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Correlation between Fermi arc and charge order resulting from the momentum-dependent
self-energy correction in cuprates
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We calculate momentum-dependent self-energies due to self-consistent spin and charge-density fluctuations
within a single-band Hubbard model for hole-doped cuprates. We find that the dynamical density instability
(mainly paramagnonlike spin fluctuations) arising from the van Hove singularity at the antinodal point produces
strongly anisotropic mass renormalization, increasing from the nodal direction to the antinodal one. This gives
rise to a coherent Fermi arc pattern in which although the self-energy dressed Green’s function has poles at all
Fermi momenta, the corresponding spectral weight decreases from the nodal to the antinodal direction. We study
the feedback effects of the anisotropic self-energy and Fermi arc on the charge-density wave (CDW) instability
by direct computations of charge susceptibility and the quasiparticle interference pattern. We find that that due
to the loss of spectral weight at the antinodal points, the CDW nesting weakens, and the corresponding hot spot
shifts from the antinodal region to the tip of the Fermi arc below the magnetic Brillouin zone. The results are in
good agreement with experiments, reproducing the observed slow doping dependence of the CDW wave vector.
Our investigation therefore provides a mechanism for the Fermi arc in cuprates, with various testable predictions
such as a sharp, first-order-like phase transition of the CDW order on the higher-doping side.
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I. INTRODUCTION

The mechanism of unconventional superconductivity in all
material classes is often believed to be related to the origin of its
exotic normal state, which is mostly non-Fermi-liquid-like and
sometimes intervened by electronic and/or magnetic orders
[1–6]. Cuprates are good model systems to study this problem
because of their single-band electronic structure and higher
superconducting (SC) transition temperature compared with
other materials. Yet their normal state is extremely compli-
cated, having a number of electronic and magnetic orders,
as well as a mysterious “pseudogap” state. The pseudogap
physics is often associated with the appearance of a “Fermi
arc”. Here, the Fermi surface (FS) loses its spectral weight
as one moves from the nodal or diagonal direction to the
Brillouin zone (BZ) boundary (antinodal region). Whether a
broken-symmetry phase or any phase fluctuation or something
else is responsible for the formation of the Fermi arc is still
largely debated [7]. More recently, a similar Fermi arc feature
was observed in iridium oxide (iridates) [8,9], raising the
possibility that the Fermi arc could perhaps be a fundamental
property of moderately or strongly correlated materials.

Recently, the charge-density wave (CDW) phase was
observed in a number of hole-doped cuprates via different
experimental probes [10,11]. The CDW transition temperature
is often seen to be lower than the pseudogap temperature.
Interestingly, the CDW wave vector was believed to arise from
the nesting between the antinodal parts of the FS [12]. On the
contrary, at the CDW temperature, the antinodal part is already
truncated by the pseudogap, and the remaining FS gives a
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Fermi arc feature. More recently, combined angle-resolved
photoemission spectroscopy (ARPES) and scanning tunneling
microscopy (STM) measurements [via quasiparticle interfer-
ence (QPI) maps] demonstrated that the CDW wave vector
connects at some non-high-symmetry k points of the Fermi
arc, rather than at the antinodal point in Bi2Sr2−xLaxCuO6+δ

(Bi2201) [11]. These observations provide a new test bed to
study the mechanism of the pseudogap Fermi arc from the
doping behavior of the CDW wave vector and its intensity.

In earlier model calculations by parameterizing the pseu-
dogap as a (π,π ) nesting antiferromagnetic (AF) order, it
was shown that the QPI pattern obtains strong peaks at the
CDW wave vector which connects the end points of the nodal
FS pocket [11,13]. The extension of the AF order to the
higher-doping pseudogap region is, however, not supported
by experiments.

Here, we calculate the self-energy due to the density-density
correlations (spin and charge densities) as a function of
both momentum and frequency within a single-band Hubbard
model. The computational scheme is called the momentum-
resolved density fluctuation (MRDF) model as introduced
previously [6,14] and successfully implemented in various
correlated materials [6,14–17]. The MRDF method calculates
the self-energy along the lines of fluctuation-exchange (FLEX)
or GW approximations, but with the advantage that, here,
both the single-particle Green’s function and the two-body
correlation functions are calculated self-consistently with
the self-energy corrections. The Bethe-Salpeter-type vertex
correction is included self-consistently and obeys Ward’s
identity (which means it follows the conservation laws). The
calculation assumes intermediate coupling strength of the
Hubbard interaction U ∼ W (where W is the quasiparticle
bandwidth), as appropriate for doped cuprates [6,18–22].
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The dominant source of the self-energy correction is the
high-energy spin fluctuations lying around 200–350 meV and
along the (π,0) direction. Self-energy splits the electronic
states into three energy scales [6]: there are two incoherent,
localized Hubbard bands at the bottom and top of the bands at
k = (0,0) and k = (π,π ) and an itinerant, coherent band near
the Fermi level, with a renormalized van Hove singularity
(VHS) in the antinodal direction. The density fluctuations
between the itinerant VHS states and the localized Hubbard
states give rise to paramount spin fluctuations in the (π,0)
regions, often referred to as paramagnons. We emphasize that
the self-consistency allows us to produce fluctuations between
the local and itinerant electrons, and thus, the system is pushed
to the intermediate-coupling regime. The corresponding self-
energy therefore becomes stronger at the antinodal points
and gradually decreases in the nodal region. In other words,
the microscopic origin of the strong enhancement of the
self-energy at the antinodal point is the positioning of the
renormalized VHS in the electronic spectrum.

This characteristic self-energy behavior creates a Fermi-
arc-like spectral density map at the Fermi level EF , as directly
measured by ARPES [11]. The calculation does not exhibit any
broken-symmetry order parameter at finite doping. Using the
same self-energy, we calculate the static charge susceptibility
and the QPI maps as a function of doping. Interestingly,
although the self-energy correction is dominated by the
spin fluctuations, it impacts the CDW nesting via spectral
weight renormalization and thereby modifies its behavior. The
methodology gives a unique platform to study the evolution
of the CDW wave vector in the case of a proper Fermi arc,
rather than a Fermi pocket. Our result indeed shows that
due to the interplay between the k-dependent spectral weight
renormalization and nesting conditions, the CDW wave vector
is shifted from the antinodal point, as one often suspects [12],
to the tip of the Fermi arc below the magnetic zone boundary.
Our results are in quantitative agreement with ARPES and
QPI patterns as a function of doping. This provides a more
generic and consistent description of the two complementary
measurements.

The rest of the paper is arranged as follows. In Sec. II,
we describe the MRDF theory, including the tight-binding
model for Bi2201, density-density fluctuations, self-energy
calculations, and vertex correction. In Sec. III, we present
our results, where we calculate the Fermi arc feature, CDW,
and QPI patterns including the k-dependent self-energy. Then
we compute the QPI patterns as a function of doping and
show how the CDW wave vector possesses a discontinuous
jump at the critical point when the self-energy correction is
included. Finally, we discuss various aspects of our methods
and conclude in Sec. IV

II. MODEL: SELF-CONSISTENT SELF-ENERGY
CALCULATION AND THE MRDF METHOD

We take a low-energy single-band tight-binding model
fitted to the density-functional theory band structure of Bi2201
[6]. We use Bi2201 as the model system since both ARPES
and STM measurements were done for the same sample. The

dispersion relation can be specified as

ξk = −2t(cx + cy) − 4t
′
cxcy − 2t

′′
(c2x + c2y)

−4t
′′′

(c2xcy + cxc2y) − 4t
′′′′
c2xc2y − μ. (1)

Here, cαi = cos αki , where α is a number and i = x,y

directions. The tight-binding parameters are t = 0.44 eV, t
′ =

−0.1 eV, t
′′ = 0.057 eV, t

′′′ = 0.005 eV, t
′′′′ = −0.032 eV,

which is suitable for the Bi2201 system [6]. The chemical
potential μ is adjusted for each doping. The presence of
density-density fluctuations (mainly arising from spin and
charge fluctuations) in the whole cuprate phase diagram is
demonstrated by many experiments [23,24]. The density
fluctuations in the intermediate-energy scales (200–350 meV)
can be captured from the summation over all irreducible
particle-hole bubble diagrams. This gives a random-phase
approximation (RPA)-based effective correlation potential
Vν(q,ωp) (ν = 1,2 for spin and charge fluctuations).
The feedback effect of the fluctuation potential to the
electronic structure is calculated as a complex self-energy
correction. The generalized form of the fully self-consistent
self-energy was obtained by Hedin [25]. In our MRDF
model, we calculate both the single-particle spectral function
and the two-particle density-density correlation function
self-consistently. We employ the Bethe-Salpeter vertex
correction that preserves both the total charge and spin
densities [26]. The self-consistent loop neglects the imaginary
parts of the self-energy in the spectral function, which does
not cause a problem since the f -sum rule is maintained
by the proper choice of the vertex correction, following
Ward’s identity [27]. The method is described in detail in
Refs. [6,14–17].

We calculate the single-band electronic self-energy due to
the coupling of the density fluctuations to the electronic states
within the MRDF method,

�ν(k,ω) = 1

	BZ

∑
q

∫ ∞

−∞
dωpV̄ν(q,ωp)
ν(k,q,ω,ωp)

×
[

1−f̄k−q + np

ω + iδ−ξ̄k−q − ωp

+ f̄k−q + np

ω + iδ − ξ̄k−q + ωp

]
.

(2)

Here, k and ω are the quasiparticle momentum and frequency,
and q and ωp are the bosonic excitation momentum and
frequency, respectively. 	BZ is the electronic phase-space
volume. The quasiparticle energy is defined as ξ̄k = ξk +
�′(k,ξ̄k), where �′ is the real part of the self-energy. We
note that to keep the carrier density fixed with and without the
self-energy correction, we adjust the chemical potential in both
cases. f̄k = Z(k)f (ξ̄k) is the renormalized fermion occupation
number, where the quasiparticle residue is defined as Z−1

k =
1 − [∂�′(k,ω)/∂ω]|ω=f̄k

. np(ωp) is the boson occupation
number.

Vν(q,ωq) is the fluctuation-exchange potential generated by
the spin (ν = 1) and charge (ν = 2) fluctuations: V̄ν(q,ωp) =
(ην/2)U 2χ̄ ′′

ν (q,ωp), where η = 3,1 for spin and charge, re-
spectively. χ̄ν(q,ωp) is the self-energy dressed RPA correlation
functions, which are related to the one-loop particle-hole
polarizability χ̄0

ν as χ̄ν(q,ωp) = χ̄0
ν (q,ωp)/[1 ∓ Uχ̄0

ν (q,ωp)],
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where the ∓ sign is for spin and charge susceptibilities and U is
the renormalized Hubbard interaction. The bare polarizability
with the self-energy correction is defined as

χ̄0
ν (q,ωp) = 1

	BZ

∑
k


ν(k,q,ωp)(f̄k − f̄k+q)

ωp + iδ − ξ̄k+q + ξ̄k
. (3)

In general, in a paramagnetic ground state, the bare bubble
is the same for both spin and charge channels, but once self-
energy is included, these two channels become decoupled since
the corresponding vertex correction 
ν can be different for
them.

Due to the momentum dependence of the self-energy, two
vertex corrections arise: density vertex and current vertex.
Although we are interested in only the density vertex 
ν , it
depends on the current vertex via conservation laws. Thanks
to Ward’s identity, one can obtain an algebraic form of the
density vertex in terms of the self-energy, 
(k,q,ω,ωp) = 1 −
[∂�′(k − q,ω)/∂ω]|(ω−ωp) ≈ Z−1

k−q, if we assume the Fermi-

liquid ansatz �′ ≈ (1 − Z−1
k )ω. With this vertex correction,

one can show that the band dispersion ξ̄k, susceptibility χ̄ , U ,
and the interaction potential V̄ν are renormalized by the same
Z term, and thus, the initial intermediate-coupling theory
remains valid even with the self-energy correction.

We restrict ourselves to the intermediate-coupling scenario
and use U = 2 eV at doping p = 0.12. We note that the
self-energy anisotropy is not directly affected by U since
the anisotropy is dictated by the position of the VHS and
the localized Hubbard bands. The value of U gives only an
overall amplitude shift of the self-energy. Finally, the self-
energy dressed Green’s function in the normal state becomes
G−1 = G−1

0 − �, where � is the total self-energy and G0

is the noninteracting Green’s function. All self-energies are
computed self-consistently with only the real part of the self-
energy in the coherent part of the spectrum (�300 meV), until
the total self-energy converges, as described in Refs. [6,14].

III. RESULTS

A. Momentum-dependent self-energy
and mechanism of the Fermi arc

We start with the discussion of the momentum-dependent
self-energy and mass renormalization. For this discussion
we focus on a particular doping, x ∼ 0.12, where CDW is
dominant, so that we can build a direct link to the following
CDW state later. In Fig. 1, we show the calculation of
the self-energy at various representative momentum values.
We observe a direct correlation between the real (�′) and
imaginary (�′′) parts of the self-energy. As we move closer
to the antinodal region, the slope of �′ increases, and the
mass renormalization Z−1

k = [1 − ∂�′(k,ω)/∂ω]ω=0 is thus
enhanced. Consistently, the frequency dependence of the
imaginary part �′′ also changes from ∼ ω2 (Fermi-liquid-like)
in the nodal region to ω in the antinodal region, which is a
reflection of the marginal Fermi-liquid behavior in the region.
An earlier ARPES study also found an anisotropic scattering
rate (proportional to �′′), changing from quadratic to linear
energy dependence on moving from the nodal to the antinodal
direction [28]. This result is in good agreement with the
k-dependent behavior of our computed self-energy. However,

FIG. 1. Momentum-dependent self-energy for various represen-
tative momenta on the FS as indicated in the inset. (a) Real part �′.
(b) The corresponding imaginary part �′′. We notice that as one
moves towards the antinodal point, the self-energy becomes sharper
with an enhanced renormalization effect. �′′ = 0 at ω = 0 for all
momenta.

�′′(k,0) = 0 for all momenta. This is expected since the self-
energy comes from the particle-hole continuum. Therefore, it
does not contribute to the spectral weight modulation at the
Fermi level; in other words, �′′ does not produce the Fermi arc,
and it comes solely from the momentum-dependent spectral
weight renormalization Zk.

In Fig. 2(a), we present the full momentum-dependent mass
renormalization m∗/mb(k) = 1/Zk, where mb is the noninter-

FIG. 2. (a) k-resolved mass renormalization at the Fermi level at
underdoping p = 0.12. The black solid line gives the corresponding
noninteracting FS. (b) The spectral weight map in the first quadrant
of the BZ with momentum-dependent self-energy. The white line is
the corresponding noninteracting FS. φ is the FS angle with respect
to the zone boundary. The black line in (a) and the white line in
(b) are the same noninteracting band. (c) Calculated spectral weight
map at EF for the momentum-independent self-energy correction.
(d) Experimental FS at the same doping level for Bi2201 (from
Ref. [11]) symmetrized with respect to the zone diagonal direction.
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acting band mass. The black solid line gives the noninteracting
FS, which provides a reference to the k-dependent m∗/mb

values. As mentioned earlier, the strongest contribution to the
renormalization comes from the spin fluctuations between the
VHS region (π,0) and the top of the band lying at (π,π ). We
note that once the self-energy correction is self-consistently
included, it creates incoherent and localized states at the
bottom and top of the bands which are reminiscent of the upper
(UHB) and lower (LHB) Hubbard bands. The low-energy
VHS states near the Fermi level remain coherent and itinerant
[6,17]. As a result, the self-energy dressed spin fluctuation with
which we are concerned is the fluctuation between the itinerant
(at VHS) and localized [at the UHB at (π,π )] states. These
fluctuations at the VHS are observed by resonant-inelastic
x-ray scattering spectroscopy (RIXS) [6]. This is the reason
why the renormalization is strongest along the antinodal region
and then gradually decreases towards the nodal direction. The
momentum profile of m∗/mb is similar in all cuprates, except
that the exact location of its maximum varies slightly between
different materials, which is related to the shape of the VHS
and the doping concentration.

1. Coherent Fermi arc

Next, we return to the discussion of how the momentum
profile of Zk gives a coherent Fermi arc. The low-energy
expansion of the self-energy with respect to the Fermi
energy gives �′(k,ω) ≈ �′(k,0) + (1 − Z−1

k )ω. Substituting
this low-energy self-energy and ignoring its imaginary part
�′′ near the Fermi level, we can write the spectral function as

A(k,ω) = 1

π

−Zk

{ω − Zk[ξk + �′(k,0)]}2 + δ2
k

. (4)

Due to the momentum-dependent self-energy, δ acquires a
small momentum dependence as δk = Zkδ. It is, however,
important to notice that �′(k,0) gives an effective anisotropic
chemical potential shift to the band structure. The chemical
potential μ is recalculated with self-energy to conserve
the particle number. The calculated renormalization value
(averaged over the BZ) comes out to be 0.4, which agrees
well with experiments [29]. We emphasize that despite strong
spectral weight renormalizations across the Brillouin zone,
the spectral function has a well-defined pole at each Fermi
momentum, defined by ξ̄k = Zk[ξk + �′(k,0)] = 0. Again,
since our calculation yields �′′(kF ) = 0, the FS consists
of long-lived quasiparticles despite the k-dependent spectral
weight renormalization, and thus, we distinguish it as a
coherent Fermi arc.

The full self-energy dressed spectral weight map is shown
in Fig. 2(b) at ω = 0 and compared with the corresponding
experimental data [11] in Fig. 2(d). Expectedly, the spectral
weight renormalization reproduces the Fermi arc. Moreover,
the shape of the Fermi arc characteristically deviates from
that of the noninteracting FS [shown by the white line in
Fig. 2(b)]. Along the nodal direction, the Fermi momenta
are shifted inwards, while along the antinodal direction, they
shift outwards. Interestingly, two earlier independent studies
predicted that a single band fitting to the Fermi arc gives
a larger FS area than the doping [30,31]. Our results are
also qualitatively consistent with cluster dynamical mean-field

FIG. 3. (a) The spectral weight maximum is plotted as a function
of FS angle φ for different dopings. (b) A typical phase diagram
of cuprates, considering the AF and SC orders. The green squares
represent doping-dependent spectral weight at the antinodal direction,
and the blue circles give the mass renormalization at the same
Fermi momentum. The inverse of the spectral function and the
corresponding effective mass mimic the same doping dependence
of the pseudogap temperature T ∗.

theory (DMFT) [32] as well as cluster quantum Monte Carlo
calculations [21]. We note that in an earlier FLEX calculation
with momentum-dependent self-energy [33], the authors found
that the self-energy is stronger at the magnetic hot-spot region,
where the FS cuts the magnetic zone boundary. In that
calculation, the dominant source of self-energy comes from
the AF fluctuations at Q = (π,π ), and the calculation did not
incorporate the itinerant-localized spin fluctuation at the VHS.
In our self-consistent scheme, we find the latter is dominant
and thus has a dominant self-energy effect at the antinodal
region and produces the Fermi arc.

2. Doping-dependent Fermi arc and its connection
to the pseudogap physics

Next, we discuss the doping dependence of the spectral
weight modulation for the same cuprate material in Fig. 3(a).
As predicted in earlier calculations, the spectral weight
transfer, gap collapse phenomena, and other features of the
cuprate phase diagram can be quantitatively described with
doping-dependent U [6,34]. We take the same strategy here.
The values of U decrease almost linearly with doping; that
is, when doping increases from p = 0.12 to p = 0.22, the
Coulomb interaction decreases from U = 2.0 to U = 1.4 eV.

We plot AkF
as a function of FS angle φ = tan−1 (ky/kx)

at various dopings in Fig. 3(a). We observe that the spectral
weight is generally lower at the antinodal point (φ = 0),
compared to its value at the nodal point. The angle dependence
is fairly monotonic, expect for a slight dip in A(kF ) near
the magnetic zone boundary, which is due to the presence
of low-energy AF fluctuations in the region. The overall
spectral weight increases with doping, consistent with many
experiments [35], due to the combined effect of the VHS
moving towards the Fermi level and the Hubbard U decreasing
with doping.

While the spectral weight modulation and Fermi arc are
reproduced in the momentum space, the angle-integrated
density of states (DOS) does not exhibit any dip in the Fermi
level (not shown). This means that we have a pseudogap
in the momentum-space spectral function but not in the
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angle-integrated DOS. We compare the spectral weight and
the mass renormalization at the antinodal point as a measure
of the strength of the pseudogap at a given doping. We plot
A(kF ,0) and the effective-mass angle-integrated m∗/mb at
k = (π,0) as a function of doping in Fig. 3(b) and compare
them with the general phase diagram of Bi2201. We observe
that m∗/mb mimics the doping dependence of the pseudogap
temperature. The temperature dependence is, however, not
calculated in this work.

B. CDW

Based on the above-discussed spectral weight properties,
we now demonstrate how the nesting condition changes with
the inclusion of the momentum-dependent self-energy correc-
tion. Traditionally, CDW is assumed to arise from the antinodal
nesting in cuprates [12]. But this condition is modified since
the spectral weight is suppressed in the antinodal point. We
evaluate the bare (one-loop) susceptibility as χ0(q,iωp) =

1
β	BZ

∑
k,n 
(k,q)G(k,iωn)G(k + k,iωn + iωp), where G is

the full self-energy dressed Green’s function and ωn and
ωp are the fermionic and bosonic Matsubara frequencies.
Using the spectral representation of the Green’s function, we
can evaluate the fermionic Matsubara frequency summation
and take the analytical continuity of the bosonic frequency
iωp → ωp + iδ. Hence, we get

χ0(q,ωp) = 1

	BZ

∑
k

∫ ∞

−∞
dω1

∫ ∞

−∞
dω2
(k,q)A(k,ω1)

×A(k + q,ω2 + ωp)
f (ω1) − f (ω2)

ωp + iδ − ω2 + ω1
.

(5)

Here, the spectral weight is defined as A(k,ω) =
−ImG(k,ω)/π . [By substituting the renormalized band ξ̄k
without the imaginary part of the self-energy, we can recover
the bare bubble given in Eq. (3).] We compare the results
of bare-bubble susceptibility and full self-energy dressed
susceptibility in Figs. 4(c) and 4(d) and find characteristic
differences.

The susceptibility shows three characteristic peaks: a strong
peak at the AF wave vector at Q = (π,π ), another at a stripe
wave vector q ∼ (π/4,π/4), and a third at the CDW wave
vector q ∼ (π/4,0),(0,π/4). The AF nesting comes from
the nesting at the magnetic hot spot, while the latter two come
from the antinodal region. Due to the spectral weight loss at the
antinodal point [Fig. 4(a)], the CDW nesting strength is also
substantially reduced. This can be concluded by comparing
the susceptibility without and with self-energy correction in
Figs. 4(c) and 4(d). Moreover, the CDW hot spot is also shifted
from the antinodal region to somewhere below the magnetic
zone, as shown by the arrow in Fig. 4(b).

C. QPI

We can visualize the same CDW nesting vector from the
QPI pattern. Unlike the many-body interaction, the impurity
scattering is dominantly elastic (assuming a large impurity
potential). We calculate the QPI pattern within a single scalar

FIG. 4. Full k-dependent spectral weight maps at the Fermi
level for p = 0.12 (a) without and (b) with self-energy corrections.
Dashed lines depict the magnetic zone boundary. The arrows indicate
the corresponding CDW hot spots. Static charge susceptibility (c)
without and (c) with self-energy correction. The arrows indicate the
CDW wave vector, which is increased in the case of the self-energy
correction, while the intensity is substantially decreased due to the
Fermi arc. (e) and (f) Corresponding QPI maps at ω = 0. Tiny squares
highlight the location of the CDW wave vectors.

impurity approximation as [36]

B(q,iωn) = 1

	BZ
Vimp

∑
k

Im[G(k,iωn)G(k + q,iωn)], (6)

where Vimp is the impurity potential, which is set to 1 here.
Due to elastic scattering, we can simply take the analytical
continuation of the Matsubara frequency iωn → ω + iδ on
both sides. The momentum summation is performed over
the full BZ, but without imposing the reciprocal lattice
boundary conditions, which helps us present the scattering
vectors |q| > π explicitly, as done in experimental Fourier
transformations.
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FIG. 5. (a) QPI profile along the qy = 0 cut for different dopings.
(b) CDW vector as a function of doping without (solid line) and with
(dashed line) self-energy correction, compared with corresponding
experimental data (symbols) for three doping levels, p = 0.12, 0.13,
and 0.145, from Ref. [11]. (c) CDW q vector as a function of ω.
(d) QPI pattern with self-energy at ω = −0.17 eV, near the VHS of
the noninteracting band for p = 0.12.

We calculate the QPI profiles at ω = 0 in the normal state
by using Eq. (6), and the results are shown in Fig. 4 for
p = 0.12 [37]. We focus here on the CDW scattering vector
along q → (π,0) and its equivalent directions, as highlighted
in Figs. 4(e) and 4(f). The QPI map without self-energy
correction is shown in Fig. 4(f). Here, the corresponding CDW
wave vector arises from the FS nesting at the antinodal region,
as shown by the arrow in the corresponding spectral weight
map in Fig. 4(a). As the k-dependent self-energy correction is
included in the calculations, the QPI peaks become broad. Note
that without the momentum dependence in the self-energy, the
QPI map at ω = 0 should not be expected to be broader than its
noninteracting counterpart, as long as �′′(kF ) = 0. The CDW
wave vector also increases here since it now arises from the
enhanced scattering between some non-high-symmetry points
on the Fermi arc (indicated by an arrow). It is also interesting to
note that the Fermi momenta corresponding to the CDW wave
vector do not exactly correspond to the magnetic BZ boundary,
as proposed earlier in the AF pseudogap model [11], but below
the magnetic BZ at the tip of the Fermi arc.

D. First-order-like CDW phase transition with doping

Figure 5(a) gives the QPI values along the qy = 0 direction
for different doping concentrations. Interestingly, at the CDW
wave vector, we see that the QPI value B(q,0) not only
shows a peak but then sharply drops and becomes negative.
Without the self-energy correction, the peak on the positive
side is fairly weak, whereas a clear peak develops as the
self-energy correction is included. Considerably weak doping
dependence of the CDW wave vector occurs with self-energy

correction, compared to its noninteracting value, as shown
in Fig. 5(b). These results are in good agreement with
experimental data (shown by diamonds) [11]. The CDW wave
vector decreases smoothly with doping with and without
self-energy correction. Without self-energy correction, the
CDW wave vector extrapolates to zero at the doping where the
VHS reaches the Fermi level. On the contrary, it should vanish
to zero discontinuously with self-energy corrections. This is
because, in the latter case, the scattering hot spot lies away from
the antinodal region. Therefore, even when the VHS reaches
the Fermi level, where the antinodal Fermi momentum just
approaches k = (π,0), the CDW hot spot still lies below the
antinodal point, and the corresponding scattering wave vector
remains finite. Above this doping, the FS topology changes
to electronlike, and the pseudogap and the CDW wave vector
both vanish. This result implies that within the present model,
the CDW phase transition as a function of doping is first order.
This result is demonstrated in Fig. 5(c), which shows the CDW
wave vector as a function of ω until the VHS point for the
noninteracting band when q → 0. However, with self-energy
correction, the q vector is still finite. Figure 5(d) shows
that the QPI pattern dressed by self-energy at ω = −0.17 eV
(where the VHS is approaching ω) is very different than
the case with ω = 0 presented in Fig. 4(f). Notably, recent
transport measurements exhibited the existence of a sharp,
first-order-like phase transition of the pseudogap phenomena
around the optimal doping in YBa2Cu3O7−δ (YBCO) [38] and
in La(1.6−x)Nd0.4SrxCuO4 (Nd-LSCO) [39], which is similar
to what we predict in Fig. 5(c).

IV. DISCUSSION AND CONCLUSION

Here, we highlight some of the aspects of the MRDF model
and the results.

(i) The MRDF method is very similar to Hedin’s equations
for self-energy calculation using density-density fluctuations
[25]. Different approximations are usually distinguished by
different models, such as FLEX [40] and GW methods [41,42].
In the FLEX approach [40], one calculates the single-particle
Green’s function self-consistently but not the two-particle one.
However, in the GW approach, one often neglects the vertex
correction or uses a quasiparticle-GW approximation [42].
In our approach, we have calculated both the single-particle
Green’s function and the density-density correlation function
by including the self-energy correction. A Bethe-Salpeter
vertex correction is included within Ward’s identity to maintain
the f -sum rules [26].

The self-energy calculation often suggests a perturbative
treatment of the interaction terms. The method is valid up to the
intermediate-coupling regime, where the correlation energy
is of the order of the kinetic energy. There is an increasing
consensus that cuprates lie in the intermediate-coupling
regime, at least in the finite-doping range. We have shown
that the intermediate-coupling range remains intact even with
the self-energy correction in the fluctuation-exchange potential
V . As we discussed in Sec. II, this is ensured by the vertex
correction. With the Ward identity being taken into account,
we observed that both the kinetic energy ξ̄k and the potential
energy V̄ are renormalized by the same renormalization factor
Z, ensuring their ratio is W/U � 1. This ensures that the
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method maintains the intermediate coupling strength and also
follows the f -sum rule, an important internal check for the
self-energy calculations.

(ii) Momentum-dependent self-energy was calculated ear-
lier with a variety of methods. Usually, with cluster DMFT
and dynamical cluster approximation [43], the momentum-
dependent calculation is done in small clusters, and the
results are in general agreement with ours. FLEX and GW
methods, which can retain the full spectrum of the correlation
potential, can account for the full momentum dependence of
the self-energy [15,17,33,44]. In an earlier FLEX calculation
[33], it was found that the self-energy effect is maximum at the
AF hot spot, rather than at the antinodal points. The apparent
discrepancy between the FLEX method and our MRDF
method arises from how the spin-fluctuation potential is
treated. Spin fluctuation have multiple high-intensity regions.
At the AF wave vector Q = (π,π ), magnon modes appear in
the very low energy region (∼70 meV) due to the nesting across
the AF hot spot. The AF fluctuation usually dies off faster with
doping in cuprates and does not contribute much beyond x >

5%–7% doping [3]. Here, the dominant self-energy correction
comes from the high-energy spin fluctuations, or paramagnons,
which arise from the fluctuation between the itinerant and
localized densities. These fluctuations lie in the antinodal
region and dominate at the optimal dopings where the VHS
reaches the Fermi level. The present self-energy mainly stems
from the VHS fluctuations and therefore causes the Fermi arc.
The Fermi arc arises solely from the momentum-dependent
mass renormalization Zk since the imaginary part �′′ is zero
at ω = 0 at all momenta. This means, even in the Fermi arc,
there is a well-defined pole at all momenta, but the spectral
weight is modulated by Zk. The lost spectral weight in the
antinodal region is transferred to the high-energy Hubbard
bands via the above-mentioned spin-fluctuation channels. The
frequency-dependent DOS shows three characteristic peaks:

LHBs and UHBs just outside the noninteracting band edges
and a coherent, itinerant peak at the VHS. The self-energy
is analytic at all momenta and frequencies, and the coherent
Fermi arc feature does not show up as any dip in the DOS at
the Fermi level.

(iii) As noted in Sec. III, the Fermi arc feature gradually
disappears near the optimal doping. However, as the CDW
arises from the nesting below the magnetic zone boundary, the
corresponding CDW wave vector remains finite (see Fig. 5)
and sharply drops to zero as the VHS crosses above the Fermi
level. This apparently drives a first-order-like discontinuous
phase transition of the CDW state, as also seen in YBCO [38]
and in Nd-LSCO [39]. This result is in sharp contrast to the
usual hot-spot scenario, in which the hole pocket ends at the
magnetic zone boundary. We find that the CDW hot spot is
also not at the AF zone boundary, in contrast to the AF model
of the hole-pocket scenario.

The pseudogap feature, however, smoothly vanishes when
the VHS crosses the Fermi level upon doping, which is
seemingly consistent with some existing experimental data
for different cuprate compounds [45,46]. As temperature
increases, we expect that no sharp phase transition will occur
for the pseudogap state, and only the spectral weight is
gradually transferred from the nodal region to the antinodal
one. Consistently, the strange metal phase of the hole-doped
cuprates at the optimal doping, without a phase transition, is
also presented in a large number of measurements [3].
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