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Competing states for the fractional quantum Hall effect in the 1/3-filled second Landau level
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In this work, we investigate the nature of the fractional quantum Hall state in the 1/3-filled second Landau level
(SLL) at filling factor v = 7/3 (and 8/3 in the presence of the particle-hole symmetry) via exact diagonalization
in both torus and spherical geometries. Specifically, we compute the overlap between the exact 7/3 ground
state and various competing states including (i) the Laughlin state, (ii) the fermionic Haftnian state, (iii) the
antisymmetrized product state of two composite fermion seas at 1/6 filling, and (iv) the particle-hole (PH)
conjugate of the Z, parafermion state. All these trial states are constructed according to a guiding principle
called the bilayer mapping approach, where a trial state is obtained as the antisymmetrized projection of a bilayer
quantum Hall state with interlayer distance d as a variational parameter. Under the proper understanding of the
ground-state degeneracy in the torus geometry, the Z, parafermion state can be obtained as the antisymmetrized
projection of the Halperin (330) state. Specifically, while unclear at other momentum sectors, all degenerate
copies of the Z, parafermion state can be obtained by antisymmetrizing those of the Halperin (330) state at the
zero-momentum sector, where both states occur as the exact ground states of their respective model Hamiltonians
with the same degeneracy. Meanwhile, in the spherical geometry, the Z, parafermion state is shown to be entirely
equivalent to the antisymmetrized Halperin (330) state without any ground-state degeneracy issue. Similarly,
it is proved in this work that the fermionic Haftnian state can be obtained as the antisymmetrized projection
of the Halperin (551) state. The exact 7/3 ground state is obtained as a function of (SV](]), the variation of the
first-moment Haldane pseudopotential Vl(l> in the SLL with respect to the pure Coulomb interaction. It is shown
that, while extremely accurate at sufficiently large positive SVI(U , the Laughlin state loses its overlap with the
exact 7/3 ground state significantly at SVI(” =~ (. At slightly negative (SVI(U, it is shown that the PH-conjugated
Z4 parafermion state has a substantial overlap with the exact 7/3 ground state, which is the highest among the
above four trial states. Around the Coulomb point, the energy spectrum exhibits an intriguing change from the
spectrum with the Laughlin-type magnetoroton structure to that with the specific quasidegeneracy of the ground

state, which is characteristic to the PH-conjugated Z, parafermion state.
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I. INTRODUCTION

The fractional quantum Hall (FQH) states occurring in the
second Landau level (SLL) have attracted intense interest
due to their possibility as exotic topological states with
non-Abelian quasiparticle statistics. This possibility is in stark
contrast to the fact that the major FQH states in the lowest
Landau level (LLL) at filling factor v =n/(2pn = 1) with
p and n being positive integers [and their particle-hole (PH)
conjugates] can be understood as the weakly interacting integer
quantum Hall states of composite fermion (CF) at effective
filling factor v* = n, where quasiparticles satisfy Abelian
statistics [1,2]. The weakly interacting CF theory serves as
an excellent guiding principle for the FQH states in the LLL.

Other minor unconventional FQH states in the LLL, for
example, occurring at v = 4/11 and 5/13, can be understood
within the extended framework of the CF theory, where CFs
form their own FQH states with mixed “vorticity flavor”
with some carrying two vortices and others four [3]. The
FQH state at v = 3/8 [4,5] is highly peculiar, but actually
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related to those occurring at even-denominator filling factors
in the SLL [6], which requires a different guiding principle as
explained below.

The situation is rather complicated in the SLL, where the
FQH states are relatively rare and fragile in comparison with
the LLL [7]. On the surface, the weakly interacting CF theory
seems to work very well. All odd-denominator FQH fractions
in the SLL are well captured by the usual CF sequence v =
2+4n/(2pn £+ 1) and its PH conjugates v =3 £ n/(2pn £ 1)
except for a few, but robust even-denominator FQH states
occurring in the half-filled SLL at v =5/2(=24 1/2) and
7/2 (=3 + 1/2) [8-10], which can be understood as the paired
states of CFs [11]. Note that the 7/2 state is the PH conjugate
of the 5/2 state in the limit of zero Landau-level mixing, in
which case the same physics governs both states.

The 5/2 (7/2) state has attracted much attention for
the possibility that it may host non-Abelian statistics for
low-energy quasiparticles. This possibility is largely based
on the observation that the exact 5/2 ground state obtained
in finite-size numerical studies seems to be well described
by the Moore-Read (MR) Pfaffian state [12—14] or its PH
conjugate known as the anti-Pfaffian state [15,16] in certain
ranges of model parameters. Previous finite-size numerical
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studies utilized various numerical techniques such as exact
diagonalization (ED) in both spherical [17-25] and torus
geometries [18,20,25-29], and the density matrix renormal-
ization group (DMRG) method in both spherical [30] and
cylindrical [31] geometries.

The true nature of the 5/2 state, however, still remains
elusive in part due to the fact that the MR Pfaffian/anti-
Pfaffian state breaks the PH symmetry, while the Coulomb
interaction preserves it [21,26,27]. The PH symmetry can be
broken in real experiments either spontaneously via modified
Coulomb interaction [18,21] or externally via Landau-level
mixing [23-25,28,31-35]. Despite this apparent possibility
of the PH symmetry breaking in real experiments, it is still
problematic that the MR Pfaffian/anti-Pfaffian state has a
rather low overlap with the exact 5/2 ground state at the
pure Coulomb interaction. In fact, it is interesting to mention
that, according to a recent study [25], the overlap between
the MR Pfaffian/anti-Pfaffian and the exact 5/2 ground states
is reduced with an increase of Landau-level mixing strength,
indicating that the Landau-level mixing is not necessarily good
for the MR Pfaffian/anti-Pfaffian state.

Whether any given trial state is really relevant to the 5/2
FQH physics depends crucially on its overlap with the exact
5/2 ground state. If there is a trial state, whose overlap
with the exact 5/2 ground state is better than that of the
MR Pfaffian/anti-Pfaffian state, it could suggest an altogether
different mechanism for the 5/2 FQH physics. Recently, based
on ED in the torus geometry, it was proposed by two of
the current authors [29] that the exact 5/2 ground state at
the pure Coulomb interaction can be better described by
the antisymmetrized product state of two CF seas at quarter
filling. This antisymmetrized product state has an additional
advantage over the MR Pfaffian/anti-Pfaffian state in that it
is susceptible to an anisotropic instability, which is consistent
with recent experimental observations [36,37]. This state was
constructed according to a guiding principle called the bilayer
mapping approach, which is explained in detail below.

Similar to the 5/2 state, the FQH states at v = 12/5
(=2+12/5) and 13/5(=3 —2/5) [10,38,39] have attracted
much attention in the context of non-Abelian statistics. There
are several proposed trial states: (i) the (PH conjugated)
Z3 parafermion state [40], (ii) the Bonderson-Slingerland
state [41,42], (iii) the hierarchy state [43,44], (iv) the
weakly interacting CF state [2], and (v) the multipartite CF
states [45,46]. Recent numerical studies using the DMRG
method in both spherical [47] and cylindrical [48] geometries
as well as ED in the torus geometry [48] suggest that the 13/5
(12/5) state may be in the same universality class as the (PH
conjugate of) Z3 parafermion state, which hosts non-Abelian
statistics.

In contrastto the 5/2 (7/2) and 12/5 (13/5) states, the FQH
state in the 1/3-filled SLL at v = 7/3 (8/3) has attracted rel-
atively little attention. One of the reasons for such negligence
is that the 7/3 ground state was generally believed to be in
the same universality class as the Laughlin state occurring in
the LLL [49]. When scrutinized, however, numerical evidence
has not been so conclusive. According to an early study using
ED in the torus geometry with the hexagonal unit cell [50], the
exact 7/3 ground state at N = 6 seemed to be compressible
at the pure Coulomb interaction and undergoes a first-order
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transition to the Laughlin state as the hard-core component
of the Haldane pseudopotential increases. Moreover, overlap
studies in the spherical geometry [51,52] have shown that the
square of overlap at the pure Coulomb interaction is very low,
typically being below 40% in finite-size systems with N < 12.

On the other hand, the entanglement spectrum [53]
obtained via ED in the spherical geometry [52,54] and the
DMRG method in the infinite cylindrical geometry [31]
provides evidence supporting that the 7/3 state has the
Laughlin-type edge excitation spectrum. It was argued [52,54]
that the apparent discrepancy between the low ground-state
overlap and the Laughlin-type entanglement spectrum could
be caused by the fact that quasiparticles/holes in the 7/3 state
are very large. Large quasiparticles/holes can be well captured
by the variational Monte Carlo simulation [52] as well as the
DMRG method [54], but not by ED using relatively small
finite-size systems.

Despite this argument, however, the substantially low
overlap between the exact 7/3 ground and the Laughlin states
is alarming and demands a search for a better trial state. As
mentioned, this situation is rather similar to that between the
exact 5/2 ground and the MR Pfaffian/anti-Pfaffian states. In
this context, an important question is what guiding principle
should be used for the FQH states in the SLL.

Considering that the MR Pfaffian/anti-Pfaffian state is
generated by the pairing mechanism involving composite
fermions, it is plausible that a good trial state for the
exact 7/3 ground state can be also generated by a similar
“pairing” mechanism. As a generalization of the pairing
mechanism responsible for the MR Pfaffian state, Read and
Rezayi [40] proposed a guiding principle for the FQH states
in higher Landau levels, according to which the FQH states at
v =k/(k + 2) can be generated as the zero-energy ground
state of the fermionic (k + 1)-body §-function interaction
Hamiltonian, where k is a positive integer. The k = 2 case
corresponds to the MR Pfaffian state. In general, the ground
state obtained at a given k is called the Z; parafermion state,
which includes the previously mentioned Z3 parafermion state
at v = 12/5 (13/5). Physically speaking, the Z; parafermion
state involves k-particle clusters, generalizing pairs in the MR
Pfaffian state.

Under this guiding principle, the Z, parafermion state
can serve as a natural trial state at v = 8/3 (=24 2/3). In
fact, a recent numerical work based on ED in the spherical
geometry [55] has shown that the Z, parafermion state has a
significant overlap with the exact ground state at v = 8/3 in
the limit of zero Landau-level mixing, where the PH symmetry
is preserved. In the presence of the PH symmetry, a related
trial state can be obtained at v = 7/3 by applying the PH
conjugation operator onto the Z4 parafermion state. Note that,
throughout this work, we do not consider any PH breaking
mechanism, and therefore basically the same physical result
holds for both v = 7/3 and 8/3, which are related via the PH
conjugation.

As an alternative to the Z; parafermion approach, in this
work, we would like to propose a different guiding principle
called the bilayer mapping approach [29]. According to this
approach, a trial state is constructed as the antisymmetrized
projection of a bilayer quantum Hall state with interlayer
distance d as a variational parameter. As mentioned above, this
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FIG. 1. Schematic phase diagrams of the bilayer quantum Hall
ground state as a function of interlayer distance d//p at (a) v = 1/3
and (b) 2/3. See Sec. I1I for the detailed mathematical form of each
bilayer quantum Hall ground state.

approach had been already applied to the 5/2 FQH problem.
The MR Pfaffian state is obtained as the antisymmetrized
projection of the Halperin (331) state [56], which occurs at
d/lp >~ 1. Another trial state is the antisymmetrized product
state of two CF seas at quarter filling, which occurs at
d/lg — oo. The usual CF sea state at half filling is obtained
atd/lg — 0. It was found that the antisymmetrized product
state of two CF seas at quarter filling has a substantially higher
overlap with the exact 5/2 ground state than the MR Pfaffian
state at the Coulomb point [29]. This leads to an intriguing
question if the bilayer mapping approach can be also applied
to the 7/3 FQH problem.

To see what trial states can be generated at v = 7/3 in
the bilayer mapping approach, let us examine what bilayer
quantum Hall ground states can occur as a function of
d/lp. Figure 1 shows the schematic phase diagrams of the
bilayer quantum Hall ground state as a function of d/Ip at
v =1/3[57] and 2/3 [58]. Scarola and Jain [57] studied the
phase diagram of the bilayer quantum Hall ground state at
v = 1/3 by computing the energies of various trial states as a
function of d /. As aresult, it was shown that (i) the Laughlin
state, W333, has the lowest energy at 0 < d/lp < 2, (ii) the
Jastrow-correlated product state of two CF seas at quarter
filling, \Ilfés;rs"gfccg’sﬁ ,at2 < d/lg < 3, (iii) the Halperin (551)
state, Wssy, at 3 < d/lp < 3.5, and finally (iv) the product
state of two CF seas at 1/6 filling, Wecpsgscrs, at d/1p > 1.
Meanwhile, McDonald and Haldane [58] performed ED to
determine the phase diagram of the bilayer quantum Hall
ground state at v =2/3. As a result, it was shown that
(1) the pseudospin singlet state, Wqingler, OCcurs at d/lp < 1,
and (ii) the Halperin (330) state, W339, at d/lp > 1.

Out of these six bilayer quantum Hall ground states, we
focus on three states at v = 1/3, which are V333, V551, and
Wscpsgscrs, and one state at v = 2/3, which is Ws3p. Note
that we do not pay attention to Wgjpgle; Since it is completely
annihilated upon antisymmetrization. Also, we do not discuss
\Dfé}trg’gfcc}fg since it turns out that the antisymmetrized pro-
jection of this state has a negligible overlap with the exact
7/3 ground state. We construct the final four trial states for
the FQH state at v = 7/3 by applying the antisymmetrization
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operator onto W33z, Wss;, Wecpsgscrs, and by applying the
antisymmetrization operator and then the PH conjugation
operator onto Ws3p. In summary, we obtain the following
four trial states in the bilayer mapping approach: (i) Wis3,
(]1) A‘-II551, (111) AW6CFS®6CF37 and (IV) CPHA\IJ330, where A
and Cpy are the antisymmetrization and the PH conjugation
operators, respectively. Here, note that AW333 = W335 since
the Laughlin state is already antisymmetrized.

While seemingly unrelated, there is in fact an intriguing
connection between the two guiding principles of the Z;
parafermion and the bilayer mapping approaches. It was shown
previously [59,60] that the Z, parafermion state is entirely
equivalent to the antisymmetrized projection of the Halperin
(330) state:

\1124 = .A\I/330. (1)

Originally, this identity was derived in an attempt to generate
non-Abelian states in bilayer quantum Hall systems as an
alternative to the Z; parafermion approach, which uses the
model Hamiltonian of the fermionic (k + 1)-body §-function
interaction. In this point of view, AWs3y can be regarded as
the single-layer limit of the bilayer quantum ground state
U339, which may be obtained in the limit of large interlayer
tunneling, while the interlayer Coulomb interaction is set
equal to zero. Unfortunately, it was shown by a numerical
calculation that taking the limit of large interlayer tunneling
could be actually different from applying the antisymmetrized
projection [61].

Similarly, it turns out that there is also an intriguing connec-
tion between A Wss; and the previously known trial state called
the fermionic Haffnian state [62], Wyr = W333Det( = lz‘ ),
which can be regarded as the d-wave paired state of composjite
fermions. It is proved in this work that the fermionic Haffnian
state is entirely equivalent to the antisymmetrized projection
of the Halperin (551) state:

Wyr = AWss). (2

Note that the antisymmetrized projection of the Halperin (551)
state has been considered previously [63], although it was
not formally identified as the fermionic Haffnian state. It
is interesting to note that there is also a similar connection
between the MR Pfaffian state and the antisymmetrized
projection of the Halperin (331) state [56]:

Wpr = AWs3,. 3)

Physically, the MR Pfaffian state can be regarded as the p-wave
paired state of composite fermions.

Proven analytically, all the above identities in Egs. (1)-(3),
which we call collectively the bilayer mapping identities in
this paper, are absolutely exact. However, there is a subtlety
in applying these identities directly to the torus geometry.
Specifically, the two states equated by the above identities do
not necessarily have the same ground-state degeneracy in the
torus geometry. This is in part due to the fact that the bilayer
quantum Hall ground states have generally different degen-
eracies from their counterparts related by the bilayer mapping
identities. Moreover, the antisymmetrization operator does not
necessarily preserve the ground-state degeneracy structure of
the bilayer quantum Hall Hamiltonian in the torus geometry.
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To appreciate the meaning of this subtlety more concretely,
it is important to note that the above trial states can be
generated in the torus geometry as the zero-energy ground
state of their respective model Hamiltonians, which exhibits
a certain ground-state degeneracy specific to each state.
For example, the Z, parafermion state is generated by
diagonalizing the fermionic five-body §-function-interaction
Hamiltonian, which has 15 degenerate zero-energy ground
states. Meanwhile, the model Hamiltonian generating the
Halperin (330) state has nine degenerate zero-energy ground
states. Obviously, the ground-state degeneracies of these two
model Hamiltonians do not match.

On the other hand, all the above identities in Egs. (1)—(3) are
analytically proved by using the specific mathematical form
of each trial wave function, which is written in the infinite
planar geometry. Logically speaking, such analytical proofs
do not necessarily know about the ground-state degeneracy
structure of the model Hamiltonian in the torus geometry.
Thus, apparently, there is a dilemma between the analytical
proof and the ground-state degeneracy mismatch in the torus
geometry.

To resolve this dilemma, we conjecture that the above
identities are to be interpreted in such a way that, in the
torus geometry, only certain degenerate copies of the left-
hand-side state in the bilayer mapping identities are exactly
identical to the appropriate counterparts of the right-hand-
side state. It is explicitly shown in this work that the
antisymmetrized Halperin (330) state has exactly the same
ground-state degeneracy as the Z; parafermion state in a
common momentum sector, where both Halperin (330) and
Z4 parafermion states occur as the ground states of their
respective model Hamiltonians. More importantly, in this
momentum sector, the entire Hilbert space expanded by the
degenerate copies of the antisymmetrized Halperin (330) state
is exactly identical to that of the Z4 parafermion state. Based
on this observation, we have a slightly stronger conjecture
(at least for incompressible states) that, if there is a common
momentum sector, where the two states related by the bilayer
mapping identities have the same ground-state degeneracy, all
the degenerate copies of the two states are exactly identical in
such a momentum sector.

The situation is somewhat more complicated for the
fermionic Haffnian state, whose model Hamiltonian has a
diverging ground-state degeneracy as a function of particle
number in the torus geometry [64,65]. On the other hand,
the model Hamiltonian generating the Halperin (551) state
has a finite ground-state degeneracy. So, it is impossible to
reconcile these two vastly different ground-state degeneracies
for the entire momentum sectors. It would be interesting to
check if our conjecture on the bilayer mapping identities works
even in this situation. To this end, a crucial question is if
there is a common momentum sector, where the ground-state
degeneracy of the fermionic Haffnian state is matched with that
of the antisymmetrized Halperin (551) state. Unfortunately, at
present, we are unable to perform a direct check to answer this
question.

Instead, in this work, we make use of the fact that the
ground-state degeneracy issue does not occur in the spherical
geometry, where both fermionic Haffnian and Halperin (551)
states are nondegenerate. Indeed, it is explicitly shown in
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this work that the overlap between the the antisymmetrized
Halperin (551) and the fermionic Haffnian states is precisely
unity in the spherical geometry, as predicted by Eq. (2).
Actually, all the above trial states are also nondegenerate in
the spherical geometry. Consequently, the overlap between the
antisymmetrized Halperin (330) and the Z, parafermion states
is also precisely unity in the spherical geometry, as predicted
by Eq. (1).

Considering the numerical evidence obtained from both
torus and spherical geometries, we think that it is reasonable
to conjecture that, if there is a common momentum or angular
momentum sector, where the ground-state degeneracies of
the two states related by the bilayer mapping identities are
matched, all the degenerate copies of the two states are
exactly identical in such a momentum or angular momentum
sector. In fact, it turns out that such a momentum or angular
momentum sector is usually where the uniform ground state
occurs.

Under this understanding, for the sake of convenience,
let us simply call the antisymmetrized Halperin (330) state
the Z, parafermion state and the antisymmetrized Halperin
(551) state the fermionic Haffnian state from this forward.
Interestingly, it has been shown in a recent work [66] that the
entire ground-state degeneracies of the Z; parafermion state
can be fully reproduced by using the projective construction
using a multilayer torus with twisted boundary conditions.

To summarize, the following four trial states are generated
via the bilayer mapping: (i) the Laughlin state, (ii) the
antisymmetrized Halperin (551) state, which is identified as
the fermionic Haffnian state under the proper understanding
of the ground-state degeneracy explained above, (iii) the
antisymmetrized product state of two CF seas at 1/6 filling,
and (iv) the PH conjugate of the antisymmetrized Halperin
(330) state, which is identified as the Z, parafermion state
under the proper understanding of the ground-state degeneracy
explained above. To investigate which trial state is most
relevant at v = 7/3, in this work, we compute the overlap
between the exact 7/3 ground state (which is the lowest
energy state of the Coulomb interaction as a function of the
Haldane pseudopotential variation) and the above four trial
states by using ED up to N = 12 in both torus and the spherical
geometries. As a result, it is shown that the PH conjugate of
the Z, parafermion state has a substantial overlap with the
exact 7/3 ground state around the Coulomb point, which is the
highest among the four trial states.

The rest of this paper is organized as follows. In Sec. II, we
provide the analytical expressions of the FQH Hamiltonians
in both torus and spherical geometries, which are formulated
in terms of the Haldane pseudopotentials. In Sec. III, we
provide the concrete mathematical forms of the above four
trial states and explain how to obtain them by applying the
antisymmetrization and the PH conjugation operators onto
the relevant bilayer quantum Hall states. In particular, it is
proved analytically that the antisymmetrized projection of the
Halperin (551) state is entirely equivalent to the fermionic
Haffnian state. In Sec. IV A, we provide the results for the
overlap between the exact 7/3 ground state and the above four
trial states. In Sec. IV B, we examine the energy spectrum,
which exhibits an intriguing transition from the spectrum
with the Laughlin-type magnetoroton structure to that with
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the specific quasidegeneracy of the ground state, which is
characteristic to the PH-conjugated Z, parafermion state. We
conclude in Sec. V with a summary of the results and a
discussion on the future directions.

II. HAMILTONIAN

In this section, we provide the analytical expressions of the
FQH Hamiltonians in both torus and spherical geometries.
Considering a recent experimental observation [67], here,
we focus on the fully spin-polarized situation. The goal of
this section is to express the electron-electron interaction
Hamiltonian in the Landau level with index n (nLL) in terms of
Haldane pseudopotentials [50]. The pure Coulomb interaction
can be obtained by choosing an appropriate set of Haldane
pseudopotentials.

In the torus geometry [68,69], the unit cell has a parallelo-
gram shape defined by two vectors L; and L, with the periodic
boundary condition. The area of the unit cell is set equal to
[L; x Ly| = 2713 N, where [ is the magnetic length and N,
is the number of flux quanta. The aspect ratio of the unit cell
is defined by r, = |L;|/|L2|, which is set equal to unity in this
work unless stated otherwise. The nLLL FQH Hamiltonian is
written in terms of the torus basis states as follows:

1 ( ,
- _ n) Tolo o
Hur =3 D My nCh e )
Jisj2:J3sJa

where ¢ jj and c; are the creation and annihilation operators,
respectively, acting on the jth state with j being the linear
momentum quantum number. The matrix element M;TJ).Z s 18
given by [29,50]

(n) Y /
Mj1j2j3j4 - 5]1*j4,t5j1+jz,j3+j4

o 2V : ,
x Zm N X =X a 2 (g7, (5
mE_O N Eq @), 5

where X; =2nj/|L,| for j =1,2,...,Ny and q = sq; +
tqy [s,t € Z] with q; and q, being the reciprocal vectors
defined by the reciprocal relations L;-q; =27 and L; -
q> = 27 The primed Kronecker § is defined as §; j=1if
i = j modulo Ny, and O otherwise. L,,(x) is the Laguerre
polynomial. Called the Haldane pseudopotential, V™" is the
potential energy of an electron pair with relative angular
momentum m in the nLL. For a given electron-electron
interaction specified by its Fourier component Vj, the Haldane
pseudopotentials are obtained as follows [50]:

1 k? 2
Ve = > / dszkLm(kz)Lﬁ<7)ek : ©)
Note that, in the case of the Coulomb interaction, the q = 0
component is excluded in the q summation in Eq. (5) to take
into account the positive background correction. It is conve-
nient to vary the Coulomb interaction by adding the Haldane
pseudopotential variations § V" to the pure Coulomb values

V(")

Coul.m In particular, we obtain the exact 7/3 ground state,
W75 Vl(])], by diagonalizing the torus FQH Hamiltonian in

Eq. (4) as a function of ¢ Vl(l). Note that all eigenstates of

the torus FQH Hamiltonian can be classified in terms of
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the pseudomomentum Q = Q;q; + Q>qz = (Q1, Q>), which
is conserved due to the translational invariance [69]. In the
rectangular unit cell, (Q1,02) = (O, Qy).

For the bilayer quantum Hall (BQH) system, the Hamilto-
nian is written as follows:

1
_ oo’ T T X X
Hgou = > E Mjlj2j3j46j]chza,ch(,rc‘,w, 7)
J1sJ2:03-Ja

where the matrix element M;’]‘]TZ j»j, depends not only on the
orbital momentum indices, ji, ..., js, but also on the layer
indices, o and o’. If 0 = ¢’ (0 # o), M;(;;jsj4 describes the
intralayer (interlayer) interaction. Similar to Eq. (5), the layer-
dependent Haldane pseudopotentials V) o can be related with

oo’ .
M s 8S follows:

oo’ Y /
Mj1j2j3j4 - 8}’1*]’4w’8j1+j2qj3+j4

- 2V ig(X; —Xin) 22 2
X n S I e , (8
mE=o N, Eq m(@”), (8)

where V7" = Vit and Vi if o = ¢’ and o # o, respec-
tively.

So far, we have discussed the nLL FQH and the BQH
Hamiltonians, which both have the two-body interaction
between electrons. As mentioned in Sec. I, for certain trial
states, it is necessary to consider the model Hamiltonians with
the (k 4+ 1)-body interaction. Specifically, the Z; parafermion
state can be generated as the zero-energy ground state of
the fermionic (k + 1)-body §-function interaction Hamiltonian
(see Appendix A for the details). Since we are particularly
interested in the Z4 parafermion state, in this work, we focus
on the fermionic five-body §-function interaction Hamiltonian,
whose concrete second quantization form in the torus geometry
is given in Appendix B.

In the spherical geometry [43], the nLL FQH Hamiltonian
can be written for a two-body interaction V(ry,r;) as follows:

] !
Hav=5 Y (mylmalVilmi imb)el, ¢l cmycm, (9)

my - my
mymam'ym’y

where the orbital angular momentum / is given by [ = Q +n
for the nLL with Q being the magnetic monopole strength. The
azimuthal quantum numbers, m, my, m’, and m/,, are summed
over the range of {—I,—1+1,...,/ —1,l}. An isotropic
two-body interaction V (r) can be represented in terms of the
Haldane pseudopotentials as follows [2]:

(Imy,Ima |V (r)|Im' ,Im})
AL

=" > (Imylma| LM)VL(LM|Im},Imb),  (10)
L=0M=—-L

where the spherical Haldane pseudopotential V is given as the
potential energy of an electron pair with total angular momen-
tum L, or equivalently with the relative angular momentum
21 — L. Specifically, for the pure Coulomb interaction, i.e.,
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Veou(ry,r2) = 1/[r; — ra|,

(Imy,Ima| Veoullmy,Im))
1 / / /
== D0 iml Umllmy ) (Ima, 'm|lmy) (1 Q. 10l Q)?,
U/ m

D

where the radius of the sphere R is determined by 47 R*B =
2Qhc/e,orsimply R = /Q if we set the magnetic lengthlp =
+/hic/eB equal to unity. The BQH Hamiltonian in the spherical
geometry can be obtained by defining the layer-dependent
spherical Haldane pseudopotentials similar to Eq. (7).

III. TRIAL STATES

As mentioned in Sec. I, we are interested in the following
four trial states: (i) the Laughlin state, W333, (ii) the fermionic
Haffnian state, Wy, which is shown to be equivalent to AWss;
under the proper understanding of the ground-state degeneracy
in the torus geometry, (iii) the antisymmetrized product state
of two CF seas at 1/6 filling, AWscpsgscrs, and (iv) the PH
conjugate of the Z, parafermion state, CpgWVy,, where Wy, is
identified as .AW33y under the proper understanding of the
ground-state degeneracy in the torus geometry. Below, we
provide the concrete mathematical forms of the trial states
and explain how to obtain them numerically by applying the
antisymmetrization and the PH conjugation operators onto
the relevant bilayer quantum Hall states. See Ref. [29] for
details on how to perform the antisymmetrization and the PH
conjugation operators in second quantization.

A. Laughlin state

The Laughlin state W335 is given as follows:

N/2 N/2
Ui = [ i — 2@ — o)’ [ [ —e)’. (12)
i<j k,l

which z; and w; denote the coordinates of the ith and the jth
electron in each layer. Evidently, W333 is invariant with respect
to antisymmetrization as is. W333 can be obtained as the exact
zero-energy ground state of the LLL FQH Hamiltonian in
Eq. (4) with VI(O) set equal to a nonzero positive number and all
the other Haldane pseudopotentials to zero [70]. Alternatively,
the exact Coulomb ground state in the LLL can be used as an
excellent approximation to W333.

B. Fermionic Haffnian state

The fermionic Haffnian state is written as [62]

1 3 1
Z—Z% Zj)2> = CDIDet(Zi — Zj)’ (13)

where ®; = ]—[fv<j(Z,- — Z;) with Z; being the unified co-
ordinates defined as Z; =z; and Z; n;p =w; with { =
1,2,...,N/2. Note that z; and w; denote the coordinates of
electrons in the top and bottom layers, respectively, while
there is no physical distinction between two different layer
degrees of freedom at the final wave function, which is
totally antisymmetrized as a whole. CD? is equivalent to W333.

Wy = cbef(
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Hf denotes the Haffnian of a symmetric matrix, which is
related with the determinant via Hf(M[ZJ.) = Det(M;;) [14].
Meanwhile, the Halperin (551) state Wss; [71,72] is written as

N/2 N/2
Ussi = [ @ — 2@ — 0y [ [z = (14)
i<j k.l

Now, we would like to prove that the antisymmetrized
projection of the Halperin (551) state, AWss;, is entirely
equivalent to Wy up to a normalization constant. To this end,
it is convenient to rewrite AWss; as follows:

N/2
AWss = 0,8 [ [ — 2) (@i — 0, (15)

i<j
where S is the symmetrization operator. In order to express
Eq. (15) in the form of a paired state, we exploit two identities

for the symmetrized Jastrow factor. The first identity is given
by

NJ2
S H(Zi — )i — w))*
i<j
N2 :
= 20-N/2) Sl_[(z,- — )@ — )|, (16)
i<j

which is proved in Appendix C. The second identity is the
well-known analytical relationship between the symmetrized
Halperin (220) and the bosonic MR Pfaffian wave function,
which is fundamentally due to Cauchy’s identity [56]:

N/2

1
STci — 2@ —wp)* = CN/2<I>1Pf<Zi — Z,)’ (17)

i<j

where the constant factor C, = (—1)""=D/251. Above, Pf
denotes the Pfaffian of a skew-symmetric matrix. Using the
two identities in Egs. (16) and (17), one can rewrite AWss; up
to a normalization constant as follows:

1 2 1
AVUss, = @3 [Pf(—ﬂ = q>3Det( ) (18)
! Zi— 7, ! Zi—Z,

where it is used that [Pf(M; j)]2 = DetM;;. This proves that
AWss; is entirely equivalent to Wy up to a normalization
constant.

It is interesting to mention that the bosonic counterpart of
Eq. (18), i.e., the symmetrized product of two Laughlin states
at quarter filling is equivalent to the bosonic Haffnian state
at half filing, has been considered previously. Mathematically,
the bosonic counterpart of Eq. (18) can be written as

1 1
SWyyg = PHf| ———— ) = & Det|{ ———— ), (19
= ((Z,-—Zj)2> ' e<Zi—Zj> e

which was mentioned before in Ref. [73], while no proof was
provided there. Also, the above relationship was previously
discussed in the context of the pattern-of-zeros and vertex
algebra approaches [74].

According to Eq. (18), one can generate the fermionic
Haffnian state as the antisymmetrized projection of the
Halperin (551) state. Similar to the Laughlin state, the Halperin
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(551) state can be obtained as the exact zero-energy ground
state of the BQH Hamiltonian in Eq. (7) with V"™ and V™"
set equal to nonzero positive numbers and all the other Haldane
pseudopotentials to zero [72].

It is worthwhile to mention that the antisymmetrized
projection of the bilayer state is not necessarily incompressible
even if the original bilayer state is so. The Halperin (551) state
is incompressible, whereas the Haffnian state is known not to
be [75]. This result is based on the conformal field theory with
conformal blocks, which correspond to trial wave functions. It
is shown that the conformal field theory becomes irrational if
its conformal block corresponds to the Haffnian wave function.
As a result, the number of excitation types in the Haffnian
state is not finite. This property manifests itself in finite-size
numerical calculations as a diverging degeneracy of the ground
state in the torus geometry and that of the quasihole state in
the spherical geometry as a function of particle number. Both
numerical and analytical studies have shown that this is indeed
the case for the bosonic Haffnian state [64,65]. We believe that
the same should be true for the fermionic Haffnian state.

For this reason, in the torus geometry, there is a serious
issue of the ground-state degeneracy mismatch between the
fermionic Haffnian state, which has a diverging ground-state
degeneracy, and the antisymmetrized Halperin (551) states,
which has a finite ground-state degeneracy. The Halperin
(551) state has the 24-fold degeneracy in the torus geometry,
which can be understood in terms of its root configurations.
Specifically, we have found that there are four distinct
root configurations for the Halperin (551) state: (i) |[XX o
0coo--+), (ii) |[Po}ooco---), (iii) | 1 oo | 0o0---), and
(iv)| 1 ooo | o---), where 1 and | indicate a site occupied
by up and down spins, respectively, o indicates an empty site,
XX =1] + |1, and the ellipsis denotes the repetition of a
given root configuration. Each of these four root configura-
tions has a sixfold degeneracy via the center-of-mass shift,
altogether generating 24 degenerate states. Note that the root
configurations of the Halperin (551) state can be constructed
similarly to those of the Halperin (331) state [76].

After antisymmetrization, the root configuration in (i)
becomes |eecooo---), where o indicate a filled site.
Meanwhile, the root configurations in both (ii) and (iv) reduce
to a single identical state, |@eceocoo---). Each of these
two antisymmetrized root configurations, |eeococoo---)
and [eoceooo---), generates six degenerate copies via the
center-of-mass shift. On the other hand, the root configuration
in (iii) becomes | @ 0 0 @ 0 0 - - - ), which has three degenerate
copies since the period of the center-of-mass shift is halved.
As a consequence, the antisymmetrized Halperin (551) state
has altogether the 15-fold ground-state degeneracy in the
torus geometry.

More importantly, it can be shown by counting the
pseudomomentum of each root configuration that there are
two degenerate copies of the antisymmetrized Halperin (551)
state at Q = (N/2,N/2), where the exact 7/3 ground state
occurs. As mentioned in Sec. I, however, it is unclear at present
whether the ground-state degeneracy of the antisymmetrized
Halperin (551) state is the same as that of the fermionic
Haffnian state in this momentum sector.

Fortunately, the ground-state degeneracy issue does not oc-
cur in the spherical geometry, where both fermionic Haffnian
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and Halperin (551) states are nondegenerate. Specifically, in
the spherical geometry, the fermionic Haffnian state can be
directly obtained as the exact, nondegenerate, zero-energy
ground state of the following three-body interaction Hamil-
tonian [77]:

Hyr = Z [VoPijx(B3Ng/2 — 3)
ik
+ VaPijk(BNy/2 — 5) 4+ V3 Piji(BNy /2 — 6)],  (20)

where P;ji (L) is the projection operator onto the three-particle
state at a given total angular momentum L. The V; term is
absent due to a symmetry reason [78].

We have confirmed that, in the spherical geometry, the
ground state of Hyy is indeed exactly identical to the antisym-
metrized projection of the Halperin (551) state up to machine
accuracy. Based on this confirmation, as far as the fermionic
Haffnian state is concerned, we put more emphasis on the
results obtained in the spherical geometry. In Sec. IV A2, we
show the results for the overlap between the exact 7/3 ground
and the antisymmetrized Halperin (551) states in the spherical
geometry. It turns out, fortunately, that the overlap results
obtained in the spherical geometry are overall consistent with
those in the torus geometry, as reported in Sec. IV A.

C. Antisymmetrized product state of two CF seas at 1/6 filling

Here, we consider the antisymmetrized product state of
two CF seas at 1/6 filling, AWscpsgscrs. To this end, it is
necessary to know how to obtain the CF sea state at 1/6
filling, Wscps. Naively, one may guess that Wscgg is obtained
as the ground state of the Coulomb interaction at v = 1/6
in the LLL. Unfortunately, however, this guess is not correct
since the actual ground state is likely to be the Wigner crystal
of composite fermions rather than the quantum Hall liquid
state [79,80]. In the torus geometry, this manifests itself as
the fact that the ground state occurs at odd pseudomomenta,
indicating that it is not a uniform state. In this sense, the
previously-mentioned phase diagram in Fig. 1(a) is in fact
inaccurate. The actual 1/3 bilayer quantum Hall ground state
atd/lp > 1is predicted to be the product state of two Wigner
crystals of composite fermions at 1/6 filling.

For this reason, we instead construct Wscgg as the exact
ground state of the LLL FQH Hamiltonian in Eq. (4) with V,} ;
set equal to unity and all the other Haldane pseudopotentials
zero. It is important to note that AWscgsgscrs does not
necessarily describe a compressible phase even if Wecpsgscrs
is compressible. The reason is in some sense similar to why
the antisymmetrized incompressible state is not necessarily
incompressible, as shown in the example of Wy = AWss;.
Perhaps, a more directly relevant example is the previously
mentioned antisymmetrized product state of two CF seas at
quarter filling, AWicpsgicrs, Which has a significant square
of overlap (over 90% when PH symmetrized in the N = 12
system) with the exact 5/2 ground state at the Coulomb
point [29], which is known to be incompressible. It is not clear
at this point whether AWscpsgscrs is indeed incompressible.
Despite this uncertainty, we believe that it is worthwhile to
investigate how large overlap it can have with the exact 7/3
ground state around the Coulomb point. In some sense, the
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overlap can provide us with a hint for the compressibility of
AWscpsgscrs-

D. PH-conjugated Z, parafermion state

Now, let us consider the PH-conjugated Z; parafermion
state, Cpu\Wz,. As mentioned previously, the Z, parafermion
state can be obtained as the antisymmetrized projection of
the Halperin (330) state [59,60] with the Halperin (330) state
defined as

N/2
Uy = [ i — 2 (@i — 0))?, @1

i<j

which can be in turn obtained as the exact zero-energy ground
state of the BQH Hamiltonian in Eq. (7) with V,intra set
equal to a nonzero positive number and all the other Haldane
pseudopotentials to zero. Practically, we use the fact that W33
is the direct product of two Laughlin states, each of which can
be obtained in a much smaller Hilbert space. For example, for
N = 12 in the torus geometry, the size of the Hilbert space
for the 2/3 BQH system is around 3.6 x 10'3, whereas that
for the 1/3 FQH system is around 2.9 x 10°. Once W33 is
obtained, we apply the antisymmetrization operator to obtain
AWs3y = Wy, and then the PH conjugation operator to obtain
CPH“IIZ4~

As mentioned in Sec. I, there is an issue of the ground-state
degeneracy mismatch between the antisymmetrized Halperin
(330) and the Z, parafermion states in the torus geometry.
Fortunately, this ground-state degeneracy issue is much less se-
vere, compared to that between the antisymmetrized Halperin
(551) and the fermionic Haffnian states discussed in the
preceding section. Specifically, there is a certain momentum
sector in the torus geometry, where all degenerate copies of
the antisymmetrized Halperin (330) state are exactly identical
to the appropriate counterparts of the Z, parafermion state.

To understand what this momentum sector is, let us
consider the root configurations of the Halperin (330) and
the Z, parafermion states. First, the Halperin (330) state
is constructed as the direct product between two Laughlin
states in the top (1) and bottom (| ) layers, each of which
has three degenerate copies via the center-of-mass shift,
leading to the ninefold ground-state degeneracy of the Halperin
(330) state [81]. Specifically, the Laughlin state has the
following three root configurations: |@ecoeococeoco---)
|]ocecoecoceo---),and|coecoceocoe---) whereeand
o indicate filled and empty sites, respectively. These three
root configurations are related with each other via the center-
of-mass shift. Evaluating the pseudomomentum of each root
configuration, one can show that three degenerate copies of the
Laughlin state occur at O, = 0 Ny /3, and 2Ny /3 for odd, and
Ny/6 Ny /2, and 5Ny /6 for even particle numbers, where Ny is
the number of flux quanta. We set Ny = 3N} = 3N since we
are interested in the BQH system with the top and bottom layers
having the (equal) particle number Ny and N, respectively.
Note that there is no flux shift in the torus geometry.

The root configurations of the Halperin (330) state can
be obtained by taking the direct product between those
of the two Laughlin states in the top and bottom lay-
ers. Among the nine degenerate copies obtained from this
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product, the Halperin (330) state can occur particularly at
0, =0y + 0,, =0(mod Ny4) by combining (Q+,0,,) =
(0,0)(Ng/3,2Ny/3), and (2N /3,Ny/3) for odd Ny and N,
and (Ny/2,Ng/2) (Ny/6,5N4/6), and (5N4/6,N,/6) for even
N; and N,. As a consequence, the momentum sector at
Q, = 0 (mod N) has the triple degeneracy. Also, due to the
center-of-mass shift, there are other similar triple degeneracies
in the momentum sectors at @, = N and 2N (mod Ny)
with N = N4 + N,. It is worthwhile to mention that, along
the x direction, the momentum of all the above degenerate
states is the same: Q. = Q.4 + Q) =0 (mod N') with
N’ = gcd(N,Ny).

For odd N4 and N, two degenerate copies of the Halperin
(330) state can be obtained from (Qy4,0,,) = (Ng/3,2Ny/3)
and (2N, /3,N4/3), both of which reduce to a single identical
state at Q, =0 (mod Ng) after antisymmetrization. Mean-
while, the antisymmetrized projection of the Halperin (330)
state obtained from (Qy4, Q) = (0,0) remains distinct from
this state. Consequently, a double ground-state degeneracy
is generated at Q, =0. Since Q, =0 for all the above
states, this means that there is the double ground-state
degeneracy for the antisymmetrized Halperin (330) state at
Q = (0«,0Q,) = (0,0). Similarly, for even Ny and N, two
degenerate copies of the Halperin (330) state can be ob-
tained from (Qy4,Qyy) = (Ng/6,5N4/6) and (SNg/6,Ny/6),
both of which reduce to a single identical state at @, =0
(mod Ng) after antisymmetrization. Also, a different single
state is obtained by antisymmetrizing the Halperin (330)
state at (Qy4,0,;) = (Ny/2,Ny/2), consequently generating
the double ground-state degeneracy at Q = (0,0) similar to
the case of odd N4 and N|. Eventually, there is altogether
the sixfold ground-state degeneracy due to the center-of-mass
shift.

It is important to note that, strictly speaking, antisym-
metrization would annihilate any root configurations obtained
in the momentum sector satisfying Q4 = Q,, i.e., where
electrons with opposite layer indices are exactly on top of each
other. Fortunately, there are extra “fluctuation configurations”,
which are derived from the root configurations away from the
thin-torus limit. These fluctuation configurations can generally
survive antisymmetrization.

Now, let us switch gears and consider the ground-state
degeneracy of the Z, parafermion state. There are altogether
15 different root configurations for the Z4 parafermion state:
(i) |eeeeoco---) and its six other center-of-mass-shifted
copies, (ii)) |@eeeoceo---) and its six other center-of-mass-
shifted copies, and (iii) |eeceeo---) and its three other
center-of-mass-shifted copies. Physically, these root configu-
rations can be understood as all possible ways of distributing
four electrons within the unit cell of six sites, followed
by the center-of-mass shift [82,83]. Having absolutely zero
amplitudes of five-electron cluster, these root configurations
generate the zero-energy ground states of the fermionic
five-body é-function interaction Hamiltonian, which imposes
an energy cost only on five-electron cluster. Note that, by
definition, the Z; parafermion state is the zero-energy ground
state of the fermionic (k + 1)-body §-function interaction
Hamiltonian (see Appendix A for the details).

Counting the pseudomomenta allowed for all the above
root configurations, one can show that there is the double
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ground-state degeneracy for the Z4 parafermion state at Q =
(0,0) (mod N’). Therefore, the ground-state degeneracy of
the Z, parafermion state is exactly matched with that of the
antisymmetrized Halperin (330) state in this momentum sector.

Now, we would like to show that, in this momentum
sector, the two degenerate copies of the Z4 parafermion state
are indeed exactly identical to those of the antisymmetrized
Halperin (330) state. To this end, we obtain the Z, parafermion
state by directly diagonalizing the fermionic five-body &-
function interaction Hamiltonian. See Appendix B for the
concrete second quantization form of the fermionic five-body
§-function interaction Hamiltonian in the torus geometry.

Specifically, we perform ED of the fermionic five-body &-
function interaction Hamiltonian to obtain the Z4 parafermion
state in the finite-size system with N =8 and Ny = 12. In
the mean time, the antisymmetrized Halperin (330) state
is obtained in the same finite-size system by making the
product of two Laughlin states, each of which is obtained
in the finite-size system with N =4 and Ny = 12 as the
exact zero-energy ground state of the LLL FQH Hamiltonian
with Vl(o) set equal to a nonzero positive number and all
the other Haldane pseudopotentials to zero. In the end, we
compute the overlap between the two degenerate copies of
the Z, parafermion state and those of the antisymmetrized
Halperin (330) state. As a result, it is explicitly shown that
the two degenerate copies of the antisymmetrized Halperin
(330) state at Q = (0,0) have exactly the unity overlap with
their respective counterparts of the Z4 parafermion state. In
other words, at Q = (0,0), all degenerate copies of the Z,
parafermion state can be obtained by antisymmetrizing those
of the Halperin (330) state.

As mentioned previously, the issue of the ground-state
degeneracy mismatch does not occur in the spherical geometry.
To explicitly confirm this to be the case, first, we have directly
obtained the Z, parafermion state via the Jack polynomial [84].
As before, the Halperin (330) state is obtained by making the
product of two Laughlin states in the spherical geometry. It
is explicitly shown that the Z, parafermion state obtained
via the Jack polynomial is indeed exactly identical to the
antisymmetrized Halperin (330) state, both occurring at the
L = 0 sector without any degeneracy.

It is worthwhile to mention that a recent numerical work by
Peterson et al. in the spherical geometry [55] has shown that
Wy, has a significant overlap with exact 8 /3 state with full spin
polarization. In the limit of zero Landau level mixing, the same
significant overlap should be obtained between Cppy ¥z, and the
exact 7/3 ground state. We have explicitly confirmed this to be
the case by performing ED in the spherical geometry. In fact,
we have been able to perform ED in a much larger system than
those studied by Peterson et al., who studied up to the N = 16
system at v = 8/3, which corresponds to the N = 6 system at
v = 7/3 after PH conjugation. As one can see in Fig. 3, we
report ED results at v = 7/3 up to N = 10 for CpyWy,, while
up to N = 12 for both Ws333 and Wy.

E. Other related bilayer quantum Hall states

In connection with the Z, parafermion state, there are
several other related non-Abelian trial states in the bilayer
quantum Hall system at v = n + 2/3 with n being the filled
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Landau level index. These trial states include the intralayer
Pfaffian state [85], the interlayer Pfaffian state [86,87],
the Fibonacci state [88,89], and the Bonderson-Slingerland
state [41].

We remark that it is not easy to construct these trial states
in the torus geometry since the parent Hamiltonian generating
each state as the zero-energy ground state is unknown. On
the other hand, in the spherical geometry, one can obtain
the amplitudes of each state in second quantization basis by
making use of the Jack polynomial representation [90]. While
these trial states could be important in some parameter regimes
of the bilayer quantum Hall system, in this work, we are only
interested in the single-layer quantum Hall states, which can
be obtained by antisymmetrizing the simple Abelian bilayer
quantum Hall states such as the Halperin (330) and (551) states.

IV. RESULTS
A. Overlap

In this section, we compute the overlap between the
exact 7/3 ground state and each of the four trial states,
W33, Whr, AWscpsgscrs, and CpyWz, by using ED in both
torus and spherical geometries up to N = 12. In the preceding
section, we have discussed how to obtain the four trial states
in both torus and spherical geometries. It is emphasized that
the ground-state degeneracy of each trial state in the torus
geometry should be properly understood as discussed in the
preceding section.

Note that we obtain the exact 7/3 ground state in the torus
geometry by exactly diagonalizing the SLL FQH Hamiltonian
in Eq. (4) as a function of the Haldane pseudopotential
variation 8V1(1) / Vl(l) with Vl(l) = 0.415419. To emphasize its
dependence on § Vl(l) , the exact 7/3 ground state is denoted as

Wy308 Vl(])] in the torus geometry. Meanwhile, in the spherical
geometry, we focus on the exact 7/3 ground state only at the
pure Coulomb interaction.

Before presenting the overlap results, it is worthwhile to
explain our choice of particle numbers. While Wy and Cpy Wz,
can be constructed in principle at any particle numbers by using
appropriate many-body model Hamiltonians, it is convenient
to choose even particle numbers in our bilayer mapping
approach. Also, due to the property of the antisymmetrized
product state, AWscrsgscrs can be constructed only when the
particle number is a multiple of 4 [29].

1. Torus geometry

Figure 2 shows the square of overlap between W7/3[8 Vl(l)]
and each of the four trial states, W333, Wy, AWscrsgscrs, and
Cpu ¥z, as a function of the Haldane pseudopotential variation
8 Vl(l) / Vl(l) for various particle numbers in the torus geometry.
Note that the torus geometry can accommodate different
parallelogram shapes for the unit cell by continuously varying
the angle between two lateral vectors L; and L,, which can
deform the unit cell from square to hexagon [28]. As one
can see, there are somewhat wild fluctuations in the behavior
of the overlap across various particle numbers. Despite these
fluctuations, it is possible to extract the following overall
behaviors of the overlap.
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FIG. 2. Square of overlap |O|* between the exact 7/3 ground state, W7/3[8 Vl(l)], and each of the four trial states, W333, Wit, AWecrsgscrss
and Cpy W7, , as a function of the Haldane pseudopotential variation § Vl(“ / Vl(l) with V]“) = 0.415419. The exact 7/3 ground state, W7,3[5 Vl(l)],
is obtained as the exact lowest energy state of the Coulomb interaction Hamiltonian with the Haldane pseudopotential variation BVI(I) at
pseudomomentum Q = (N/2,N/2). Note that the lowest energy state always occurs at Q = (N/2,N/2) for the entire range of SVI(I). The
shape of the unit cell is square in (a)—(d), and hexagonal in (e)—(h). The electron-electron interaction is purely Coulombic at § Vl“) =0.

First, the overlap between W7 /3[8 Vl(l)] and W333 shows the

most stable behavior as a function of SVI(I) / V,(l) regardless
of particle number. Specifically, the overlap is close to unity
for sufficiently large positive § Vl(l) / Vl(l) , but decreases fast as
8 Vl(l) / Vl(l) approaches the Coulomb point. At moderately neg-
ative § Vl(l) / Vl(l), the overlap becomes negligibly small. In con-
trast to the situation in the LLL, W335 has a rather weak chance
of representing the exact Coulomb ground state in the SLL.

Second, as for the fermionic Haffnian state, it is important
to properly define the overlap between W;,3[8 Vl(l)] and Wyy.
As mentioned in Sec. IIIB, Wy has a multiple ground-
stare degeneracy in the torus geometry, which diverges as a
function of particle number [91]. Meanwhile, W7/3[5 Vl(l)] is
uniquely obtained as the lowest energy state of the Coulomb
interaction, which generally does not have any exact ground-
state degeneracy (except that due to the center-of-mass shift).
This leads to an ambiguity regarding the definition of the
overlap between W;/3[68 Vl(l)] and Wyt

Mathematically, one needs to properly define the overlap
between a nondegenerate target state, say |V, ), and a trial state
with multiple degenerate copies, say {|\Up )}, where n is the
index distinguishing between different degenerate copies. One
reasonable definition would be the generalized projected over-
lap between |W,) and the degenerate Hilbert space expanded
by {{Ws.)}: 1012 =, [(Wal|Ws.,)|>. We use precisely this
definition here and in the following discussion, where the
overlap between W;/3[8 Vl(l)] and Cpy Wy, is discussed.

It is worthwhile to mention that a closely related definition
for the proper square of overlap has been used in a slightly
different situation, where the target state is also expected to
have multiple degenerate copies, but somehow the exact de-
generacy is destroyed by various other effects. Mathematically,
if the target state {|Wa ,,)} is to have the same number of
degenerate copies as the trial state {|Wg ,)}, the proper square
of overlap can be defined as |0 = % Zm’n |(\Il/3‘,,,l|\I'B.,,)|2
with D being the degeneracy [92]. This definition is similar
to ours in the sense that it is none other than the arithmetic

mean of the generalized projected overlaps between each of
the first D lowest energy states in the target Hilbert space and
the D-dimensional degenerate Hilbert space of the trial state.
Let us call this definition the arithmetic mean square of overlap
(AMSO).

In this work, only the truly lowest energy state of the
Coulomb interaction is used as the single target state. A
rationale behind this is as follows. If the degenerate Hilbert
space of the target state is entirely identical to that of the
trial state, the generalized projected overlap of the truly lowest
energy state alone is going to be exactly unity just like the
AMSO of the entire degenerate Hilbert space of the target
state. Note that the truly lowest energy state is presumed to be
a certain linear combination of the various degenerate copies
of the target state.

Now, we would like to discuss the overlap between the
exact 7/3 ground and the fermionic Haffnian states in terms
of the generalized projected overlap defined above. In the
case of the fermionic Haffnian state, however, there is an
additional serious problem that the ground-state degeneracy
diverges as a function of particle number. In this work, we
focus only on supposedly the sub-Hilbert space of Wy, which
can be represented by the antisymmetrized projections of
the two degenerate Halperin (551) states at Q = (N /2,N/2),
where V7,38 Vl(l) ] occurs. In this way, we might neglect many
other degenerate Haffnian states, which cannot be obtained by
antisymmetrizing the Halperin (551) state. Thus, potentially,
our results in the torus geometry could seriously underestimate
the true overlap between Wy,3[8 Vl(l)] and Wyt

To circumvent this problem, we have also performed ED
in the spherical geometry, where the ground-state degeneracy
issue does not occur. Postponing the detailed discussions to
Sec. IV A 2, it is sufficient for now to mention that, fortunately,
the overlap results obtained in the spherical geometry are
overall consistent with those in the torus geometry reported
below.

Figure 2 shows the overlap between W7,3[5 Vl(l)] and Wyr in
the torus geometry, which is sizable at moderately negative
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SVI(I) /Vl(l) for small particle numbers, say, N =6 and 8.
Unfortunately, the overlap decreases fast as the particle number
increases to N = 10. In particular, the overlap becomes
negligibly small near the Coulomb point at N = 10. We
therefore conclude that Wy has little chance of representing
the exact 7/3 ground state around the Coulomb point in the
thermodynamic limit.

Third, the overlap between W7/3[8 Vl(l)] and AWscpsgscrs
is somewhat similar to that between \1-'7/3[8V](1)] and Wys.
That is, the overlap between W7,3[8 Vfl)] and AWscpsgscEs
is sizable at moderately negative SVI(I) / Vl(]) at N =8, but
collapses almost completely at N = 12 for the entire range of
1) Vl(l) / Vl(l). Therefore, we also conclude that AWscpsgscrs has
little chance of representing the exact 7/3 ground state around
the Coulomb point in the thermodynamic limit.

Finally, let us discuss the overlap between W7,3[8 Vl(l)]
and CpyWz,. It has been mentioned in Sec. IIID that there
is the double ground-state degeneracy for Wz, at Q = (0,0).
After PH conjugation, Cpy\Wz, has the double ground-state
degeneracy at Q = (N/2,N/2) and (0,0) for even and odd
particle numbers, respectively, which can be taken as the
zero physical momentum [69]. As explained above, we define
the overlap in this situation as the generalized projected
overlap between W73[8 Vl(l)] and the degenerate Hilbert space
expanded by the two degenerate copies of Cpy ¥z, .

Figure 2 shows that, while fluctuating somewhat across
various particle numbers, the overlap between W7,3[8 Vl(l)]
and CpyWz, remains substantial around the Coulomb point.
It is interesting to note that the overlap between W7/3[8 Vl(l)]
and CpyWz, seems to be peaked around the Coulomb point,
exactly where the Laughlin state loses its overlap significantly.
Therefore, we conclude that Cpg Wz, has a reasonably good
chance of representing the exact 7/3 ground state around the
Coulomb point with its overlap being the highest among the
four trial states.

2. Spherical geometry

Now, we discuss what happens in the spherical geometry.
In particular, we are interested in the overlap between the
exact 7/3 ground state at the Coulomb point and each of the
following three trial states, W33, Wpr, and CpgWz,. We do
not consider AWscrsgscrs since its overlap with the exact 7/3
ground state is already too low in the torus geometry. We
do not think that this situation would change in the spherical
geometry.

Before computing the overlap with the exact 7/3 ground
state, we first check if Wyy is a worthy trial state. Specifically,
we compute the Coulomb interaction energies of W333 and
Wy by performing Monte Carlo simulation up to N = 50, the
results of which are then extrapolated to the thermodynamic
limit. To make such large-scale Monte Carlo simulation
possible, it is important to write the trial states in concrete
mathematical forms. Unfortunately, the mathematical forms
of W335 [Eq. (12)] and Wyt [Eq. (13)] are concretely known
only in the LLL. To perform Monte Carlo simulation in
the SLL, we follow the trick presented in Ref. [93]. In this
trick, the Coulomb potential in the SLL is modeled as the
effective potential Vg (r) = % + ale"""'z + azrze’“2’2, where
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FIG. 3. Square of overlap |O|?* between the exact 7/3 ground
state at the Coulomb point and each of the three trial states, V333 Wy,
and Cpy W7, , in the spherical geometry. The three trial states occur at
different values of flux shift; S = 3 for W333 5 for Wy, and —3 for
CpuVWz,. Some data points are missing due to the fact that the total
angular momentum of the ground state is nonzero there.

ajayoy, and ap are fixed by requiring that the first four
pseudopotentials of Veg(r) in the LLL should be equal to those
of the Coulomb potential in the SLL. As a result of this trick,
we are able to estimate that, in the thermodynamic limit, the
Coulomb interaction energies of W333 and Wy are —0.325(0)
and —0.320(9) in units of e?/elp, respectively. This means
that the two trial states are very competitive in the SLL. For
comparison, note that, in the LLL, the Coulomb interaction
energies of W333 and Wyy are estimated to be —0.4097(3) and
—0.3719(1) in units of e?/elp, respectively.

Now, we discuss the overlap between the exact 7/3 ground
state at the Coulomb point and each of the three trial states,
W335, Wy, and Cpy Wy, in the spherical geometry. To this end,
it is important to mention that the three trial states are actually
compared with their respective, slightly different exact 7/3
ground states due to the well-known property of the spherical
geometry known as the “flux shift”. In the spherical geometry,
monopole strength Q is related with particle number N for a
desired thermodynamic filling factor v via 2Q = v_!N — §.
A problem is that different values should be assigned to flux
shift S for different trial states; S = 3 for W333 5 for Wy, and
—3 for CpyWz,. We define the exact 7/3 ground state as the
exact Coulomb ground state occurring at appropriate S, which
depends on the specific trial state.

It is interesting to mention that, when S is set equal to 5
(which corresponds to W), the ground-state energy exhibits
a clear even-odd effect meaning that the ground-state energy
oscillates depending on whether the particle number is even
or odd [22]. This suggests that a certain form of the pairing
correlation exists in Wgr. When S is set equal to 3 (which
corresponds to W333), no such even-odd effect is observed.

Figure 3 shows the square of overlap between the exact 7/3
ground state at the Coulomb point and each of the three trial
states, W333, Wyr, and Cpy Wz, , in the spherical geometry. First,
the overlap between the exact 7/3 ground state and W333 is
fairly low, 20-50%, exhibiting a large undulation as a function
of particle number. Second, the overlap between the exact 7/3
ground state and Wy is initially quite high, but decreases fast as
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the particle number increases. This behavior is consistent with
what is observed in the torus geometry. Therefore, we arrive
at the same conclusion as obtained in the torus geometry that
both W333 and Wyr would have little chance of representing
the exact 7/3 ground state around the Coulomb point in the
thermodynamic limit.

Meanwhile, the overlap between the exact 7/3 ground state
and CpyWyz, is reasonably high, 60-90%, with a relatively
stable behavior as a function of particle number. Thus, it is
concluded that, at least among the three trial states studied
above, Cpy\Wz, is the best candidate state for the exact 7/3
ground state around the Coulomb point.

B. Energy spectrum

The reasonably substantial overlap between the exact 7/3
ground state and Cpy Wz, around the Coulomb point motivates
us to investigate if there is a signature in the exact energy
spectrum supporting CpgWz,. A particular signature that we
would like to focus on is the characteristic ground-state
degeneracy of Cpy Wz, occurring at specific pseudomomentum
channels in the torus geometry.

The ground-state degeneracy of W, can be evaluated by
using two different methods. The first method is to examine
the structure of the conformal field theory [40]. The second
method is to examine the root configurations of Wz, in the thin-
torus limit [82,83], as discussed in Sec. III D. The ground-state
degeneracy of CpyWz, can be inferred from that of Wz, with
the knowledge of how the root configurations transform under
the PH conjugation.

By carefully examining the pseudomomenta allowed for
all the root configurations of CpyWz,, one can show that, for
even particle numbers, there should be five degenerate ground
states with one occurring at each Q = (0,0)(N/2,0), and
(0,N/2), and two at (N /2, N /2). This makes the total ground-
state degeneracy 15 since each of the above five degenerate
ground states has three center-of-mass-shifted copies. As a
consequence, if Cpyy Wz, were to represent the exact 7/3 ground
state accurately, there should be a set of five degenerate,
or at least quasidegenerate copies of the ground state with
one occurring at each Q = (0,0)(N/2,0)(0,N/2) and two
at (N/2,N/2), accompanied by their center-of-mass-shifted
copies.

Figure 4 shows the exact energy spectra in the torus
geometry as a function of the magnitude of pseudomomentum
Q = |Q] in units of 1//p. Considering that the anticipated
quasidegeneracy could be more visible when the overlap be-
tween the exact 7/3 ground state and Cpy W, is relatively high,
we choose the N = 8 system in Fig. 4(a) with SVI(D/VI(D =
—0.072 and the rectangular unit cell, corresponding to the
regime of maximum overlap in Fig. 2(b). A slightly nonunity
aspect ratio, r, = 0.98, is chosen so that the two, otherwise
degenerate, states at Q = (N /2,0) and (0, N /2) are separated.
Similarly, we choose the N = 10 system in Fig. 4(b) with
SVI(D / Vl(l) =0 and the hexagonal unit cell, corresponding
to the regime of maximum overlap in Fig. 2(g). Here, the
aspect ratio is chosen to be r, = 0.99. As one can see from
the figure, there is a reasonably strong signature for the
anticipated quasidegeneracy of the ground state at the correct
pseudomomentum channels.
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FIG. 4. Exact energy spectra in the torus geometry as a function
of the magnitude of pseudomomentum Q = |Q| in units of 1//p.
Note that the unit cells are rectangular and hexagonal in (a) and
(b), respectively. The lowest-energy states at pseudomomenta Q =
(0,0)(N/2,0)(0,N/2), and (N/2,N/2) are denoted as blue lines,
distinguished from all the other states denoted as red lines. Note that,
here, slightly nonunity aspect ratios are used to separate the two,
otherwise degenerate, states at Q = (N /2,0) and (0, N /2) denoted as
the two blue lines in the middle.

Now, we examine the energy spectrum from a more
physical point of view. Specifically, we investigate the change
in the energy spectrum by moving from sufficiently large
positive (SVl(l) / Vl(l), where the Laughlin state is relevant, to
the Coulomb point, where the PH-conjugated Z, parafermion
state is anticipated to be relevant.

Figure 5 shows the exact energy spectra in the torus
geometry for various values of the Haldane pseudopotential
variation § Vlm / Vl(l) as a function of the magnitude of physical
momentum k = |K| in units of 1//g. The physical momentum
k is related with Q via k = Q — Kk, where k( denotes the zero
momentum. In our situation, kg = (N’/2,N’/2) and (0,0) for
even and odd N’, respectively, where N' = gcd(N,Ny) [69].
This means that kg = (N/2,N/2) in Fig. 5 since N' = N
is even. The energy spectra are computed in two different
finite-size systems with N = 8 [Figs. 5(a)-5(c) ] and 10
[Figs. 5(d)-5(f)], both of which show overall similar behaviors
as a function of SVI(I) / Vl(l).

At sufficiently large positive SVI(I) / Vl(l), the energy spec-
trum exhibits a well-developed magnetoroton structure with
its minimum located at |Kk|//p ~ 1.4, which is the defining
signature of the Laughlin state [43,69,94,95]. This is consistent
with the fact that the overlap between W7,3[8 Vl(l)] and V333 is

essentially unity at sufficiently large positive & Vl(]) / Vl(l).
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FIG. 5. Exact energy spectra in the torus geometry for various
values of the Haldane pseudopotential variation SVI(D / Vl(l) as a
function of the magnitude of physical momentum k = |K| in units of
1/1p. The physical momentum k is related with the pseudomomentum
Q via k = Q — ki, where k; denotes the zero momentum. The
lowest-energy states at pseudomomenta Q = (0,0) (N /2,0) (0,N/2),
and (N/2,N/2) are denoted as blue x’s in comparison with all the
other states denoted as red crosses. Note that, here, the aspect ratio is
chosen to be unity so that all the energy eigenstates at Q = (N /2,0)
and (0, N /2) are exactly superposed.

On the other hand, as § Vl(l) / Vl(l) is lowered to the Coulomb
point, the energy spectrum undergoes an intriguing transition
from the spectrum with the Laughlin-type magnetoroton
structure to that with the specific quasidegeneracy of the
ground state, which is characteristic to the PH-conjugated Z4
parafermion state, as discussed above. That is, the lowest-
energy states at Q = (0,0)(N/2,0)(0,N/2), and (N/2,N/2)
are pulled away from the continuum of other excited states
to become essentially the lowest-energy excited states at the
Coulomb point or slightly negative § Vl(l). We believe that this
provides reasonably strong evidence supporting that the PH-
conjugated Z4 parafermion state provides a good trial state rep-
resenting the exact 7/3 ground state around the Coulomb point.

Itis worthwhile to mention that the quasidegenerate excited
state at k = 0 was previously interpreted as the onset of the
incompressible-to-compressible phase transition [50]. In our
interpretation, this state is one of the two degenerate copies of
the Z4 parafermion state occurring at Q = (N/2,N/2).

V. CONCLUSION

In this work, we investigate the nature of the FQH state
at v =7/3 (and 8/3 in the presence of the PH symmetry) by
using ED in both torus and spherical geometries. Specifically,
we compute the overlap between the exact 7/3 ground state
and various competing states including (i) the Laughlin state,
Ws33, (ii) the fermionic Haffnian state, Wy, which is proven
in this work to be entirely equivalent to AWss;, (iii) the
antisymmetrized product state of two CF seas at 1/6 filling,
AWscrsgscrs, and (iv) the PH-conjugated Z4 parafermion
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state, CpyWz,, with Wz, identified as AW33p under the proper
understanding of the ground-state degeneracy in the torus
geometry as explained below.

It is shown that, while valid at sufficiently large positive
Haldane pseudopotential variation § Vl(l), the Laughlin state
loses its overlap with the exact 7/3 ground state significantly
around the Coulomb point. At slightly negative § Vl(l) , the PH-
conjugated Z, parafermion state is shown to have a substantial
overlap with the exact 7/3 ground state, being the highest
among the above four trial states. Also, around the Coulomb
point, the energy spectrum exhibits an intriguing change from
the spectrum with the Laughlin-type magnetoroton structure
to that with the specific quasidegeneracy of the ground state,
which is characteristic to the PH-conjugated Z4 parafermion
state. Therefore, we conclude that the PH-conjugated Z4
parafermion state has a reasonably good chance of representing
the exact 7/3 ground state around the Coulomb point.

From the perspective of the general guiding principle for the
FQH states in the SLL, all the above trial states are constructed
according to a guiding principle called the bilayer mapping
approach, where a trial state is obtained as the antisymmetrized
projection of a bilayer quantum Hall state with interlayer
distance d as a variational parameter. The bilayer mapping ap-
proach can be regarded as an alternative to the Z; parafermion
approach, while the two approaches coincide in the case of the
Z, parafermion state. That is to say, Wz, = AWas3.

It is emphasized that, in the torus geometry, there is
an issue of the ground-state degeneracy mismatch between
W, and AWs3. The ground-state degeneracy mismatch is
in apparent conflict with the analytical proof that the wave
functions of the two states are exactly identical in the infinite
planar geometry [59,60]. This apparent conflict is resolved
by interpreting the analytical proof in such a way that, in the
torus geometry, W, and AW33, are exactly identical only at
the common momentum sector, where W, and W33 [i.e.,
the Halperin (330) state itself] occur as the exact ground
states of their respective model Hamiltonians with the same
degeneracy. We have explicitly confirmed this to be the case
by showing that the entire degenerate Hilbert space expanded
by the degenerate copies of W, is exactly identical to that of
AWs30 at Q = (0,0) [mod gcd(N,Ny)l.

An interesting future direction is to investigate if the bilayer
mapping approach can be applied to the 2/5-filled SLL.
Several trial states are natural in terms of the bilayer mapping
approach. Particularly, in light of the substantial overlap be-
tween the exact 7/3 ground state and Cpy W 2, (=Cpp A W330), it
would be interesting to compute the overlap between the exact
12/5 ground state and the antisymmetrized Halperin (550)
state, AWsso. Note that the antisymmetrized Halperin (nn0)
state, AW,,o, was considered previously [59,74], while its
overlap with the exact Coulomb ground state was not studied.

It was argued in previous numerical studies [40,47,48]
that the Z; parafermion state provides a good trial state
representing the exact 13/5 ground state around the Coulomb
point. This means that, in the absence of PH breaking, the
PH-conjugated Z3 parafermion state could provide a good
trial state at v = 12/5. On the other hand, it was shown pre-
viously [42] that the Bonderson-Slingerland state is in a tight
energy competition with the Z3 parafermion state at v = 12/5.
If so, it would be interesting to investigate which state among
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the antisymmetrized Halperin (550) state, the PH-conjugated
Z5 parafermion state, and the Bonderson-Slingerland state has
the best overlap with the exact 12/5 ground state around
the Coulomb point. Note that the antisymmetrized Halperin
(550) state by itself is expected to be gapless according to
the pattern-of-zeros and vertex algebra approaches [74], while
the Z; parafermion state and the Bonderson-Slingerland state
are known to be gapped. The antisymmetrized Halperin (550)
state, however, can be gapped with addition of perturbations
driving the state away from the critical point [74].
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APPENDIX A: FERMIONIC (k + 1)-BODY
§-FUNCTION INTERACTION

In this Appendix, we prove that the Z; parafermion state
is the zero-energy ground state of the fermionic (k + 1)-body
é-function interaction at filling factor v = k/(k + 2), which is
written as

— 2k ~72(k—1) 2
Hk+1 - Z SP|~P2 ~~~~~ Pk+1 {Vp] Vpg T Vpk}

P1<P2<-<Pi+1

- zm)éz(zm - sz) T - pr),

(AD)

X SZ(ZPI 82(ZPk

where S, p,...p., 1s the symmetrization operator, and
2k—j+1
V[)( J+D

=(3/0z,) 71(8/9z,)*". Here, the Z;
parafermion wave functlon is glven by Wz, = Jyy, where
J = ]_[f\;j(zi — z;) and Y is the bosonic Read-Rezayi (RR)
wave function, which is defined as the zero-energy ground

state of the bosonic (k + 1)-body §-function interaction at
v = k/2 [40],

boson __
HY" = )

P1<p2<-<Pk+1

82 (ZPk - ZPk+l)‘

To begin with, we compute the energy expectation value
of H; for a trial fermionic wave function ¥ = Jy at v =
k/(k 4+ 2) with v being an arbitrary bosonic wave function
at v = k/2. Then, we show that the energy expectation value
becomes zero if and only if ¥ = i, i.e., the bosonic RR
wave function. Since Hy,; cannot have a negative expectation
value, Wz, = Jy is not only the zero-energy state, but also
the ground state of Hjy;. In the infinite planar geometry,
the uniqueness of W, at v =k/(k+ 2) is guaranteed by
that of i at v = k/2 [40]. It is worthwhile to mention that,

Sz(zm - ZPz)SZ(ZPZ - Zl’3) e

(A2)
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written in the form of a Trugman-Kivelson-type interaction,
the above expression for the fermionic (k 4 1)-body §-function
interaction was previously mentioned in Ref. [91], while the
power of each differential operator was not specified explicitly.

For the sake of convenience, let us rewrite Eq. (Al) in a
compact form:

Hoa= Y. S, ]‘[v2/52 {z),

peS(Nk+1)  j=I

(A3)

where S(m,n) indicates all possible sets of n different indices
chosen from {1,2, . m} N is the total number of particles,
Sp = Spipapins = (0/0zp, )1(8/8zp ) = 8é1 alj’f’ and
5 ({z) = 8%(zp, — z,,2)8 (Zpy — Zpy) -+ 8%(2p, — Zpy,,)- Note
that the powers of differential operators can be rearranged
as shown in Eq. (A3) due to the symmetrization operator.

The energy expectation value of Hi; for W = Jy is
written as follows:

(W[ Hyp1 W)
- ¥ / [Tv3/ae | o (A4)
pES(N k+1)
=Gk+D Y v;;af,({z}) P (AS)
peS(N k+1) j=1
k
=k+D! Yy f s [[view], @6
PES(N, k+1) j=1

where the differential [], dx;dy; = 27" [, dZ;dz; is omitted
for simplicity. Since the spatial coordinates are dummy
variables, which are to be integrated out, the symmetrization
operator just generates (k 4 1)! identical terms as shown in
Eq. (AS5). Then, performing integration by parts, one can obtain
Eq. (A6), where the term inside the parentheses is further
evaluated by using the fact that W = J:

k
[[vy/ow
j=1
k
]_[ 3 (JPTY) (A7)
j=1
k k 2
=TT )\ ITon 2o ||| 0P+ a9
=1 j=1 P
k
=1_[(J + Xps (A9)

where J, = H1<i<j<k+l(zpi — zp,;) and x, denotes any terms
generated by applying d,, and épj at least once to 1 rather
than J, and J,, respectively.

Now, the §-function constraint in Eq. (A6) imposes z,, =
Zp, =+ = Zp,,,,» which makes x, vanish since at least one
factor from J), survives in the form of (z,,, — z,,). On the other
hand, the first term in Eq. (A9) does not necessarily
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vanish, giving rise to a non-negative energy expectation value in Eq. (A6):

(W[ Hp | W) o ) /82 (A10)
PE(N k+1)
The energy expectation value becomes zero if and only if ¥ vanishes when z,, = z;,, = -+ = z,,,,. This means that v is none

other than the bosonic RR wave function, 1. Consequently, the Z; parafermion wave function, ¥, = J, is the zero-energy
ground state of the fermionic (k 4+ 1)-body §-function interaction. Q.E.D.

APPENDIX B: SECOND QUANTIZATION FORM OF THE FERMIONIC FIVE-BODY §-FUNCTION INTERACTION
IN THE TORUS GEOMETRY

Here, we describe how to obtain the second quantization form of the fermionic five-body §-function interaction in the torus
geometry. Note that this description can be generalized to any fermionic (bosonic) (k + 1)-body é-function interaction.
To begin with, the fermionic five-body §-function interaction is written in the planar geometry as follows:

Hs = Z Si ks [VEVIVEVES (X — 1))8%(rj — )8 (xx — 1)8° (1) — )] (B1)
i<j<k<l<s
= Z Sijkt,s Vs(X1,X2,X3,X4), (B2)

i<j<k<l<s

where §; j k1.5 s the symmetrization operator, X; =I; —T;Xp =T; — I\, X3 = I} — Iy, and X4 = 1; — ry. Inturn, Vs(X1,X2,X3,X4)
can be rewritten in terms of its Fourier components:

Vs(x1,%2,X3, X4)—/ d2q1/ dzqu d2q3/ d q4Vs(q1,qz,q3,q4)eXp< doa- X> (B3)

v=1

where [, represents the integration over the infinite two-dimensional space, and Vs(q1,92,43,94) = |q11°|q51°|q6|*|q71%/(27)®
withqs = q2 — q1 96 = q3 — q2, and g7 = q4 — Q3.

The fermionic five-body §-function interaction in the torus geometry, H°"*, is obtained by modifying Hs to satisfy the
periodic boundary condition with respect to the unit cell defined by two vectors, L; = L(sin6X + cos03) and L, = L, ¥:

torus E torus
HS == Si,j,k,l,.Y V5 (X],Xz,X3,X4), (B4)
i<j<k<l<s

where

4 [ee)
VstoruS({XU}) — Z Z Vs({x, + u,L; + v,1,}), BS5)
v=1 u,,v,=—00
where {x,} = (X1,X2,X3,X4).
The periodic boundary condition in Eq. (B5) can be readily satisfied by choosing the following Fourier representation:

4
VI((x, ) = 3 V(g ) exp (i TR X) : (B6)
v=1

{qv}

where q, = m,Q; 4+ n,Q; (m,,n, € Z)with Q, and Q, being the reciprocal vectors that satisfy L; - Q; = 27 and L, - Q, = 27,

respectively. Note that the summation is taken over all possible integer values of (m,,,n,). Here, V"*({q, }) is the same as Vs({q,})

except the normalization factor; V" ({q, }) = |q:/®|qs/®|qe|*|g7]?/v* where v is the area of the unit cell, i.e., v = |L; x Ly|
Now, the fermionic five-body §-function interaction can be represented in terms of the torus basis states:

I -, ...
H§°““=§ D riadsiais!Si s Va( {Xu})IJmJ9JsJ7J6>c]l Lc;CLCLCJ-(,cﬁcjgcjgcjm (B7)
Jisees 1o
_ Pl ol ol o
= Z 'Ajl ~~~~~ jlocjlcjzcj; €y€js€isCirCisCisCiro> (B3)

where (- - |S; j ks VUS| - -+ ) = SI(- - - [Vao™S| ... ) since the symmetrization operator just generates 5! identical terms. Above,
j1 1 defined by

,,,,,

..... Z Ve hB), s, (B9)
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where

Bj,....inddv}) = (1l exp(iqi - 1) j10) {j2l exp(iqs - ;)| jo) (j3] exp(iqs - Ti)ljs) {jal exp(iq7 - ¥1)| j7) (5| exp(—iqa - xy)l j6),

(B10)

yeeey

where {q,} = (q1.92,93,94), and qs q¢, and q7 are derived from {q,} as shown below Eq. (B3).
By using the single-particle eigenstate of the lowest Landau level,

(X, +dL, sinf X; +dL, sin6)> i cos 0
[z( o+ dLysin )y:|exp|:_(x+ j o+ dLysin )} xp[_’f&(X,erLlsine)z}
1 203 2l% sinf

1 1/2 oo
(rlj)=(m> > e

oo

(B11)
where X; = 2rl%j/L, and L1 L, sin® = 2712 N, one can eventually obtain the following expression for Bj, ... j,({q,}):

Bj,....io({aw})
! / llzg 2 2 ) 5 5
- Sjl_jIOﬂ”l8}2—]%"58‘/1'3—1'3,7165;6—1'5,"48]1+j2+<i3+j4+j5Js+j7+js+j9+j10 €Xp [_Z(ml' +1q4]” + 195]” + [q6]” + 1q717)

in . . . . . . ) )
X exp |:N_{m1(”2 +2jo —2j1) +ma(ny —2jo —n3 +2j3) + m3(ng +2j7 —ny — 2j3) + ma(nz — 2j7 + 2]5)}},
[

(B12)
where it is important to note that m, and n,, (v = 1, ... ,4) are related to q, via q, = m,Q; + n, Q.. Also, the primed Kronecker
8 is defined as §; , = 1 if s = # modulo Ny and 0 otherwise.

APPENDIX C: AN IDENTITY FOR THE SYMMETRIZED JASTROW FACTOR
In this Appendix, we prove Eq. (16). We begin by setting N/2 = nx; = z; X;1+, = w;, and rewrite Eq. (16) as
2
270 3 AmAD = YD ADAUY |, (C1)
. J)ar=1 U, J)ar=1
where
!
A(arar,....ap) = ] (%a, —%a,) (€2)
ISp<gsr
and the summations are taken over
I ={aj,a....a,}, 1=a <a <-- <ay, (C3)
J={b1,by...,b,}, by <by<---<b,, (C4)
{alaa2s e 7anvblsb2s e abn}:{132a e ,2”} (CS)
Equation (C1) trivially holds for n = 1. Below, we prove it for general n by induction.
To this end, let us set
Pixixa. . x) = Y ADAWD? (C6)
I, J)a1=1
4 ’ 4 ’
= > I Gr=xa,)" A0 [T (o —x,) AU, (er)
I',J")2<p<n 2<g<n
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and
Quxixa...x) = > AUPAWJY (C8)
. J)a=1
=3 1 Gi=xa,)’ 200 [T (e, —x,) AU (C9)
I',J"2<p<n 2<qg<n
where I’ = {ay, ...,a,} and J' = {by, ... ,b,}. We assume the induction hypothesis, which is written in terms of P, _; and Q,,_,
as follows:
2"2p, = Q2 . (C10)
First, we prove that Eq. (C10) holds for x; = x, = x. Since IT(x; — Xa,) =0 when x; = x, = x and a, = 2, we have
Paxxxs, o) = 3 [] (r=x) a0 TT (x=»,) a0 (C11)
(I',J) 2< p<n 2<q<n
[T ¢=x0* > auyauy (C12)
3<k<2n R
=2 ]_[ (x —xp)* Z AN AU (C13)
3<k<2n ', J")a=3
=2 [] & =x0)'PaciCxs, ..o ox20) (C14)
3<k<2n
and
_ 2
Qn(xx,x3, .0 =2 [ (x =207 Quoixs, - xan), (C15)
3<k<2n

which, with help of the induction hypothesis in Eq. (C10), give rise to
0, (x,x,x3, ..., X2,)7 = 2" Py, x, x5, LX), (C16)
This implies
2P - Qp = (i — 'R, (C17)
where the polynomial R is nonzero for x; = x, = x. In order to determine s, we prove

aPl’l 9 9 AR n a n 9 bl AR n 2
-1 (x,x,x3...,%2,) _ On(x,x,X3...,X29) . (C18)
0x 0x

By Eq. (C14), we have

0P, (x,x,x X ,,) 8
e EEE) Pusi(x3, ... Xo). (C19)
0x — Xk
3<I<2n 3<k<2n
Similarly, by Eq. (C15), we have
30,(x,X,X3, ..., Xm)2
OnCO2Xs, 0 _ 0 (ks ) (C20)
0x
< [T @—x? )2 —Qn 13, - Xon) (c21)
3<Ii<2n 3<k<2n
=[] c-x* > —Qn 13, - xn), (C22)
2<I<2n 3<k<2n

which, with help of the induction hypothesis [Eq. (C10)] and Eq. (C19), leads to the proof of Eq. (C18). Thus, the partial
derivative of both sides of Eq. (C17) with respect to x for x; = x, = x gives rise to

S(xl - x2)s_lR|x1:xz:x = Oa (C23)
which is satisfied only for s > 2. Hence, by the symmetry, we have
27— 0= [] i—x)?V (C24)
1<i<j<2n
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for some polynomial V. However, the degree of each monomial in the left-hand side, which is 4n(n — 1), is less than that in the
right-hand side, which is at least 2n(2n — 1). Therefore, VV must be zero. Q.E.D.
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