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Implications of the DFT+U method on polaron properties in energy materials

Zi Wang,1,* Casey Brock,2 Amina Matt,3 and Kirk H. Bevan1

1Materials Engineering, McGill University, Montréal, Québec, H3A 0C5, Canada
2Materials Science, Vanderbilt University, Nashville, Tennessee 37235, USA

3Institute of Materials, École polytechnique fédérale de Lausanne, 1015 Lausanne, Switzerland
(Received 15 June 2017; revised manuscript received 7 September 2017; published 26 September 2017)

To model polaronic behavior in strongly correlated transition-metal oxides with ab initio methods, one typically
requires a level of theory beyond that of local density or general gradient density functional theory (DFT)
approximations to account for the strongly correlated d-shell interactions of transition-metal oxides. In the
present work, we utilize density functional theory with additional on-site Hubbard corrections (DFT+U ) to
calculate polaronic properties in two lithium ion battery cathode materials, LixFePO4 and LixMn2O4, and two
photocatalytic materials, TiO2 and Fe2O3. We investigate the effects of the +U on-site projection on polaronic
properties. Through systematic comparison with hybrid functional calculations, it is shown that +U projection
in these model materials can impact upon the band gap, polaronic hopping barrier, and polaronic eigenstate offset
from the band edges in a nontrivial manner. These properties are shown to have varying degrees of coupling
and dependence on the +U projection in each example material studied, which has important implications for
arriving at systematic material predictions of polaronic properties in transition-metal oxides.
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I. INTRODUCTION

Many novel materials used in clean energy applications
such as lithium ion batteries [1], photovoltaics [2], and
catalysts [3] are transition-metal oxides (TMOs) and are
known to exhibit polaronic behavior [4]. In many such TMOs,
the strongly correlated interactions of the d-shell electrons
open a gap and localize d-state conduction electrons into
atomiclike orbitals. The localized spatial distribution of these
electrons leads to further self-trapping through interaction
with the surrounding lattice, turning them into polaronic
states. Typical local density approximations and generalized
gradient approximations (LDA and GGA) calculations greatly
underestimate these correlation effects [5,6] leading not only to
incorrect predictions for the band gap [7], but also an inability
to form polarons on transition-metal (TM) sites that arise
from these strongly correlated interactions [8]. As such, we
require additional corrections to account for these deficiencies
in standard LDA/GGA to accurately study polaronic behavior
in TMOs. Therefore, in order to further our understanding
of such materials for existing and future energy applica-
tions, we should strive to accurately model this polaronic
behavior.

Density functional theory with on-site Hubbard corrections
(DFT+U ) [9–11] is widely used to calculate the electronic
properties of, among other materials, transition-metal oxides
where correlation plays a large role in its electronic structure.
The missing correlation effects in standard LDA/GGA are
accounted for by adding an on-site Coulomb repulsion term
to specific projected atomic orbitals. Typically, the value
of U is either chosen to match an experimental property
such as the band gap [7], or obtained from constrained
LDA/GGA calculations [12,13]. Additionally, this value of U

should also correct for the self-interaction error (SIE) typical
of semilocal LDA/GGA functionals by restoring piecewise
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linearity of the total energy as a function of fractional
occupation [14,15]. Coupled with plane-wave pseudopoten-
tial formalisms, most notably the highly popular projector
augmented wave (PAW) [16,17] method, DFT+U has been
highly successful in reproducing many properties of such
correlated materials at minimal added computational cost.
While in principle, DFT+U may add a single parameter to an
otherwise ab initio calculation in much the same spirit as the
fraction α of exact exchange in hybrid functionals [18], its local
orbital-dependent functional necessitates further parameters,
most notably the projection radius, when transforming to
on-site atomic orbitals. It has been shown before that this
projection radius can significantly affect the system, especially
in self-consistent calculations of U [13,19–23]. Effects on
localized electronic properties such as polaronic properties
are less well studied.

In the PAW formalism, the DFT+U projection radius is
conveniently equated to the augmentation radius (rPAW) [19].
Typically, there are multiple ways to construct a PAW potential
depending on how many semicore electrons are included in
the valence, and it is physically justified for the PAW core
radius to also vary based on the valency (more electrons
in the core lead to a larger core radius). In principle, one
would always use a small core PAW potential with semicore
electrons included in the valence for higher precision, although
this incurs a computational cost from the additional electrons
and larger basis set. However, the DFT+U projection radius
changes as well, impacting electronic properties that are
dependent on the U term. This makes the choice of U more
ambiguous [13,19–23].

In this paper, we investigate the effects of DFT+U

projection radius and semicore electrons on TM-centered
polarons in a set of energy materials that are known to exhibit
polaronic behavior and focus on polaronic properties in these
materials as illustrated in Fig. 1. The materials studied are rutile
TiO2, Fe2O3 (hematite), LiFePO4, its delithiated form FePO4,
and spinel MnO2. TiO2 and Fe2O3 are materials considered
for photocatalytic applications [2,24], while LixFePO4 and
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FIG. 1. Schematic of the radial charge density distribution (ρ)
of a polaronic state taken from Fe2O3, centered at the TM site
on which the polaron is localized. rO is the average metal-oxygen
bond length, while in this example, rFe8 and rFe16 correspond to two
different cutoff radii (rPAW) of a large core Fe potential (rPAW = 2.3 a0)
with eight valence electrons, and a small core Fe potential (rPAW =
1.9 a0) with 16 valence electrons, respectively. These are also drawn
approximately on the MO6 octahedral complex, which is cut out from
the Fe2O3 solid. Other materials show similar behavior.

LixMn2O4 are utilized within current and next-generation
lithium ion batteries [1,25].

Our previous DFT+U work on FePO4 has shown that the
choice of PAW potential significantly affected the calculated
polaron activation energy [26]. Here, not only do we study
additional materials, we also include additional comparative
HSE06 calculations [6,18,27]. We can separate the contribu-
tions from the projection radius and semicore electrons by
comparing the results of both DFT+U and HSE06 methods,
as the exact exchange is calculated everywhere in HSE06
calculations as opposed to the local U term, which acts
only within the projection radius in DFT+U calculations. By
conducting such a comprehensive study, we hope to establish
a precedent on how to approach polaronic calculations in such
a way that consistent results and predictions become more
attainable.

II. THEORY

The implementation of DFT+U that we use is a simplified,
first-order approximation [28] to the general formulation
[9–11], and adds a term to the total energy as follows [28]:

EDFT+U = EDFT + Ueff

2

∑
t,σ

(∑
m

nt,σ
m,m −

∑
m,m′

n
t,σ
m,m′ n

t,σ
m′,m

)
,

(1)

where the sum of the orbital-projected density matrices (DMs)
n

t,σ
m,m′ is taken over spins σ and atomic sites t . This description

depends only on Ueff ≡ U − J and combines the screened
Coulomb U and exchange J terms into a single effective
parameter Ueff. We will label this as just U for the remainder

of the paper and equate J to 0. It can be shown [29] that this
term effects a separation between the occupied and unoccupied
one-electron energy levels of the on-site orbitals according to

εl
DFT+U(N ) = εl

DFT(N ) ± U

2
, (2)

where N = ∑
ni is the total number of on-site electrons with

angular momentum l (e.g., the d electrons for transition metals)
and the sign corresponding to a one-electron energy level
increase for unoccupied levels and an energy level decrease for
occupied levels with angular momentum l. This localization
effect can also be deduced from the form of Eq. (1), which is
quadratic in occupancy and favors idempotency of the on-site
occupancy matrix n

t,σ
m,m′ , as the U term will then be minimized

(zero). If the system is Mott-Hubbard (MH)-like, the result
will be an opening or widening of the d-d band gap. If the
system is more charge-transfer (CT)-like, the effect will not
be as strong, since one band edge (typically the p-hybridized
valence band) will not be affected by this d-d split.

The on-site density matrix n
t,σ
m,m′ is calculated from a

projection of the crystal wave function � onto a set of local
orbitals where the on-site coulomb repulsion is expected to
take place (typically the d or f orbitals) [19,30,31]:

n
t,σ
m,m′ =

∑
n,k

f σ
n,k

〈
�σ

n,k|P t
m,m′ |�σ

n,k

〉
, (3)

where f σ
n,k is the Fermi distribution. The projection operators

P t
m,m′ are defined as [19,30,31]

P t
m,m′ (r,r′) = θ�t

(r)δ(|r′ − Rt | − |r − Rt |)Yl,m(r̂)Y ∗
l,m′(r̂′),

(4)

where Yl,m( ̂r − Rt) is the spherical harmonic of the specific
orbital (typically d or f ), and θ�t

(r) is 1 for |r − Rt| < rt
c and

zero everywhere else. Crucially, this step function θ�t
(r) is a

hard cutoff determined by rt
c , which in the PAW formalism is

equal to the PAW augmentation radius rPAW [19,31]. Typical
PAW augmentation radii for 3d transition metals (TMs) range
from 1.9 a0 to 2.8 a0 [16] and usually follow the same trend as
the elements’ ionic radii (decreasing with increasing element
number), but can also be modified by inclusion or exclusion
of semicore electrons. The 3d atomic orbitals tend to have
a peak near r = a0, however, their tails can fall off rather
slowly. Therefore, for example, in the case of Fe, a rPAW of
1.9 a0 for a potential with 16 valence electrons could result
in a significantly different projected occupation compared to
a rPAW of 2.3 a0 for a potential with eight electrons. As the
energy term is quadratically dependent on this projection, we
believe that this warrants further investigation.

Naturally, the main question of any DFT+U implemen-
tation is determining a value of U that is appropriate for
the particular system being studied. In theory, this is a
single parameter (two if the screened exchange term J is
included in higher-order implementations [9–11]); but as
shown previously, the implementation of a local orbital-
dependent functional necessitates further parameters that are
mostly numerical in nature. In our case, this additional
parameter would be the projection radius rPAW. As shown
before in previous studies [13,19–23], the dependence on other
parameters leads to ambiguities when utilizing constrained
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DFT techniques [12,13] to self-consistently calculate a value
for U , as the resulting value was shown to vary greatly
depending on both the projection radius and the basis set
used. These ambiguities therefore lend more credence to the
contrasting viewpoint of U as an empirical parameter that we
can use to fit experimentally measured properties [7,20,21,32],
most commonly the band gap. Apart from the band gap, there
are of course many other quantities that we can fit U to match,
with examples being unit cell volumes/bulk moduli, reaction
enthalpies, and polaronic properties such as the location of the
polaronic gap state within the band gap.

To put the choice of U on a more fundamental footing,
we point out one property of an exact density functional:
the piecewise linearity of the total energy as a function of
fractional occupation [14,15]. This linearity is lost in semilocal
LDA/GGA [33] due to self-interaction errors and results in the
favoring of charge delocalization. The DFT+U method works
to correct this SIE and restore piecewise linearity, provided
that the value for U is consistent. Hybrid functionals provide a
similar SIE correction with a consistent value for α. Polaronic
systems provide a convenient way to verify this criterion of
linearity as we can vary the fractional charge on a polaronic site
in a straightforward manner [33–37]. The introduction of the
projection radius as a secondary parameter raises the question
of whether this influences linearity in addition to the value of
the main parameter (be it U or α).

Hybrid functionals [18,27] could be seen as more versatile
and consistent as the fraction of exact exchange α is less
system dependent and applies to all orbitals as opposed to
DFT+U , which only treats a selected on-site orbital. This
allows for treatment of correlation effects in orbitals that are
more hybridized and do not project adequately onto pure
atomic states [38] as well as an occupancy agnostic treatment
for systems that are more CT-like such as TiO2 [39]. This is
in contrast to DFT+U , where the effect of the functional and
hence the value for U depends on the occupancy of the on-site
orbital [13]. These advantages are at the expense of a one
to two orders of magnitude increase in computational effort
required.

Analogous to the DFT+U method, hybrid functionals rely
on a single parameter α, which is the fraction of exact ex-
change that is mixed together with the LSDA/GGA semilocal
exchange energy. The effect on strongly correlated materials
can be seen as an effective U term acting indiscriminately on
all orbitals, both local and nonlocal [18]. On one hand this can
be seen as more elegant and closer to the spirit of ab initio
calculations, requiring a single parameter that is typically set
at a system-independent value (typically 25% for the PBE0
functional [6] and its screened variant HSE06 [27]), but on
the other hand it is not a perfect functional, and there are
systems where the higher tunability of DFT+U leads to results
that are in better agreement with experiments, an example of
which (hematite) will be further investigated in this study. A
link between DFT+U and hybrid functionals, as the projected
on-site part of the exact exchange, has been shown earlier [40].
In this work, we mainly utilize the HSE06 functional as a
means to circumvent the dependence on rPAW as both local and
nonlocal exact exchanges are treated equally, so we can study
the influence of semicore electrons as an independent variable.
Assuming that these effects are comparable in DFT+U and

TABLE I. List of the potentials used in this study with their differ-
ent valencies and PAW augmentation radii rPAW. Other differences in
PAW construction, which are most notable between GW and non-GW
potentials, are not shown here.

Zval rPAW (a.u.)

Ti 4 2.8
Ti_pv 10 2.5
Ti_sv 12 2.3
Ti_sv_GW 12 2.0
Ti_h 12 1.9
Mn 7 2.3
Mn_pv 13 2.3
Mn_sv_GW 15 2.0
Mn_sv 15 1.95
Fe 8 2.3
Fe_pv 14 2.2
Fe_sv_GW 16 2.0
Fe_sv 16 1.9

subtracting them from our DFT+U results, we can then in turn
study solely the effects of changing rPAW in DFT+U .

III. METHOD

All calculations were done in the Vienna ab initio software
package (VASP) [41] using the PBE-GGA semilocal func-
tional [42] within the PAW formalism [16,17]. We utilized
this package for our study because its PAW potentials are
generally the most utilized by the ab initio strongly correlated
electronic structure community. However, the general trends
explored should be applicable to all DFT+U implementations.
Correlations were treated with both DFT+U [10,19,31] and
HSE06 [18,27] methods. The set of PAW potentials [16]
studied was provided and included within VASP. All ionic po-
sitions were relaxed until interatomic forces were smaller than
0.005 eV/Å for volume and intrinsic structure calculations,
and 0.01 eV/Å for polaron supercell calculations. To form
a polaron we added an extra electron to the supercell (com-
pensated by a uniform opposite background charge to maintain
charge neutrality) and manually distorted the geometry around
a TM site to break symmetry and induce polaron formation
at that particular site [26]. For a hole polaron in LiFePO4,
we removed an electron and distorted the geometry in the
opposite direction (i.e., we contracted the local FeO6 bonds).
For structural relaxations, the PAW potential with the smallest
radius was used except for LiFePO4 (see Table I), in which case
the large core Fe potential was used due to issues described
in the LiFePO4 results section. We calculated separate sets
of structures for both DFT+U and HSE06. We performed
polaron calculations in supercells deemed large enough to
contain the defect, and all polaron hopping barriers were
calculated by relaxing the transition state with the CI-NEB
method [43]. A Gaussian smearing of 0.02 eV was used in
all cases, but increased to 0.05 eV for displaying density of
states (DOS) results. For rutile TiO2, a 2 × 2 × 3 supercell
(24 formula units) was used for the polaron calculations
with a 2 × 2 × 2 Monkhorst-Pack k-point scheme. For Fe2O3,
we used a supercell consisting of 2 × 2 × 1 hexagonal unit
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cells (24 formula units), with only 
-point sampling in the
reciprocal space. A 1 × 2 × 2 supercell (16 formula units)
with 
-point sampling was used for FePO4 and LiFePO4, and
for spinel MnO2 the cubic cell with 16 formula units was used
with a 2 × 2 × 2 Monkhorst-Pack k-point scheme. Values used
for Ueff are 4.2 eV for TiO2 [32], 4.3 eV for FP/LFP [8] and
Fe2O3 [44], and 4.5 eV for MnO2 [45].

After relaxing all the required structures, we then calculated
the properties with a set of PAW potentials supplied by
VASP [16], of which the valencies and augmentation radii are
listed in Table I. These include the standard potentials without
semicore electrons (labeled “X”), potentials with 3p electrons
(labeled “X_pv”), and potentials with 3s and 3p electrons
(labeled “X_sv”). For Ti, we included an additional hard
potential (“Ti_h”) with an even smaller core radius. We also
included the latest (2015) PAW potentials that are optimized
for GW calculations (labeled “X_sv_GW”), but are also seen
as generally more accurate [46]. Results with these potentials
might deviate slightly from the expected trends due to their
different construction as they have more projectors and empty
valence states.

The properties that we have studied are the band gap Eg ,
the polaron gap state Ep, the polaron formation energy Eform,
and the bulk polaron hopping barrier (activation energy) Ea .
We define the band gap Eg = EC − EV as the difference
between the conduction band minimum (CBM) and valence
band maximum (VBM). We take the polaron gap state energy
Ep relative to the CBM. The formation energy is calculated
as the difference between the localized polaronic ground state
and the initial, undistorted state Eform = EPOL − EINT, and
the activation energy Ea is the hopping barrier, which is the
difference between the transition-state (TS) and ground-state
total energies Ea = ETS − EPOL.

We verified the condition of linearity by varying the
additional charge between 0 and 1 on a polaronic site using
the polaronic ground state as our input structure [33,36]. For
hole polarons in LiFePO4, we varied this charge between −1
and 0. As these calculations are total energy comparisons, we
applied corrections for the unphysical electrostatic interactions
between the image charges of finite-sized supercells [47,48].

For additional comparison, we also performed polaron
hopping barrier Ea calculations with the plane-wave DFT code
ABINIT [49,50], using the same structures and parameters as
in the VASP calculations. The DFT+U projection scheme in
ABINIT [51] differs slightly from the one used in VASP [19],
leading to different calculated trends. For further details we
refer to the Supplemental Material [52].

IV. RESULTS

In this section we list our computed properties for each
material (rutile TiO2, Fe2O3, (Li)FePO4, and spinel MnO2),
comparing them to earlier calculations and experimental
measurements if available. We also provide extensive analysis
on the calculated trends in these materials, followed by a more
in-depth analysis of the projection radius in Sec. V. We then
recap our analysis and provide a general assessment of these
trends in Sec. VI. Full data sets of our calculations are included
in the Supplemental Material [52].
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FIG. 2. TiO2 orbital projected DOS of the polaronic ground state.
Inset: Real-space radial charge distribution of the polaronic state.

A. TiO2

Titanium dioxide in its rutile form has a measured band
gap of 3 eV [56]. Further experimental results [57] indicate a
polaronic surface state in the band gap that is approximately
0.7 ± 0.1 eV below the CBM. While we cannot directly
relate a surface state to one calculated in the bulk material,
they still arise from the same physical origin of strong
d-orbital correlations and we should be able to connect the
two qualitatively.

From a chemical point of view, the Ti atoms are stripped
of all their valence electrons leaving them in a d0 state. This
leads to TiO2 being a strong CT insulator, with the valence band
dominated by completely filled O 2p states, and the conduction
band having Ti 3d character as shown in the projected DOS
plot in Fig. 2. From this alone we can already argue that
the DFT+U formalism should be insufficient as the U term
acts upon localized electrons with atomiclike d character, of
which there are formally none in this material. Its resulting
effect on the band gap should therefore be small, as has been
calculated in previous DFT+U works [39,58]. As the projected
3d occupations inside the Ti spheres are still nonzero due to
hybridization and nonorthogonality of other states entering the
sphere (and can even be larger than 2 for large spheres [58]),
the orbital dependent U term will still act on these unphysical
nonzero occupations, and this could lead to uncontrollable
results [21]. We therefore expect that a hybrid functional such
as HSE06 would fare better here as it is independent of both
orbitals and their occupancies.

Figure 2 shows the projected DOS of TiO2, with one
additional electron localized in a polaronic state. Calculations
with DFT+U and HSE06 are qualitatively very similar, so we
only show the DFT+U calculations here. The valence band
consists entirely of p states, while the conduction band is fully
d-like. The band gap Eg is defined as the energy difference
between the lowest unoccupied state (CBM) and the highest
occupied state (VBM), and the polaronic state Ep is defined
relative to the CBM. According to the PDOS, this polaronic
state is almost entirely of d-orbital character, which is also
confirmed by the radial charge density plot in the inset of
Fig. 2, showing behavior that is similar to an atomic 3d orbital.
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Figure 3 shows the band gap and polaron properties
calculated with both DFT+U (U = 4.2 eV [32]) and HSE06
(α = 0.25) methods while varying the Ti PAW potential.
From the HSE06 plot in Fig. 3(a), which does not depend
on projection radius, we see that the band gap incurs a
slight increase with an increase in valence electrons (4 for
rPAW = 2.8, 10 for rPAW = 2.5, and 12 for rPAW � 2.3). The
different rPAW of the three 12 electron potentials do not
seem to affect the HSE06 results in any significant way. In
comparison, the DFT+U plot in Fig. 3(a) shows a smaller
increase of the gap with an increase in valence electrons,
peaking at rPAW = 2.3 and then decreasing as we further
decrease rPAW. We can see that increasing the number of
valence electrons has an effect similar to the HSE06 results,
while there is an additional superimposed contribution from
the different DFT+U projections, although it is not as drastic
as the theory would suggest. We attribute this to the valence
band being entirely of O 2p character, where the splitting
from the DFT+U 3d projection has little effect. Furthermore,
the increase in the number of semicore electrons leads to
a slight increase of the gap, and the two effects somewhat
cancel each other out. However, the position of the polaron
state is influenced dramatically as seen in Fig. 3(b). As rPAW

decreases, the distance between the polaron state and the
CBM becomes smaller and smaller for DFT+U , while the
HSE06 results are insensitive to the choice of rPAW. This can
be attributed to the DFT+U projection of the polaron state,
which is almost entirely of Ti 3d character and therefore is
highly sensitive to the projection radius. Similar trends can be
seen from the formation and activation energies in Figs. 3(c)
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FIG. 4. Deviation from linearity as a function of fractional charge
in TiO2. rPAW and the number of valence electrons are listed for
each PAW potential. U = 4.2 eV and α = 25% in all DFT+U

(solid upright triangles) and HSE06 (hollow inverted triangles) cases,
respectively.

and 3(d), with the DFT+U results being highly sensitive to
rPAW and the HSE06 results being affected mostly by the
difference in valence electrons, but relatively less so. From the
DFT+U results in Fig. 3, we can see a relationship between
the polaronic properties (formation and activation energies)
and the position of the polaron within the band gap (vs.
CBM). Qualitatively this makes sense, as the distance to the
conduction band will determine how strong the self-trapping
and hopping energies are.

Figure 4 shows the piecewise linearity in TiO2 plotted
with both DFT+U and HSE06. These results show the strong
dependence of the calculated properties on rPAW with DFT+U ,
in contrast to the weak dependence on semicore valence
electrons of the calculated properties with HSE06. These
results suggest a slightly increased α to be more consistent
for HSE06 calculations, and either the rPAW = 2.3 a0 or the
rPAW = 2.0 a0 potential to be the most consistent for DFT+U

calculations in this material.
For TiO2, it seems that HSE06 results are much more

consistent as a function of varying PAW potential, and that
there is a wide variance in our DFT+U results depending
mainly on which projection radius is used. Combined with
the unphysical behavior of DFT+U in d0 materials, we
conclude that HSE06 obtains more consistent results for TiO2.
Finally, comparing to experimental measurements, the HSE06
results for the band gap (experiment: 3 eV) and polaron state
(experiment: 0.7 eV from CBM) seem to be about 0.6 eV and
0.3 eV off, respectively.

In order to improve the consistency of our prediction of
the polaron hopping barrier, we can offer suggestions from
two contrasting points of view. First, it seems plausible to
slightly reduce the mixing factor α to better match the band
gap and polaron state with experimental results for TiO2,
thereby possibly improving the prediction of the hopping
barrier. However, this suggestion is at variance if we consider
the property of piecewise linearity (Fig. 4) that our functional
needs to adhere to. To maintain consistency from the ab initio
point of view, it is suggested rather to slightly increase α

to maintain this piecewise linearity. As neither DFT+U nor
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FIG. 5. Fe2O3 orbital projected DOS of the polaronic ground
state. Inset: Real-space radial charge distribution of the polaronic
state.

HSE06 are exact functionals, we should not expect either of
them to produce results that can be quantitatively compared to
all measurable material properties.

B. Fe2O3 (hematite)

For hematite, experimental data is available for three rele-
vant characteristics, with the band gap measured at 2 eV [59],
the polaron state with respect to the CBM at 0.7 eV [60], and
the polaronic activation energy at 120 meV [60]. Additionally,
the activation energy has been calculated at 130–150 meV in
a previous DFT+U study [44], showing close correspondence
to the experimental value. This makes hematite an ideal case
to focus our computational study on.

Figure 5 shows the projected DOS as well as the real-space
radial charge density plot of the polaronic state. As Fe3+ is in
a high spin d5 state, adding an extra electron will send it to the
minority spin channel turning it into d6 Fe2+. The electronic
properties in Fig. 6 show that DFT+U calculations with all
potentials reproduce the band gap quite well, although the
polaronic properties vary wildly per potential. These trends
are quite comparable to the situation in TiO2. The potential
that achieves the best comparison of the activation barrier to
experiment is the large core potential (rPAW = 2.3 a0) with
eight valence electrons largely due to its larger projection
radius, although the rPAW = 2.0 a0 potential with 16 valence
electrons comes closest to reproducing the polaron gap state.

In contrast to our TiO2 results, the HSE06 method seems
to fare worse in hematite compared to DFT+U . While the
results are more consistent between different potentials and
show expected trends with respect to semicore electrons,
the standard mixing fraction of 25% overestimates the band
gap to 3.5 eV in all cases as shown in Fig. 6(a). When
setting α to 12% to obtain a better band gap compared
with experiment [61], we were unable to localize a polaron
in Fe2O3, contrary to experimental evidence. The convex
behavior shown in Fig. 7 corroborates these results. Using
the standard α = 25% for polaron calculations, which does
allow polaron formation, we then obtained very low activation
energies of 15 meV at rPAW = 1.9 a0, going down to almost
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0 meV for the rPAW = 2.3 a0 potential. Therefore, it seems
that for this material, DFT+U reproduces experimental results
better, although careful attention is required concerning the
projection radius.

Figure 7 shows the piecewise linearity calculations for both
α = 25% and α = 12% in HSE06, as well as the DFT+U

calculations. Once again, the HSE06 calculations are far more
consistent compared to the DFT+U calculations with respect
to rPAW. Here, we see the pitfall of choosing a parameter to fit
the band gap [61], as choosing α = 12% leads to a stronger
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FIG. 7. Deviation from linearity as a function of fractional charge
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PAW potential. U = 4.3 eV in all DFT+U calculations (solid upright
triangles), and the two sets of HSE06 calculations are done with
α = 25% (hollow inverted triangles) and α = 12% (hollow squares).
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FIG. 8. FePO4 orbital projected DOS of the polaronic ground
state. Inset: Real-space radial charge distribution of the polaronic
state.

underbinding compared to α = 25%, which results in a more
consistent behavior for linearity in Fe2O3. For this material,
the rPAW = 2.2 a0 potential seems the most consistent one for
DFT+U , in contrast to the more accurate barrier calculated
with the rPAW = 2.3 a0 potential compared to experiment [60].

C. FePO4 and LiFePO4 (LFP)

As it is challenging to synthesize a fully delithiated sample
of LiFePO4 (FePO4), we will compare our results to a previous
computational study [8,38], reproducing their results with the
large core Fe potential (rPAW = 2.3 a0) while adding more
insight by including the other potentials as well as the HSE06
method. Figure 9 shows the results of this study, with all results
following the trends as noted before; HSE06 results being
dependent on mostly the number of electrons and DFT+U

results showing a mostly downward trend with decreasing
radius. The two main differences are that HSE06 calculations
lead to a much larger band gap and a smaller polaron formation
energy.

For LiFePO4 in its fully lithiated phase, the experimental
band gap has been measured at ∼4 eV [7], while not much
polaron information is available as the mobile Li+ ions seem
to form the rate limiting factor for conductivity measurements
with their significantly higher diffusion barriers [8,62,63].
From the projected DOS in Fig. 10 we can see a significant
qualitative difference between this material and the other
materials studied. The Fe2+ peak is the highest occupied state,
but it is localized and separated from the usual delocalized
O 2p/Fe 3d hybridized valence band present in FePO4 as
shown in Fig. 8, making this material a true Mott-Hubbard
insulator. From a FePO4 perspective, LiFePO4 could also
be described as being fully saturated with polarons that are
charge transferred from the Li+ ions. We therefore have two
definitions of a band gap in this material, depending on how
we define this Fe2+ state. One definition is the delocalized
CBM-delocalized VBM [labeled “CB - VB” in Fig. 11(a)], and
the second one will be the traditional CBM-zero temperature
EF definition [labeled as “C - 2+” in Fig. 11(a)]. We can see
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FIG. 9. Calculated electronic properties of FePO4 with DFT+U

and HSE06 using different PAW potentials. (a) Band gap Eg; (b)
polaronic gap state Ep; (c) formation energy Eform; (d) polaronic
hopping barrier Ea .

how the DFT+U projection comes into play for these two
definitions in Fig. 11, with the “CB - VB” gap near constant
and the traditional “CB - 2+” gap being strongly dependent
on the potential used. This further clarifies our definition of
the 2+ state as being polaronlike, as it is a pure Mott-Hubbard
state and therefore highly sensitive to the projection radius.
Furthermore, the empty hole polaron state above the Fermi
energy retains the same position from both the CBM and
the delocalized VBM. Thus, the only state that moves when
changing the DFT+U projection radius is the 2+ state. For
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FIG. 10. LiFePO4 orbital projected DOS of the polaronic ground
state. Inset: Real-space radial charge distribution of the polaronic
state.
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HSE06, both gaps remain unchanged, which again shows that
the polaron state is preserved in HSE regardless of which PAW
radius we choose as shown in Fig. 11(a). Here once again, HSE
produces much more consistent gap states and barriers solely
due to the fact that it is not dependent on a projection radius,
although it again consistently calculates much higher band
gaps.

Figures 12 and 13 show our piecewise linearity calculations
in FePO4 and LiFePO4. In both cases, both U = 4.3 eV and
α = 25% are too low to restore piecewise linearity in these ma-
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FIG. 12. Deviation from linearity as a function of fractional
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for each PAW potential. U = 4.3 eV and α = 25% in all DFT+U

(solid upright triangles) and HSE06 (hollow inverted triangles) cases,
respectively.
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terials. To maintain consistency within the respective methods,
it therefore seems necessary to increase U and α regardless
of potential used (see also the additional calculations in the
Supplemental Material [52]).

The FePO4 results are quite in line with the other materials.
LiFePO4 is strongly Mott-Hubbard-like, subsequently leading
to stronger rPAW effects in even the DFT+U calculated
band gap. Also uniquely for LiFePO4, we were unable to
localize a hole polaron in DFT+U with the 16-electron
small core potential (rPAW = 1.9 a0), and as such all structural
calculations were done with the eight-electron, rPAW = 2.3 a0

potential. This can be clearly explained from the formation
energy in Fig. 11, which becomes nearly zero (20 meV) as well
as lower than the activation barrier as rPAW is lowered. This
20 meV formation energy would lead to thermal excitations
being able to easily delocalize the state, as well as band
conduction being favored over hopping conduction as it would
cost less energy to excite the electron into the conduction
band. This shows once more the importance of setting a
realistic projection radius, especially when calculating polaron
properties.

D. MnO2

Band gap measurements have been done on LiMn2O4,
which has half a Li for each formula unit of MnO2. These
additional Li atoms add electrons, which relax further into
polaronic states. Therefore, the measured d-d band gap of
1.2 eV [64] would correspond to the polaron gap state Ep

as opposed to the Mn 3d-O 2p gap, which was measured to
be around 3 eV [65]—this study also measured additional
d-d transition energies of 1.63 eV and 2.00 eV. DFT+U

calculations have been performed earlier [45] and have resulted
in a calculated barrier of 0.22 eV for free polarons.

Figure 14 shows the projected DOS for MnO2 and its
polaron real-space radial density calculated in DFT+U . In
contrast to the other materials studied, the MnO2 projected
DOS shows significant hybridization of the polaronic state,
which is of approximately half p and half d character. This
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state. Inset: Real-space radial charge distribution of the polaronic
state.

can also be clearly inferred from the inset, which shows a
real-space density that is shared between the Mn site and the
O atoms, with a minimum at around 2.2 a0. The physical
implications of a more hybridized polaron state is that it is
less sensitive to DFT+U parameters as it projects far less onto
purely atomic d states. Additionally, the increased hybridiza-
tion could be more general to other Mn-O compounds, where,
for example, in MnPO4 it was shown that DFT+U could not
localize a polaron at all due to the increased hybridization [38].
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FIG. 16. Deviation from linearity as a function of fractional
charge in spinel MnO2. rPAW and the number of valence electrons
are listed for each PAW potential. UMn = 4.5 eV and α = 25% in
all DFT+U (solid upright triangles) and HSE06 (hollow inverted
triangles) calculations, respectively. We have included an additional
set of calculations where we have set a UO = 6.0 eV on the O 2p

states in addition to the existing UMn = 4.5 eV (solid right facing
triangles).

The electronic properties of MnO2 are shown in Fig. 15.
At first glance, there are only quantitative differences between
DFT+U and HSE06 here, with HSE06 calculations resulting
in higher energies over all projection radii. Both the seven-
electron and 13-electron potential of Mn have the same radius
of 2.3 au, allowing us to do a direct study of 3p semicore
effects in Mn while keeping rPAW the same. Those results are
similar to the other materials, with more electrons leading to
slightly higher energies. However, the DFT+U results are in
contrast to the other materials, showing little effect of rPAW and
being qualitatively similar to the HSE06 results. The calculated
activation energies Ea in Fig. 15(d) follow the same trend as the
formation energies Eform and gap-state energies Ep, showing
relatively little dependence on rPAW.

Figure 16 shows the piecewise linearity in MnO2 calculated
with both DFT+U (U = 4.5 eV) and HSE06. Consistent with
the polaronic properties of Fig. 15, we show that linearity
does not depend significantly on rPAW, even for DFT+U

calculations. While increasing the value of U increased
concavity in all other materials studied (see Supplemental
Material [52]), increasing it in MnO2 had little effect on
linearity. However, applying a UO on the O 2p states resulted
in a better correction of the SIE for the TM-centered polaron
in MnO2 and is likely due to the more hybridized polaronic
state. This is again consistent with our earlier calculations
suggesting that the strong hybridization in this material has
lead to its properties being relatively unaffected by both UMn

and rPAW.
Thus, for spinel-type MnO2, DFT+U calculated properties

depend very little on rPAW. This is explained through two
physical properties. Qualitatively, as shown in the projected
DOS in Fig. 14, the MnO2 polaron state is strongly p-d
hybridized and is therefore relatively insensitive to rPAW in
DFT+U , as there will be little projection onto atomiclike
d states regardless of projection radius. Also, we can look at
the real-space density in Fig. 14, which drops to almost zero at
around 2.2 a0. This means that if we vary the projection radius
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potentials.

between 1.95 and 2.3 a0, the integrated value would likely vary
little even if the state were of pure atomic 3d character.

V. DFT+U PROJECTION ANALYSIS

To study the effects arising from changing the projection
radius, we plot the real-space charge distribution of a polaronic
state centered radially on its transition metal site in Fig. 17,
taking Fe2O3 as our case material. Polaron charge densities
in the other materials are very similar as seen in the insets
of the separate DOS figures so our analysis here will be
general, with the exception of MnO2, which is treated
separately due to its hybridization. The two black dashed
lines represent the projection radius of the smallest core
(rPAW = 1.9 a0) and the largest core (rPAW = 2.3 a0) PAW
potential. The integrated charge density with rPAW = 1.9 a0

is 0.6698 compared to 0.7145 for rPAW = 2.3 a0, leading to
a difference in projection of approximately 0.05 electrons.
We can see that both radii are approximate as they are both
relatively far up the tail and neither projection encompasses
even 90% of the electron density. For half an electron on a
TM site in the Fe2O3 TS state, these numbers are 0.3481
and 0.3749, respectively, a difference of approximately 0.025
electrons.

The magnitude of these differences directly influences
the energy term of Eq. (1) and affects the d-d splitting as
seen in the differences of the locations of the polaron gap
states for all the materials studied including Fe2O3, as well
as the CBM-VBM gap in LiFePO4. For the formation and
activation energies, the effect is more subtle as it relies on an

energy difference between the U -term energy contributions.
However, in both cases this can be traced back to the quadratic
dependence on the occupancy of the U term. We first rewrite
Eq. (1) as a sum of on-site U -term energy contributions:

EDFT+U = EDFT + EU ≡ EDFT +
∑

t

EU
t (N ), (5)

where the sum goes over all sites t , and N is the (projected)
occupancy of local electrons at site t . The activation energy
Ea = ETS − EPOL is defined as the total energy difference
between the transition-state configuration (TS) where the
electron is shared between two neighboring sites (labeled tA

and tB) and the polaronic ground-state configuration (POL)
where the electron is localized on one site (labeled tA) only.
Focusing on the projection-dependent U -term contributions
and separating out the other terms (that we assume depend
negligibly on the projection), we rewrite Ea as:

Ea = ETS − EPOL = EU
TS − EU

POL + �Eother, (6)

EU
POL = EU

tA
(N + 1) +

∑
t �=tA

EU
t (N ), (7)

EU
TS = EU

tA
(N + 1/2) + EU

tB
(N + 1/2) +

∑
t �=tA,tB

EU
t (N ). (8)

To first order EU
tA

(N + 1/2) = EU
tB

(N + 1/2) = EU
t (N +

1/2) and assuming that, in a linear approximation, we can write
EU

t (N + x) ≈ EU
t (N ) + EU

t (x), the relevant U -term energy
difference becomes

EU
a ≈ 2EU

t (1e/2) − EU
t (1e), (9)

as all other on-site differences within EU
t,TS(N ) − EU

t,POL(N )
are approximately zero. Fundamentally, this is the difference
between the on-site energy of two half polarons and one whole
polaron. As the energy terms are quadratically dependent on
the projected charge [see Eq. (1)], changing this projection
will lead to a change in this energy difference, as seen in our
calculations. The argument for the formation energy follows
in a similar fashion, with the higher-energy configuration in
this case being the intrinsic, delocalized solution, which has
the relevant energy difference of

EU
form = nEU

t (e/n) − EU
t (1e), (10)

where n is the number of polaronic sites (which is equal to
the number of TM sites) in a supercell calculation. When the
projection radius changes, the amount of charge ascribed to
+U interactions varies from the idealized fractions presented
in the above equations. Since the +U is correction is quadratic
with the total number of projected electrons, this often leads
to a particularly acute polaronic energy dependence on the
projection radius that is manifest in nearly all polaronic
properties (the major exception being MnO2, which projects
far less onto d states, as discussed in the previous section).

VI. DISCUSSION

We have calculated four different electronic properties
in five different materials. Not only have we calculated the
band gap, we have also studied the three additional polaronic
properties of these materials. From these results, we can
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establish a few trends as well as understand cases where these
trends do not seem to hold. First of all, from our HSE06
calculations, we can see that in almost all cases, including
semicore electrons leads to a band gap widening of up to
0.3 eV, and an increase in the activation energy of up to
30 meV. Formation energies can increase by up to 0.1 eV
in LiFePO4, but are relatively flat in the other cases. The
polaron state is similarly unchanged in HSE06 calculations.
We can then eliminate the variable of semicore electrons
by comparing these results with our DFT+U calculations.
Assuming that these effects are similar for both HSE06 and
DFT+U calculations, we can begin to understand the effects of
changing rPAW on our DFT+U results. The general trend seems
to be that all investigated polaron properties (Ep, Eform, and
Ea), for sufficiently atomiclike polaron states (this excludes
MnO2), decrease in magnitude with decreasing rPAW when the
DFT+U method is employed (in a manner that is dependent
on rPAW). This trend is much less observable in the calculated
band gaps, and using the band gap as sole criterion for fitting U

therefore does not seem sufficient for calculations predicting
polaronic properties.

The band gap [with the important exception of LiFePO4 as
shown in Fig. 11(a)] remains relatively flat when varying rPAW,
and our results indicate that this arises from a cancellation of
errors. Adding semicore electrons will increase the gap, but the
simultaneous decrease of rPAW leads to less projected on-site
charge and therefore a smaller d-d separation. The decrease in
the band gap is not as dramatic as one would expect from the
projection onto rPAW, as the occupied d states are typically far
below EF leading to an O 2p dominated valence band, which
is more CT-like in behavior. The important exception to this is
LiFePO4, whose VBM is strongly localized and d-like. In that
case we can clearly see the effect of changing rPAW on the d-d
separation, as the HSE06 results remain flat here as well.

The three polaronic properties (Ep, Eform, and Ea) show
remarkably similar behavior and trends, and unlike the band
gap Eg , all depend strongly on the potential being used, with
MnO2 being the exception. The energy of the polaron state
inside the band gap Ep is a better measure of the effects of
changing rPAW, as it is localized and strongly d-like, while
relatively unaffected by semicore interactions. This is where
we can see the clearest trends in all materials, except for MnO2,
with Ep depending monotonically on rPAW. The polaron state
in MnO2 is much more hybridized with neighboring O 2p

orbitals and is therefore largely unaffected by the projection
onto pure 3d atomic orbitals as shown in Fig 15. This is an
important property as polaron gap states can be experimentally
measured, giving perhaps a better benchmark to fit the value
of U on as the d-d character is more consistent with the spirit
of DFT+U compared to the band gap, which in many cases is
more CT-like.

The formation and activation energies Eform and Ea are
more direct indicators of polaron dynamics in a material. Here
again, the DFT+U values are highly dependent on rPAW, while
the HSE06 results are much flatter. As energies calculated
here have an exponential effect on the predicted dynamics, it
raises a clear ambiguity for DFT+U results. Which potential
is the one that we can trust? The best current comparison
to experiment is hematite [60], where the activation energy
calculated with the Fe potential with eight valence electrons

and rPAW = 2.3 a0 comes closest to reproducing the measured
value of 130–150 meV [see Fig. 6(d)]. This is at variance with
the traditional guidelines of smaller core and more electrons
always leading to better results. Another example, related to
the formation energy, is seen in LiFePO4, where we were only
able to localize a polaron with the large core Fe potential
(rPAW = 2.3 a0). Further analysis showed the reason behind
this; the formation energy decreased sharply with decreasing
rPAW with the smallest core (rPAW = 1.9 a0) having a formation
energy of 20 meV. This not only lead to computational issues
in finding such a shallow energy well, but, being lower than
the activation energy, also lead to the qualitatively erroneous
prediction that the hole polaron preferred delocalized band
conduction over hopping.

Our linearity calculations show similar differences between
DFT+U and HSE06; the results for different rPAW vary
wildly in DFT+U whereas HSE06 calculations are more
consistent, with semicore electrons having a far weaker
influence when they are the only variable considered. This
confirms that the projection radius affects calculated polaronic
properties through a fundamental change in self-interaction
behavior. As these results imply that the value of U and
the projection radius are codependent, a future study could
compare results with a different U chosen for each projection
radius in a consistent manner such that piecewise linearity is
preserved for each potential. We believe that such a study could
lead to a more consistent prediction of polaronic properties
across the board.

Lastly, we have found that the implementation of the
on-site projection in ABINIT [51] differs slightly from the
implementation in VASP [19]: the projector function in ABINIT

is a ground-state atomic orbital [51] whereas the crystal wave
function is projected onto spherical harmonics in VASP [19].
The ABINIT results (see Supplemental Material [52]) appear to
show less potential-dependent variation, and we suggest that
the rapidly decaying d and f atomic orbitals beyond r ∼ 1.5 Å
are the underlying cause. However, further potential database
development is required to verify such improvements.

VII. CONCLUSION

We have conducted an extensive study on the calculation of
polaronic properties in several materials (rutile TiO2, Fe2O3,
FePO4/LiFePO4, and spinel MnO2) with both DFT+U and
HSE06 methods. We have studied the influence of both
semicore electrons and projection radii on the calculated band
gaps, polaron gap states, formation energies, and activation
energies by varying the PAW potential for the transition metal,
and have shown that the HSE06 method in almost all cases
is more robust and more consistent (when the DFT+U PAW
implementation depends on rPAW). However, HSE06 does
not give universally better results compared to the DFT+U

method. While being more consistent, the drawback of hybrid
functionals is the one to two orders of magnitude higher
computational expense, making DFT+U methods still a very
realistic approach to studying polaronic properties.

Our calculations have shown that semicore electrons have a
small effect on polaronic properties, increasing the calculated
band gap by up to 0.3 eV, and activation energies by up to
30 meV. The effects of different projection radii on DFT+U
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calculations are, apart from the band gap, dramatically more
significant. This directly arises from the U -term energy
contribution, which is quadratically dependent on the locally
projected density matrix, and we believe that, since the
band gap remains often relatively unaffected due to reasons
discussed in this work, the impact of the projection radius on
other properties is not generally emphasized in the literature.
Fundamentally, we have shown (see also the Supplemental
Material [52]) that the projection radius changes the self-
interaction corrective properties of DFT+U , leading to a
dependency of U on the projection radius. In particular,
when studying polaronic properties with the DFT+U method,
extensive care must be taken to remain consistent with not
only the band gap but also properties such as the gap state,
while taking the projection radius into account as an additional
variable apart from the value for U . In general, one may extend
these insights to other Mott-Hubbard-influenced properties as
well, as they might also be impacted if the projection radius
were inconsistent between comparative DFT+U calculations.

To further progress in the analysis of polaronic properties
predicted, more experimental measurements of polaron activa-
tion energies and gap-state positions are needed. As polaronic
properties are one of the factors determining the performance
of energy and catalytic materials, having consistency in first-
principles calculations allows us to better compare them with
measured values, as well as make more confident predictions in
novel materials. Future work should focus on coupling theory
and experiment in this manner.
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