum in Eq. (2) can in practice be truncated at lmax =
3, making the basis minimal. Since the orbitals are centered
around the lattice sites R, the basis is “local”, making it suitable
as a basis for correlated orbitals within DMFT. The coefficients
va

RL,j are determined from the condition that the expansion
should fulfill Eq. (1) in all space, i.e., the orbitals should be
everywhere continuous and have no derivative discontinuities
(kinks) anywhere. In the EMTO formalism, this leads to the
kink-cancellation equation

Ka
RL,R′L′(εj )va

RL,j = 0 (4)

which is equivalent to the KKR tail cancellation equation [62],
written in a screened representation. The quantity Ka

RL,R′L′(εj )
defines the kink matrix for an arbitrary complex energy z and
has the form

Ka
RL,R′L′(z) ≡ aδRR′δLL′Da

RL(z) − aSa
RL,R′L′(z). (5)

Da
RL(z) denotes the EMTO logarithmic derivative func-

tion [60,61], and Sa
RL,R′L′(z) is the slope matrix [63]. Note

that Eq. (4) is an energy-dependent secular equation, which
allows one to determine the eigenvalues εj . These are obtained
using numerical search algorithms for the roots of the secular
determinant along the real energy axis. To simplify the notation
further, we suppress the index for the screening parameter a.

For translation-invariant systems, the index R runs over the
atoms in the primitive cell only, and the Fourier transformation
of Eq. (5) produces a matrix equation in the reciprocal space:∑

R′′L′′
KR′L′,R′′L′′ (k,z)gR′′L′′,RL(k,z) = δR′RδL′L (6)

that is solved using Green’s function methods. Accordingly,
the path operator gR′′L′′,RL(k,z) is the unique solution of Eq. (6)
[the inverse of the kink matrix KR′L′,R′′L′′(k,z)] that fulfills the
combination of lattice symmetry and boundary conditions.
The elements of the kink matrix are constructed from the
Bloch wave vector (k) dependent slope matrix [62]. Since
the energy derivative of the kink matrix K̇RL,R′L′(k,z) gives
the overlap matrix for the EMTO basis set [63], these are used
to normalize the path operator gR′′L′′,RL(k,z) and construct the

matrix elements of the EMTO Green’s function [60,61]

GRL,R′L′(k,z) =
∑
R′′L′′

gRL,R′′L′′(k,z)K̇R′′L′′,R′L′(k,z)

− δRR′δLL′IRL(z), (7)

where IRL(z) accounts for the unphysical poles of
K̇RL,R′L′(z) [61,62]. The total number of states at the Fermi
level EF is obtained as

N (EF ) = 1

2πi

∑
RL

∮ ∑
k

GRL,RL(k,z) dz, (8)

where the energy integral is carried out on a complex contour
that cuts the real axis below the bottom of the valence band
and at EF . The k summation is performed over the Brillouin
zone (BZ).

To close the Kohn-Sham self-consistency scheme requires
the computation of the charge density. Within the EMTO
method this is achieved through the real-space path operator
[corrected for unphysical poles similarly as in Eq. (7) [62]]
integrated over the same complex contour that is used to
determine EF :

n(r) =
∑
R

nR(rR); nR(rR) =
∑
L

nRL(rR)YL(r̂R),

nRL(rR) = 1

2πi

∮ ∑
L′,L′′

CLL′L′′ZRl′′ (z,rR)

× gRL′′,RL′(z)ZRl′(z,rR)dz, (9)

where CL′LL′′ is a real Gaunt number. Equation (9) is
valid within the muffin-tin spheres and for l � lmax, and
ZRl(z,rR) = NRl(z)φRl(z,rR), where NRl(z) is a normalization
function [61,62]. The specific set of real harmonics is denoted
by YL(r̂R).

B. Charge density and the Matsubara Green’s
function in the LMTO basis set

An alternative solution of Eq. (1) is obtained by the
linearized muffin-tin orbitals (LMTO) [64,65] method. The
same muffin-tin shape is used for the potentials as in the EMTO
method, but with the additional approximation that the
interstitial region is neglected, leading to the atomic sphere
approximation (ASA). The LMTOs χ

γ

RL are constructed from
the partial wave solutions φRl inside the muffin-tin spheres,
computed at an arbitrary energy εRlν (commonly chosen as the
center of gravity of the occupied part of the band), and from
the energy derivative of the partial wave φ̇Rl = ∂φRl/∂ε|ε=εRlν

,
viz.,

χ
γ

RL(rR) = φRl(rR) +
∑
R′L′

φ̇R′l′(rR)hγ

R′L′,RL(k). (10)

The omitted energy argument of the partial wave φRl means
that the function is evaluated at an energy εRlν . In Eq. (10),
h

γ

R′L′,RL(k) is defined as

h
γ

R′L′,LR(k) ≡ H
γ

R′L′,LR(k) − εRlνδL′LδR′R, (11)

125156-3



A. ÖSTLIN, L. VITOS, AND L. CHIONCEL PHYSICAL REVIEW B 96, 125156 (2017)

where H
γ

R′L′,RL(k) is the Kohn-Sham Hamiltonian in the
so-called nearly orthogonal γ -representation [65,66], viz.,

H
γ

RL,R′L′(k) = CRlδL′LδR′R +
√

RlS
γ

RL,R′L′(k)
√

R′l′ ,

(12)

where S
γ

RL,R′L′ are the LMTO structure constants, and the
potential parameters CRl and Rl are computed from the
partial waves φRl according to the prescription given in
Ref. [65]. With the energy-independent LMTO basis functions
[Eq. (10)], the lattice wave function (i.e., the linear muffin-tin
wave function)

�j (r) =
∑
RL

χ
γ

RL(rR)uRL,j (13)

follows the energy-independent eigenvalue problem

H
γ

R′L′,RL(k)uRL,j (k) = εj (k)uRL,j (k), (14)

where the Hamiltonian eigenvalues εj (k) provide the band
structure, and the eigenvectors uRL,j (k) contain Bloch vector
specific information.

1. Moments from the LMTO eigenstates and complex contour

Once the LMTO Hamiltonian has been diagonalized
[Eq. (14)], the energy moments can be evaluated as

Mq

Rl ≡
occ.∑
jk

[εj (k) − εRlν]q
∑
L

|uRL,j (k)|2, (15)

where the q = 0 and 1 moments correspond to the orbitals’
occupation and one-electron energies, respectively. Note that
the moments computed with the help of Eq. (15) are along the
real energy axis.

To make contact with DMFT, we point out that the LMTO
method has been already used to construct Green’s functions:
either from the potential parameters directly or from the
Lehmann (eigenvalue) representation [24,36,65]

GRL,R′L′(z) =
∑
jk

uRL,j (k)[uR′L′,j (k)]†

z − εj (k)
. (16)

The energy moments can then be computed along a similar
complex contour as in the EMTO method [36], using the site
and orbital diagonal part of the Green’s function (R′L′) ≡
(RL), viz.,

Mq

Rl = 1

2πi

∮ l∑
m=−l

(z − εRlν)qGRL,RL(z)dz, (17)

where we remind the reader of the definition L ≡ (l,m). The
eigenvalue summation done in Eq. (15) is now replaced with
the complex contour integration (17). The knowledge of the
moments and the partial waves allows the computation of the
charge density [36,65], viz.,

nRl(rR) = M0
Rl|φRl(rR)|2 + M2

Rl|φ̇Rl(rR)|2
+ 2M1

RlφRl(rR)φ̇Rl(rR)

+M2
RlφRl(rR)φ̈Rl(rR), (18)

and the DFT self-consistency loop can be closed.

Note that one advantage of the LMTO Green’s function
over a multiple-scattering Green’s function is that its spectrum
is discrete and upwards bound, i.e., it does not contain the
free-electron continuum [67].

2. Moments from Matsubara LMTO Green’s function

Equation (16) can be also defined for the Matsubara
frequencies iωn = (2n + 1)iπT , where n = 0, ± 1, . . ., and
T is the temperature. Pourovskii et al. [24], showed recently
that the LMTO zeroth-energy moments can be extracted also
from the imaginary frequency domain by standard Matsubara
summation [68], viz.,

M0
Rl = T

∑
n

l∑
m=−l

∑
k

GRL,RL(k,iωn)eiωn0+
(19)

with the k-resolved Green’s function given by the Lehmann
representation

GRL,R′L′(k,iω) =
∑

j

uRL,j (k)[uR′L′,j (k)]†

iωn + μ − εj (k)
. (20)

The local Green’s function is computed as

GRL,R′L′(iω) =
∑

k

GRL,R′L′(k,iω). (21)

The higher-order moments can be calculated as products of
the zeroth-order moment M0

Rl and εj (k) − εRlν :

M1
Rl =

occ.∑
jk

M0
Rl[εj (k) − εRlν],

M2
Rl =

occ.∑
jk

M0
Rl[εj (k) − εRlν]2. (22)

The charge density can be computed again from Eq. (18).
Note that a cutoff at a finite frequency will lead to inaccurate
Matsubara sums [69]. This can be corrected to some extent
by taking the analytic tail of the Green’s function into
account [24,70].

C. Incorporating the local many-body self-energy

After the brief review of the energy-dependent and the
energy-linearized basis sets we proceed with discussing a
combination of these methods which allows to include the local
DMFT self-energy in a charge self-consistent way. The DMFT
maps self-consistently the many-body lattice problem to an
impurity model, which can be solved by various many-body
techniques and produces the impurity Green’s function and the
local self-energy [8]. The DMFT self-consistency condition is
obtained by imposing that the impurity Green’s function is the
same as the lattice local Green’s function.

In the EMTO+DMFT method [39], the self-consistent
procedure starts with a guess for the local self-energy
�RL,RL′(z) to be combined, through the Dyson equation, with
the k-resolved LDA Green’s function (7), which represents the
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FIG. 1. Schematic picture of the complex energy contour and
the Matsubara frequencies used in the EMTO+DMFT method [39].
Two Padé continuations are needed [Eqs. (24) and (26)], which are
numerically ill-posed problems.

“noninteracting” lattice Green’s function:

[GRL,R′L′(k,z)]−1 = [
GLDA

RL,R′L′(k,z)
]−1 − δRR′�RL,RL′(z),

GRL,R′L′(z) =
∑

k

GRL,R′L′(k,z). (23)

The local Green’s function is extracted from Eq. (23) on
the complex contour: GRL,RL′(z). Its matrix elements are
analytically continued to the Matsubara frequencies:

GRL,RL′(z)
Padé−−→ GRL,RL′ (iω). (24)

In the next step, one has to construct the bath Green’s
function which specifies the impurity problem, which within
EMTO+DMFT is computed from the analytically continued
lattice local Green’s function and the self-energy:

[GRL,R′L′(iω)]−1 = [GRL,R′L′(iω)]−1 + δRR′�RL,RL′(iω).

(25)

The many-body problem is solved on the Matsubara axis, and
the resulting self-energy is then analytically continued to the
semicircular contour:

�RL,RL′(iω)
Padé−−→ �RL,RL′(z), (26)

in order to close the LDA+DMFT loop. In Fig. 1 we illustrate
the contours used in the EMTO+DMFT calculations.
Accordingly, the self-consistency procedure requires two
Padé analytic continuation [39,44] steps, that has to be
controlled numerically.

In order to close the charge self-consistent loop, the
LDA+DMFT path operator gRL,R′′L′′(z) is extracted from
the interacting Green’s function (23), while the real-space
charge density is computed according to Eq. (9) substituting
the LDA path operator with the corresponding LDA+DMFT
path operator. The effective Kohn-Sham potential is obtained
by solving the Poisson equation, and the scheme is iterated
until self-consistency is achieved.

The LMTO method has previously been used as a choice
for charge self-consistent basis sets. In particular, Pourovskii
et al. [24] implemented an LDA+DMFT scheme in the
LMTO-ASA method. In the case of LMTO-ASA, the LDA
level Green’s function is easily evaluated along the imaginary
axis [Eq. (20)], and the self-energy �(iω) is embedded via
the Dyson equation to obtain the LMTO LDA+DMFT level

Green’s function. After performing the k sum, the bath Green’s
function is given similarly as in Eq. (25), and is given as input
to the DMFT impurity solver. In order to close the charge
self-consistent loop, the energy moments are computed as in
Eqs. (19)–(22), with the exception that the Green’s function in
Eq. (19) is now on the LDA+DMFT level. The charge density
is then computed from the energy moments as outlined in
Eq. (18).

III. IMPLEMENTATION OF THE zMTO+DMFT METHOD

A. Motivation

In this section, we present a scheme that removes the need
for the ill-posed analytic continuations (24) and (26) during
the self-consistent loops. Two main ideas are used to achieve
this: (i) the Green’s function can be well approximated by
linearization of the muffin-tin orbitals, and (ii) the charge
density can be calculated by Matsubara summation.

1. Elimination of G(z) → G(iω): The benefit of a
linearized basis set

A major difference between the Green’s function within
EMTO [Eq. (23)] and within LMTO-ASA [Eq. (16)] is that
the latter can be easily evaluated for any energy once the
potential parameters are known. The EMTO Green’s function
on the other hand requires the computation of the slope
matrix and the solution of the radial Schrödinger equation
at each energy point along the complex contour, and this is
a numerically demanding task. The two Green’s functions
should be equivalent up to the error in the linearization imposed
on the kink-cancellation condition [71], reflecting the error of
the linearization of the muffin-tin basis set.

Based on the formal equivalence of these methods, and
the similar results for the corresponding quantities (Green’s
functions and moments of these), we propose the following:

(i) The EMTO Green’s function should be used for LDA
calculations,

(ii) The LMTO Green’s function should be used for DMFT
calculations.

This replaces the need of a Padé approximant with a
linearization of the basis set, a more well-controlled approxi-
mation.

To be specific, we outline the procedure: At each Kohn-
Sham iteration, the kink matrix in Eq. (5) is set up for the
complex energies along the contour, and the EMTO Green’s
function is used to solve the electronic structure problem as
outlined in Sec. II A. The partial waves φRl(rR) are obtained
by radially integrating the Schrödinger equation (3) for the
linearization energy z = εRlν . From these partial waves, the
LMTO potential parameters CRl and Rl can be obtained (see
Ref. [72]). The LMTO Hamiltonian (12) is constructed and
diagonalized, providing eigenvalues εj (k) and eigenvectors
uRL,j (k). In the next step, the noninteracting local LMTO
Green’s function (21) is computed for the Matsubara frequen-
cies iωn. Correlation effects are generated by the interaction
term, formally to be added to the noninteracting Hamiltonian
Hγ . The explicit form of the four index Coulomb interaction
matrix elements is discussed in Sec. IV. From the Green’s
function formulated on the Matsubara axis, the bath Green’s
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function (25) at the LMTO level is obtained, and passed into
the DMFT many-body solver.

The error in the linearization can be assessed by comparing
the density of states (DOS) arising from the EMTO and the
LMTO Green’s functions, both at LDA level (see left panel of
Fig. 2). The EMTO method was iterated self-consistently for
Ni (above left) and Fe (below left), using an spd basis set. The
DOS was then evaluated from the imaginary part of Eq. (7)
(black solid lines) and Eq. (16) (red dashed lines), along a
horizontal contour close to the real energy axis. The curves are
in good agreement with each other. The basis set linearization
will introduce approximations, but these are easily controlled
and can in principle be improved by including higher-order
MTOs (the NMTO method [63]).

2. Elimination of �(iω) → �(z): Charge density difference

An essential step for the charge self-consistency of
LDA+DMFT with the EMTO basis set [39] is the analytic
continuation of the self-energy �RL,RL′(iω) back to the
complex contour, which allows to update the path operator
gRL,RL′(z) from which the real-space charge density (9) is
computed. The correlation effects upon the real-space charge
density have been analyzed in the previous LDA+DMFT
implementation for Fe, Ni, and Cr [39]. In particular for
Cr, LDA+DMFT charge density shows accumulation of d

electrons due to correlation effects inside the muffin-tin
spheres and a depletion of density in the interstitial region.
To capture these correlation-induced corrections to the LDA
charge density, it seems natural for the current implementation
to propose the following scheme:

(i) The LDA charge density should be computed within
EMTO, nEMTO

LDA (r), on the complex contour,
(ii) The DMFT charge density correction nω(r) should

be computed within LMTO on the Matsubara axis.
To be specific, we outline the procedure: the LDA real-

space charge density is calculated from the complex con-
tour [see Eq. (9)]. Once the LMTO Green’s function has
been constructed on the Matsubara frequencies, the energy
moments (19)–(22) are computed both on the LDA and the
LDA+DMFT levels. This allows to evaluate the charge density
nLMTO

LDA(+DMFT)(r) according to Eq. (18). The charge density
difference nω(r) is then simply defined as

nω(r) ≡ nLMTO
LDA+DMFT(r) − nLMTO

LDA (r), (27)

where the superscript of nω(r) emphasizes that this quantity
is computed on the imaginary axis. The final LDA+DMFT
real-space charge density n(r) is obtained through

n(r) ≡ nEMTO
LDA (r) + nω(r), (28)

and is used to close the self-consistent cycle. Note that the
charges computed along the Matsubara axis contain contribu-
tions from all orbitals, and not only from the correlated subset.

To assess the possible differences between the EMTO and
LMTO charge densities, at the LDA level, we plot in Fig. 2
(right column) the valence charge density for Ni (Fe) in the
upper (lower) panel. The EMTO charge densities (black solid
lines) were iterated to self-consistency and evaluated according
to Eq. (9). The LMTO charge (red dashed lines) was evaluated
from the EMTO self-consistent potentials by computing first

the energy moments of the LMTO Green’s function (16) using
the contour integration [36], and then applying Eq. (18). The
charge densities are in a very good agreement.

3. Total energy

Within the Kohn-Sham scheme, the total-energy functional
can be expressed as

EDFT[n(r)] = Ts[n(r)] +
∫

n(r′)n(r)

|r′ − r| dr′dr

+Exc[n(r)] +
∫

Vextn(r)dr, (29)

where Vext is the external ionic potential, Exc is the exchange-
correlation energy, and Ts is the Kohn-Sham single-particle
kinetic energy. The square brackets indicate that the energy
components are functionals of the density n(r). For the
proposed method, the charge density given as input is now
computed on the LDA+DMFT level [Eq. (28)], as outlined in
the previous section. A slight change in the expression of the
kinetic energy

Ts[n(r)] ≡
occ.∑
j

∫
�j (r)(−∇2)�j (r)dr

=
occ.∑
j

εj −
∫

n(r)Veff(r)dr (30)

has to reflect the change in the one-electron energies εj

caused by the presence of the real part of the self-energy.
Equation (1) was used for the second equality, of the above
equation. In order to account for this change in the one-electron
energies, the difference between the LDA and LDA+DMFT
one-electron energies εj = εLDA+DMFT

j − εLDA
j is added to

the expression for the kinetic energy. The total energy
of a many-body system in the ground state includes also
the Galitskii-Migdal contribution [68]. This contribution is
added into all LDA+DMFT computations. Other formulations
such as the variational Luttinger-Ward functional may give
improved energies [8,20,73] but do not appear straightforward
to implement in the present scheme. In the current implemen-
tation, the Galitski-Migdal energy contribution is computed
on the Matusbara axis in the LMTO formulation:

EGM ≡ T

2
TrL

∑
n

∑
k

GRL,R′′L′′ (k,iωn)�R′′L′′,R′L′(iωn)eiωn0+
,

(31)

where GRL,R′′L′′(k,iωn) is on the LMTO LDA+DMFT level.
The final expression for the LDA+DMFT total energy is

ELDA+DMFT[n(r)] = ELDA[n(r)] + εj + EGM. (32)

The Kohn-Sham εj one-electron energies from the DFT (LDA)
calculation already include some interaction effects through
the Hartree and the exchange-correlation potential terms.
Including the interactions explicitly in the form of the Hubbard
Hamiltonian, some interaction contributions would be counted
twice. Consequently, some double-counting correction has to
be included. There is no universal solution to this problem,
and most of the double-counting schemes are empirical. In
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FIG. 2. Left panel: spin-resolved densities of states derived from EMTO (black solid line) and a linear approximation (red dashed line).
(Top left) Majority and minority density of states of fcc Ni. (Bottom left) Majority and minority density of states of bcc Fe. Right panel:
spin-resolved valence electron charge density for Ni (top right) and Fe (bottom right). The EMTO charge is plotted using black solid lines,
while the charge stemming from linearization is shown with red dashed lines.

the present method we take over the schemes used in the
previous implementation [39]; a detailed discussion is found
in Ref. [74].

B. Flow diagram of the self-consistency
calculation in zMTO+DMFT

The ideas presented in the previous section can be con-
densed in the following scheme that we call the zMTO+DMFT
method (see Fig. 3):

(1) The Kohn-Sham iterations are initiated with a starting
guess for the effective potential Veff(r) and the self-energy
�RL,RL′(iω).

(2) The kink-cancellation equations are constructed for
points along the complex contour, and the LDA level charge
nEMTO

LDA (r) [Eq. (9)] is obtained by integrating along the
contour. At this stage, the LMTO potential parameters are
also computed from the partial waves.

(3) The Hamiltonian Hγ is constructed from the potential
parameters from step (2) using Eq. (12), and the eigenvalue
problem is solved.

(4) The noninteracting LDA Green’s function (LMTO)
is constructed according to Eq. (20) for the Matsubara
frequencies from the Hamiltonian in step (3). The LMTO bath
Green’s function [Eq. (25)] is computed and iterated into the
DMFT self-consistency loop, from which a new �RL,RL′(iω)
is obtained.

(5) The nLMTO
LDA(+DMFT)(r) charges are obtained by Matsubara

summation, and the difference nω(r) according to Eq. (27)
is evaluated.

(6) The final LDA+DMFT charge density (28) is com-
puted by adding nω(r) from step (6) to the DFT charge
density from step (2).

(7) Return to step (2) until self-consistency in both the
charge and self-energy is reached.

FIG. 3. Schematic flow diagram of the scheme. Note that within
the cycle there is no analytic continuation needed since the quantities
passed between the complex contour and the imaginary axis (red
arrows) are energy independent (potential parameters and charge).
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Once the self-consistency has been reached, observables
such as the total energy (32) and spectral functions can be
evaluated. Note that the spectral functions are evaluated on a
horizontal contour slightly shifted away from the real axis. To
analyze the self-energy along the real axis, a Padé approximant
can be used. Note, however, that this does not affect the Kohn-
Sham loops, and has to be carried out only once at the end,
after self-consistency has been reached. In this case, it is also
easy to identify spurious poles in the Padé approximant, as
outlined in Ref. [48].

IV. RESULTS

To assess the implementation, electronic structure cal-
culations have been performed according to the method
proposed above. Transition metals and compounds in which
the d-orbitals form the correlated basis set have been
considered. For the DMFT impurity solver, a fluctuation
exchange (FLEX) [75] type of approximation was used for
the multiorbital case [70,76,77]. In contrast to the origi-
nal formulation of FLEX [75], the spin-polarized T -matrix
FLEX (SPTFLEX), used for the present calculations, treats
the particle-particle and the particle-hole channels differ-
ently [70,76,77]. While the particle-particle processes are
important for the renormalization of the effective interaction,
the particle-hole channel describes the interaction of electrons
with the spin fluctuations. In addition, the advantage of such a
computational scheme is that the electron-electron interaction
term can be considered in a full spin and orbital rotationally
invariant form, viz., 1

2

∑
i{m,σ } Umm′m′′m′′′c

†
imσ c

†
im′σ ′cim′′′σ ′cim′′σ .

Here, cimσ (c†imσ ) annihilates (creates) an electron with spin
σ on the orbital m at the lattice site i. The Coulomb matrix
elements Umm′m′′m′′′ are expressed in the usual way [78] in terms
of Slater integrals. Since specific correlation effects are already
included in the exchange-correlation functional, so-called
“double-counted” terms must be subtracted. To achieve this,
we replace �σ (E) with �σ (E) − �σ (0) [79] in all equations
of the DMFT procedure [8]. Physically, this is related to the
fact that DMFT only adds dynamical correlations to the DFT
result [74].

A. Transition metals: Nickel and iron

Within the family of the late 3d transition metals, nickel and
iron are known to show in their band structures signatures of
electronic correlation [79]. Nickel is well known for a “6-eV
satellite” in its photoemission spectra [80], while a similar
satellite in iron is debated [25,81].

For both Fe and Ni, an spd basis was used, and the 4s and
3d states were treated as valence. The core electron levels
were recalculated at each Kohn-Sham iteration (soft-core
approximation). The kink-cancellation condition was set up
for 16 energy points distributed around a semicircular contour
with a diameter of 1 Ry, enclosing the valence band. The BZ
integrations were carried out on an equidistant mesh with 285
k-points (for Fe) and 240 k-points (for Ni) in the irreducible
BZ. For the exchange-correlation potential, the local spin den-
sity approximation with the Perdew-Wang parametrization [3]
was used. For the DMFT impurity calculations, the Matsubara
frequencies were truncated after 2048 frequencies, and the

temperature was set to T = 400 K. The values for the Coulomb
U and the exchange J parameters are discussed in connection
with the presentation of the results in each case. The equations
of state were obtained by fitting the energy-versus-volume data
to a Birch-Murnaghan function [82]. The densities of state
were computed along a horizontal contour shifted a distance
δ = 0.02 Ry away from the real-energy axis. At the end of
the self-consistent calculations, to obtain the self-energy on a
real-energy mesh, �(iω) can be analytically continued into a
horizontal contour by a Padé approximant constructed by the
Thiele method [44].

In the top left part of Fig. 4, the LDA and LDA+DMFT
density of states for Ni are presented. The volume was set to the
experimental value (73.79 a.u.3). The method compares well
with previous DFT+DMFT studies employing the SPTFLEX
impurity solver [25,39,40], and captures the main correlation
effects of Ni such as the satellite formation and band
narrowing. Note that the correlation effects are stronger in
the majority spin channel (more pronounced satellite, more
narrow bandwidth) than in the minority spin channel, which
is common for the late 3d metals. For the case of U = 3 eV
(blue line), the position of the “6-eV” satellite is at higher
binding energy than in experiment. The value U = 3 eV has
previously given the correct satellite position when a quantum
Monte Carlo impurity solver was used [79], and the fact that
the SPTFLEX solver overestimates the effect of correlation is
thought to be due to the perturbative nature of the solver [84].
Recent spin-polarized positron annihilation experiments and
LDA+DMFT calculations allowed to determine the value for
the local electron-electron interaction strength in ferromag-
netic nickel to the value of 2 ± 0.1 eV [85]. By decreasing
the Coloumb parameter to U = 2 eV (red line), the satellite
is shifted to lower binding energy, in better agreement with
experiment, as found previously [84].

The top right part of Fig. 4 shows the equation of state
of Ni as calculated within the method, for various values of
the Coulomb parameters U and J . The effect of correlation
can be seen to increase the equilibrium volume from the
value given by the LDA (corresponding to U = 0, black
line). The equilibrium volumes are given in Table I, together
with the bulk moduli. As already mentioned in the discussion
of the nickel DOS, the SPTFLEX solver overestimates the
effect of correlation. This is seen for the equilibrium volume,
where the commonly accepted value of U = 3 eV (blue line)
overestimates the equilibrium volume. U = 2 eV (red line)
gives a better agreement with the experimental volume. It
should also be noted that the bulk modulus is softened as U is
increased, which corrects for the overestimation made by the
LDA functional.

Figure 4 shows the DOS (bottom left) and equation of
state (bottom right) for bcc Fe, for the case of standard LDA
(U = 0) and for U = 1.7 eV, J = 0.9 eV. Similar values of
U and J have previously been successfully used to describe
the photoemission spectra and energetics of iron [27,42,81].
The effect of correlation is seen to broaden the peaks in the
DOS, and create a satellite structure at ∼7 eV binding energy,
in agreement with previous SPTFLEX studies [25,27]. By
including local correlation effects, the equilibrium volume is
increased, similar as for Ni. This can be seen in the bottom
right part of Fig. 4, where the equation of state is given.
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FIG. 4. Spin-resolved density of states (left) and equation of state (right) for nickel (top) and iron (bottom), for various values of the
Coloumb parameters U and J . For Ni, the DOS was calculated for a unit-cell volume 73.79 a.u.3, and for Fe the unit-cell volume was
78.84 a.u.3. In the right panel, the dotted lines mark the experimental volumes.

The effect of correlation also reduces the bulk modulus (see
Table I). The agreement between our results and the ones
from Ref. [27] is very good; the slight differences are due to
the spin-orbit coupling explicitly present in Ref. [27]. On the
other hand, it is known that spin-orbit effects are quite small for
Fe [86].

B. Iron aluminium

The stoichiometric intermetallic compound FeAl has at-
tracted the interest of the electronic structure community
mainly due to its magnetic properties. While FeAl is para-
magnetic in experiment, LSDA calculations within density
functional theory predict an ordered ferromagnetic ground
state with a magnetic moment of about ∼0.7μB . Mohn
et al. [87] showed that including the effect of the local
Coulomb interaction U through the LDA + U method, the
nonmagnetic state can be stabilized for a narrow range of U

values. It was further argued that the reduction in the DOS
at the Fermi level, caused by increasing U values, will favor
the nonmagnetic state through the Stoner criteria. Petukhov
et al. [74] pointed out the importance of dynamic effects by
LDA+DMFT calculations of the spectral functions, showing
that the nonmagnetic solution is stable within LDA+DMFT,
and that the DOS is pinned to the Fermi level. Later on, Galler

et al. [88] confirmed this, while also computing susceptibilities
for FeAl within LDA+DMFT using a continuous-time quan-
tum Monte Carlo (CT-QMC) impurity solver. None of the
above previous LDA+DMFT studies presented total energies.

We have investigated the electronic structure of FeAl with
our method, in order to evaluate the density of states and
the total energy for volumes around the experimental value.
FeAl crystallizes in the B2 (CsCl) structure, i.e., a simple
cubic lattice with Fe at position (0,0,0) and Al at ( a

2 , a
2 , a

2 ),
where the experimental lattice constant is a = 5.496 a.u. [87]
(note that also the value a = 5.409 a.u. is reported in the
literature [89,90]). An spd basis was used, and a contour of
diameter 1 Ry with 16 energy points was employed for the
energy integrations. For the BZ integration, 286 k-points in
the irreducible part was employed.

In the left part of Fig. 5, we present the nonmagnetic density
of states for FeAl, computed assuming U = 0 eV (black line)
and U = 2 eV (blue line). As pointed out in the previous stud-
ies [74,88], the increasing of the Coulomb U parameter, within
LDA+DMFT, has little effect on the density of states at the
Fermi level, in contrast to LDA + U calculations [87], while it
leads to a band narrowing. This is an indication that spin fluc-
tuations, which are included on a perturbative level in the SPT-
FLEX solver, changes the simple picture of Stoner instability.
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TABLE I. Computed equilibrium volumes V0 (a.u.3) and bulk modulus B0 (GPa) for fcc Ni and bcc Fe. Comparison is made with theoretical
and experimental references. Data in parentheses next to a quantity are the relative difference between the quantity and the LDA (U = 0) value,
δx ≡ (x − xLDA)/xLDA. Experimental data taken from Ref. [83].

LDA U = 2 eV U = 3 eV
Ni V0 V0 δV0 V0 δV0 Expt.

This work 67.65 75.84 (0.12) 86.04 (0.27)
FP-LMTO (Ref. [26]) 67.88 76.20 (0.12) 89.48 (0.31) 73.79
KKR (Ref. [26]) 66.86 76.28 (0.14) 85.53 (0.28)

B0 B0 δB0 B0 δB0

This work 259 162 (−0.37) 99 (−0.62)
FP-LMTO (Ref. [26]) 260 163 (−0.37) 84 (−0.68) 179
KKR (Ref. [26]) 280 171 (−0.39) 132 (−0.53)

Fe LDA U = 1.7 eV Expt.

V0 V0 δV0

This work 70.09 86.21 (0.23)
FP-LMTO (Ref. [27]) 70.49 87.06 (0.24) 79.46

B0 B0 δB0

This work 253 124 (−0.51)
FP-LMTO (Ref. [27]) 234 90 (−0.62) 163

In the right panel of Fig. 5, our computed total energies for
ferromagnetic and nonmagnetic FeAl are presented. In the case
of LDA (U = 0, bottom right), the nonmagnetic total energy
(black line) is never lower than the ferromagnetic total energy
(red line), for all the studied volumes. In the lower volume
range the ferromagnetic moment is lost, indicated by the
coincidence of the two energy curves �70 a.u.3. The fact that a
ferromagnetic ground state is favored in LDA is in agreement
with previous DFT studies [90]. The equilibrium volumes
for the respective curves are 73.95 a.u.3 (a = 5.288 a.u.)
for the ferromagnetic curve, and 73.62 a.u.3 (a = 5.280 a.u.)
for the nonmagnetic curve, and hence the ferromagnetic and
nonmagnetic lattice constants differ by <1% only. Previous
DFT studies have found lattice constants of value a = 5.397
a.u. (TB-LMTO, nonlocal corrections to the LDA, Ref. [90]),
a = 5.364 a.u. (TB-LMTO, Barth-Hedin parametrization of
LDA, Ref. [89]), and a = 5.330 a.u. (full-potential linearized
augmented Slater-type orbital method using LDA, Ref. [91]),

using different basis sets and exchange-correlation functionals.
The previously reported lattice constants are all larger than the
current results, but are consistent given the fact that different
basis sets and exchange-correlation functionals were used.

As local correlation effects are taken into account within
LDA+DMFT (U = 2 eV, top right), the situation is reversed.
In this case, the ferromagnetic solution is always higher in
energy compared to the nonmagnetic solution, indicating that
the nonmagnetic solution is the ground state for the whole
volume range. For volumes �67 a.u.3, the magnetic moment
is lost, and the two curves coincide. The equilibrium volumes
for the respective curves are 80.99 a.u.3 (a = 5.451 a.u.) for
the ferromagnetic curve, and 82.67 a.u.3 (a = 5.489 a.u.) for
the nonmagnetic curve, which is in good agreement with
experiment.

Associating the analysis of the DOS and equation of state,
we see that LDA+DMFT is able to explain the experimentally
observed fact that FeAl is in a nonmagnetic ground state,

FIG. 5. Density of states (left) and equations of state (right) of FeAl.
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while at the same time providing an equilibrium lattice
constant in better agreement with experiment than the LDA. By
investigating the DOS, the Stoner criterion (an increased DOS
at EF is leading to a magnetic instability) for ferromagnetism
can be ruled out as an explanation for the magnetism in FeAl.

V. CONCLUSION AND OUTLOOK

In this paper, we have introduced a computational scheme
for LDA+DMFT calculations, using Green’s function meth-
ods. The method is able to describe correlated systems such
as transition metals and compounds, and shows results in
very good agreement with previous LDA+DMFT implemen-
tations. At the heart of the current implementation is the
formulation of the LDA Green’s function directly on the
Matsubara axis, using the Lehmann representation in terms of
the eigenvalues and eigenfunctions of the LMTO Hamiltonian.
This simple procedure is essential for circumventing the ana-
lytical continuation of the Green’s function from the complex
contour to the Matsubara frequencies (Sec. III A 1). The real
advantage of this construction appears in the computation
of the charge density. Starting from the zeroth moment of
the LMTO Green’s function, the extension to higher-order
moments becomes possible. From these moments, the real-
space charge can be constructed. The difference between
correlated and noncorrelated charge density allows for the
self-consistency and in the same time circumvent the second
analytical continuation, that of the self-energy from the
Matsubara axis to the complex contour (Sec. III A 2). The
idea to consider charge density differences between LDA
and LDA+DMFT might also prove useful for Hamiltonian-
based methods since the operation of subtraction could help
in reducing systematic errors coming from the numerically
difficult Matsubara sums.

By sidestepping the ill-posed analytic continuation prob-
lems, a numerically stable implementation is possible, at
the minor cost of performing basis set linearization for the
calculations along the imaginary axis.

Numerical results are presented for Fe and Ni. A direct
numerical comparison between the imaginary part of the
EMTO and the LMTO Green’s functions along a horizontal
contour close to the real axis is studied in Fig. 2. The agreement
between the basis sets as well as for radially distributed real-
space charge are found to be excellent. The zMTO+DMFT
densities of states and total energy curves are then presented
in Fig. 4, and are found to be in very good agreement with
previous LDA+DMFT studies that were employing other
basis sets. As a final example, the spectral functions and
equations of state of the FeAl transition-metal compound

is studied. Similarly, an excellent agreement is found when
comparing to previous LDA+DMFT methods [74]. For a
Coulomb interaction strength of magnitude U = 2 eV (on
Fe in FeAl), the total energies for FeAl are seen to favor a
nonmagnetic ground state, in accordance with experiment.

As an outlook, we propose several possibilities to ex-
tend the current zMTO+DMFT implementation. First, the
downfolding of the linearized basis set can be included [24],
in order to reduce the size of the minimal basis set even
further. Second, the full-charge density (FCD) technique [58]
applied to the EMTO method has previously provided ac-
curate total energies for low-symmetry structures, while still
keeping the efficiency of the spherical potential approximation
(see Ref. [62]). The implementation of the FCD into the
zMTO+DMFT method would make it possible to study
the energetics of low-symmetry structures and anisotropic
lattice distortions of correlated materials, which currently is
work in progress. Finally, a major motivation is to enable a
combination of the present method with the coherent-potential
approximation [37], or with the typical medium theory for
disorder [92]. This would provide a method that could handle
strong correlation and disorder in alloy systems, including the
problem of Anderson localization [92].

In conclusion, we have attempted to demonstrate by means
of elementary examples that the current zMTO+DMFT,
in conjunction with the perturbative SPTFLEX solver, can
successfully describe the electronic structure and energetics
of transition metals and their compounds. Even though the
SPTFLEX solver is numerically simple due to its algebraic
structure, it is still sufficiently rigorous to deal with correlated
electrons in condensed matter. A more sophisticated imple-
mentation using a variant of the continuous-time quantum
Monte-Carlo impurity solver is in progress.
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