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Electric field control of emergent electrodynamics in quantum spin ice
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We study the coupling between conventional (Maxwell) and emergent electrodynamics in quantum spin
ice, a 3+1-dimensional U(1) quantum spin liquid. We find that a uniform electric field can be used to tune
the properties of both the ground state and excitations of the spin liquid. In particular, it induces emergent
birefringence, rendering the speed of the emergent light anisotropic and polarization-dependent. A sufficiently
strong electric field triggers a quantum phase transition into new U(1) quantum spin liquid phases, which trap
emergent electric π fluxes. The flux patterns of these new phases depend on the direction of the electric field.
Strikingly, some of the canonical pinch points in the spin structure factor, characteristic of classical spin ice,
emerge near the phase transition, while they are absent in the quantum spin liquid phases. Estimating the electric
field strength required, we find that this transition is potentially accessible experimentally. Finally, we propose a
minimal mechanism by which an oscillating electric field can generate emergent radiation inside a quantum spin
ice material with non-Kramers spin doublets.
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I. INTRODUCTION

Understanding the intertwined electric and magnetic prop-
erties of a solid is of great importance, not only for technology
(such as in the context of multiferroicity [1]), but also
from a fundamental physics viewpoint. Here, we address the
question of how a quantum spin liquid (QSL) described by an
emergent U(1) gauge field—essentially, an emergent form of
Maxwell electromagnetism—responds to the application of a
laboratory electric field. The underlying question is thus how
the fundamental electromagnetism of the vacuum interacts
with the one generated dynamically by the magnetic degrees
of freedom giving rise to the QSL.

Our model system is quantum spin ice [2–14]—a three-
dimensional quantum spin liquid [15–18]. Owing to our
growing understanding of such quantum ordered [19] phases
and, in parallel, the discovery of a number of frustrated
rare-earth pyrochlore magnets that do not order to the lowest
experimentally accessible temperatures [20–28], the study
of quantum spin ice has received much impetus as a rare
condensed matter physics example of a three-dimensional state
beyond the conventional Landau-Ginzburg-Wilson description
of the phases of matter.

The U(1) gauge structure [2,5,14] of quantum spin ice
manifests itself as an emergent electromagnetism compris-
ing gapless collective emergent “photons”, alongside novel
gapped excitations—emergent “electric charges” and “mag-
netic monopoles”. (In the following, we will drop the inverted
commas around the emergent analogues of electromagnetic
entities.) In particular, the gaplessness of the photons, resulting
from the emergent U(1) gauge structure, is expected to be
more robust than that of Nambu-Goldstone bosons arising
from the spontaneous breaking of a continuous symmetry [29]:
e.g., magnons in a magnetically ordered state are generically
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gapped out by perturbations breaking the continuous symmetry
down to a discrete one.

How, then, can one probe and manipulate these new
types of excitations? As far as the magnetic monopoles are
concerned, it has been proposed to model their response
to a magnetic field along the same lines as the response
of an electrolyte to an electric field [7,30]. Via such a
magnetolyte/magnetricity analogy, several features—such as
a magnetic liquid-gas transition [7], and even the nonlinear ac
susceptibility [31,32]—can be naturally modeled in classical
spin ice.

In this paper, we address the magnetoelectric properties of
quantum spin ice. By considering the effect of an external
electric field, we show that both the ground state and
excitations respond in a characteristic fashion. In particular,
we show that (1) the emergent photons acquire a birefringent
behavior, which depends sensitively on the external electric
field direction, and (2) sufficiently strong fields can change
the nature of the quantum spin ice ground state by stabilizing
different types of U(1) QSLs with nontrivial distributions of
the emergent electric flux. These findings are related in that
the emergent speed of light vanishes for certain combinations
of the applied electric field and the polarization/propagation
direction of the emergent photons, rendering the zero-flux QSL
unstable. This triggers a (presumably discontinuous) quantum
phase transition to an anisotropic π -electric flux U(1) QSL,
where the flux distribution is related to the direction of the
applied electric field.

This provides a new perspective on the question of how to
identify the presence of a U(1) QSL in candidate rare-earth
pyrochlores, particularly on how to find concrete signatures
of gapless emergent photons and manipulate them through
external probes. It has already been noted that the spin
structure factors probed in neutron scattering experiments
exhibit features characteristic to U(1) QSLs that are due to
the emergent photons [2,8,33]. However, these features have a
vanishing intensity at low energies. Such vanishing of intensity
in the equal-time spin structure factor of quantum spin ice
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should be contrasted with the finite intensity characteristic
pinch points in the static spin structure factor of classical
spin ice [33–36]. In this work, we show that a subset of the
canonical pinch points re-emerge as the “photon” velocity
vanishes near the phase transition mentioned above. Crucially,
we estimate that this transition could potentially be observed
with experimentally accessible electric fields and for typical
values of the coupling constants in candidate quantum spin
ice materials. In addition, we point out an interesting surface
effect in quantum spin ice made of non-Kramers spin doublets,
where shining an oscillating electric field on the surface can
generate radiation of emergent light inside the material.

Our analysis of the magnetoelectric effects in quantum spin
ice is based on the theory of the coupling of electric fields with
spins in magnetic insulators. Due to virtual charge fluctuation
and/or magnetostriction, magnetic insulators can develop
electric polarization which is a function of the spin degrees
of freedom [37]. This electric polarization in turn couples to
electric fields. Since the nature of the coupling to an electric
field is very different from the standard Zeeman-type coupling
to a magnetic field, it may produce qualitatively different
low-energy responses such as charge response (e.g., optical
conductivity [37,38]). This can be a particularly interesting
way to understand the low-energy behavior in frustrated
magnets with possible QSL ground states and unconventional
excitations [39,40]. Experimentally, an interesting power-law
dependence of optical conductivity on frequency has been
observed in the kagome QSL candidate herbertsmithite [41].

In the context of classical spin ice systems, Khomskii’s
seminal work [42] found that the gapped emergent magnetic
monopoles carry an electric dipole moment which influences
the dielectric response of the material [43] and paves the way
for the appearance of monopole crystals [44]. However, this
leaves open the question of the effect of electric fields below
the monopole excitation energy scale. Such effects are absent
in classical spin ice [42] but, as we show here, can lead
to nontrivial features in quantum spin ice. In this vein, this
present work extends Khomskii’s [42] by taking into account
(a) the symmetry of the rare-earth pyrochlores and (b) quantum
effects, which lead to qualitatively novel behavior below the
monopole excitation energy scale.

The remainder of this paper is organized as follows.
For completeness, we begin with a short description of the
minimal spin model for quantum spin ice in Sec. II and
discuss the limit in which it supports a U(1) QSL ground
state. In Sec. III, we introduce the electric polarization
operator and derive its explicit form using symmetries. We
then obtain the low-energy effective theory of quantum spin
ice in the presence of a uniform external electric field. We
study the properties of this theory for small electric fields
in Sec. IV. We find that the speed of the emergent photons
becomes both polarization- and direction-dependent. This
electric field-induced birefringence leads to experimentally
observable changes in the spin structure factor, as shown in
Fig. 3. Section V describes the trapping of (emergent) electric
π fluxes for large external electric fields. The QSLs with and
without π fluxes (at high and low external electric fields,
respectively) represent different U(1) QSLs where the ground
state and the low-energy excitations transform under different
projective representations of the symmetry group. Hence they

are separated by a quantum phase transition, presumably first
order, as we argue in Sec. VI. In Sec. VII, we briefly discuss
the relevance of our work to candidate quantum spin ice
materials and estimate the electric field strengths needed to
observe the effects mentioned above. Finally, we comment on
a potentially interesting surface effect of an oscillating external
electric field on quantum spin ice materials with non-Kramers
doublets in Sec. VIII. We conclude with a brief summary of
the present work in Sec. IX. The details of various calculations
are discussed in the Appendices.

II. THE QUANTUM SPIN ICE HAMILTONIAN

In candidate quantum spin ice materials, typically rare-earth
pyrochlores with the chemical formula R2T2O7, the rare-earth
(R) magnetic moments sit on a network of corner-sharing
tetrahedra (see Appendix A). Due to the interplay of spin-
orbit coupling, crystal field and Coulomb repulsion between
electrons, the low-energy magnetic degree of freedom, often
an Ising doublet, has natural quantization axes changing from
site to site and pointing along the local [111] crystallographic
direction [3]. Choosing, without loss of generality, the up
tetrahedra to define the axes of spin quantization, the spins
can be denoted as Si = t̂i sz

i + x̂i s
x
i + ŷi s

y

i , where t̂i , x̂i and
ŷi form local triads [6] (see Appendix A 1). The minimal
Hamiltonian, consistent with symmetries, that may stabilize
the quantum spin ice is given by

H = Jzz

∑
〈ij〉

sz
i s

z
j − J±

∑
〈ij〉

(s+
i s−

j + s−
i s+

j ), (1)

where Jzz,J± > 0. In the regime where Jzz � J±, the ground
state of Eq. (1) is a U(1) QSL: the quantum spin ice, with
gapped electric and magnetic charges and gapless photons
(see below) [2]. While other terms consistent with symmetries
are allowed and may be of importance to actual rare-earth
materials [6], to simplify calculations and explore the magne-
toelectric effects in the quantum spin ice state, we focus on
Eq. (1) in the rest of this paper.

The low-energy description of the QSL phase can be
obtained by starting with the Hamiltonian in Eq. (1) and
performing a perturbative expansion in J±/Jzz to the leading
nontrivial orders. While this is well known [2,3,14], we briefly
review it here for the sake of completeness and also setting up
our notations.

Low-energy theory of quantum spin ice

The classical ground states favored by the Jzz term consist
of two spins pointing in and two spins pointing out of every
tetrahedron. This two-in-two-out ice manifold is macroscop-
ically degenerate and is separated from the excited states (in
which at least two tetrahedra do not satisfy the ice rules) by
an energy of the order of Jzz [3]. The transverse terms lift this
degeneracy without leading to magnetic ordering, resulting in
the quantum spin ice state [2,14].

The leading-order nontrivial term in the degenerate per-
turbation theory, as shown by Hermele et al. [2] (also see
Appendix C), comes from cooperative flipping of the spins
along the smallest closed loops on the pyrochlore lattice: the
hexagons formed by six tetrahedra. This leads to an effective
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low-energy Hamiltonian given by

Heff = − g
∑
�

(O� + H.c.), (2)

where O� = s+
1 s−

2 s+
3 s−

4 s+
5 s−

6 (1, . . . 6 ∈ �) is an operator
that flips six spins on a given hexagonal loop, and g =
12J 3

±/J 2
zz.

The low-energy physics of the system encoded within the
effective Hamiltonian [Eq. (2)] becomes transparent following
the mapping to an effective problem of electromagnetism [2].
To this end, we note that each site of the pyrochlore lattice
can be uniquely identified with a bond of the medial diamond
lattice that is obtained by joining the centers of the tetrahedra
forming the pyrochlore lattice (see Appendix A). The spins sit
on the bonds of this diamond lattice. For a spin at site i of the
pyrochlore lattice, we write

sz
i = brr′ − 1

2 , s±
i = e±iαrr′ , (3)

where r (r′) denotes the center of an up (down) tetrahedron,
brr′ is the emergent magnetic field, and αrr′ is the dual vector
potential that is conjugate to brr′ , i.e., on a lattice

[brr′ ,αr′′r′′′ ] = i(δrr′′δr′r′′′ − δrr′′′δr′r′′ ). (4)

The emergent electric field,

ess′ = ∇� × αrr′ , (5)

is given by the lattice curl of the dual vector potential around
the hexagonal loops of the pyrochlore lattice. ess′ , therefore,
is defined on the links of the dual diamond lattice which are
denoted by ss′ in accordance with the right-hand rule.1

In terms of these new variables, the effective low-energy
Hamiltonian [Eq. (2)] can be recast as [2]

Heff = U

2

∑
〈rr′〉

b2
rr′ − 2g

∑
〈ss′〉

cos(ess′ ) (6)

with U > 0 a model parameter. This low-energy effective
theory is a pure compact U(1) lattice gauge theory in (3+1)-
dimensional space-time. The deconfined phase of this theory
corresponds to a U(1) quantum spin liquid phase, which is of
interest to us. In this deconfined phase, the compactness of
the U(1) gauge group is not important and we can expand the
cosine terms to get a more explicit similarity with the theory
of quantum electrodynamics [2]: up to a constant,

Heff = U

2

∑
〈rr′〉

b2
rr′ + g

∑
〈ss′〉

e2
ss′ . (7)

While we can continue working with Eq. (7) (as we show
below), it is insightful to first derive a continuum limit of this
theory by taking∑

→ 1

l3

∫
d3r, ess′ = le · l̂ss′ , brr′ = lb · t̂rr′ ,

where l is a lattice length scale (note that this is a slightly
different way of scaling than used in Ref. [2]). Here, l̂ss ′

1Note that our definitions of the emergent fields e and b follow
Ref. [8] and are reversed with respect to the original treatment in
Ref. [2].

is the unit vector in the direction from s to s′ on the dual
diamond lattice, which is in one-to-one correspondence with
the quantization axes of spin ice denoted by t̂m. More precisely,

ess′ = le · t̂m for 〈ss′〉 ‖ t̂m.

We stress that the spin ice quantization axes t̂m do not
form an orthonormal basis, but instead respect the condition∑

m t̂αmt̂
β
m = 4

3δαβ (see Appendix A 1). Using this, we obtain

Hcontinuum
eff = 1

2

∫
d3r(Ub2 + K0e2), (8)

with U = 4U/3l and K0 = 8g/3l. This is now the continuum
Hamiltonian for a noncompact U(1) gauge theory, similar
to the theory of quantum electromagnetism, which supports
gapless excitations akin to photons. In the following, we refer
to such excitations as emergent photons.

This completes our discussion of the low-energy description
of quantum spin ice. We next formulate the problem of
applying an external electric field to such a quantum spin
ice state, starting with a description of the electric polarization
operator.

III. ELECTRIC POLARIZATION IN QUANTUM SPIN ICE

It was recently shown by Bulaevskii et al. [37] that virtual
charge fluctuations and/or magnetostriction can lead to electric
polarization in Mott insulators. Such polarization is a function
of the spin operators with the appropriate symmetry, i.e., a
polar vector under lattice symmetries and even under time
reversal. Several recent works have studied electric polar-
ization allowed by lattice symmetries, investigating optical
conductivity in QSLs [39,40] as well as dimerized phases [38],
leading to interesting predictions for electric field responses.

This problem was recently studied in the context of classical
pyrochlore magnets by Khomskii [42], who pointed out
that the magnetic monopoles of classical spin ice [7] carry
electric dipole moments as they break inversion symmetry.
Thus magnetic monopoles couple to external electric fields,
affecting dielectric properties of classical spin ice at finite
temperature. In view of investigating the magnetoelectric
properties of quantum spin ice, we note two limitations of
this calculation: (1) the form of the electric polarization
operator derived in Ref. [42] is valid only in the presence
of spin-rotation symmetry, which is generally not present
in rare-earth pyrochlores (a promising class of candidate
quantum spin ice materials), and (2) within the ice manifold,
the polarization operator for classical spin ice is identically
zero. Hence there is no polarization effect below the magnetic
monopole excitation energy scale.

Here we address these issues explicitly by taking into
account both the true microscopic symmetries of rare-earth
pyrochlores and quantum effects. We show that these two
issues are intricately related to the nontrivial magnetoelectric
effects in quantum spin ice below the magnetic monopole
energy scale.

The electric polarization operator can in principle be
derived, order by order, using strong coupling perturbation
theories taking into account the microscopic mechanisms
inducing the polarization such as virtual charge fluctuations
and/or magnetostriction. However, symmetry considerations
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FIG. 1. A single up tetrahedron with the global coordinate axes.
The components of the electric polarization operator for a single
tetrahedron are given by Eqs. (9–13).

alone fix the form of such operators, whereas the bare
magnitude of the coupling constants depends on the underlying
microscopic mechanisms [37,38].

A. Electric polarization operator for cubic pyrochlores
with spin-orbit coupling

For cubic pyrochlores, the symmetry group is the octahedral
group, Oh 
 Td

⊗
I , where Td is the tetrahedral group and

I is inversion. The irreducible representations admit a triplet
T1u which is odd under inversion. Any operator transforming
as a T1u representation and even under time reversal is
then proportional to the electric polarization operator. The

magnetostriction mode that can generate such polarization
consists of a staggered trigonal distortion of the up and the
down tetrahedra. As noted above, due to the absence of spin-
rotation symmetry in the underlying microscopic Hamiltonian
of quantum spin ice materials [e.g., Eq. (1)], the resulting
polarization operator is not spin-rotation invariant and hence
differs from the form obtained in Ref. [42]. The details of the
symmetry transformations are given in Appendix B.

For a single up tetrahedron (shown in Fig. 1), we find it
convenient to split the polarization operator into (a) a “classi-
cal” or longitudinal (L) contribution and (b) a “quantum” or
transverse (T) contribution. The net polarization operator is
given by

P = P(L) + P(T ), (9)

where the three classical/longitudinal components of the
electric polarization vector are given by

P (L)
x = A

(
sz

1s
z
4 − sz

2s
z
3

)
,

P (L)
y = A

(
sz

1s
z
3 − sz

2s
z
4

)
,

P (L)
z = A

(
sz

1s
z
2 − sz

3s
z
4

)
, (10)

where A is a coupling constant that depends on the underlying
microscopics. Note that these are purely classical terms which
are identically zero in the classically degenerate ground-state
(ice) manifold. Thus, in order to have nontrivial electric field
effects in classical spin ice, one has to incorporate magnetic
monopoles, which are high-energy excitations [42].

In quantum spin ice, however, in addition to the above
classical terms, we find contributions to the polarization
operator from the transverse components of the spins. These
quantum/transverse contributions are given by

P (T )
x = L

(−sx
1 − sx

4 + sx
2 + sx

3

)+ B[(s+
1 s−

4 + H.c.) − (s+
2 s−

3 + H.c.)] + C[(ωs+
1 s+

4 + H.c.) − (ωs+
2 s+

3 + H.c.)]

+D
[{

sz
1

(
ω2s+

4 + ωs−
4

)+ (1 ↔ 4)
}− {sz

2

(
ω2s+

3 + ωs−
3

)+ (2 ↔ 3)
}]

, (11)

P (T )
y = L

[
1

2

(
sx

1 + sx
3 − sx

2 − sx
4

)−
√

3

2

(
s
y

1 + s
y

3 − s
y

2 − s
y

4

)]+ B
[
(s+

1 s−
3 + H.c.) − (s+

2 s−
4 + H.c.)

]
+C[(ω2s+

1 s+
3 + H.c.) − (ω2s+

2 s+
4 + H.c.)] + D

[{
sz

1(ωs+
3 + ω2s−

3 ) + (1 ↔ 3)
}− {sz

2(ωs+
4 + ω2s−

4 ) + (2 ↔ 4)
}]

, (12)

P (T )
z = L

[
1

2

(
sx

1 + sx
2 − sx

3 − sx
4

)+
√

3

2

(
s
y

1 + s
y

2 − s
y

3 − s
y

4

)]+ B[(s+
1 s−

2 + H.c.) − (s+
3 s−

4 + H.c.)]

+C[(s+
1 s+

2 + H.c.) − (s+
3 s+

4 + H.c.)] + D
[{

sz
1(s+

2 + s−
2 ) + (1 ↔ 2)

}− {sz
3(s+

4 + s−
4 ) + (3 ↔ 4)

}]
, (13)

where ω = ei2π/3 and B,C,D, and L are coupling constants
which, just like A, depend on microscopic details.

Time-reversal symmetry places additional constraints
on the allowed terms in the polarization operator. For
Kramers spin doublets (such as in Dy and Yb pyrochlores),
{sx,sy,sz} → −{sx,sy,sz} under time reversal, which enforces
L = 0 by symmetry. However, for non-Kramers spin doublets
(such as in Pr and Tb pyrochlores), sz → −sz and {sx,sy} →
{sx,sy} under time reversal, because the transverse components
are proportional to the magnetic quadrupole moment, whereas
the longitudinal component is proportional to the magnetic

dipole moment [11]. This enforces D = 0 in the above
expressions for the polarization operator.

Although these quantum terms have zero projection in
the ice manifold as they generate spin flips, they can
mediate virtual processes connecting different ground states
and thereby generate nontrivial matrix elements within the
classically degenerate ice manifold. This leads to nontrivial
magnetoelectric effects much below the magnetic monopole
excitation gap, as we show below.

The polarization operator for a down tetrahedra, in the
presence of inversion symmetry, is given by replacing the
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above coupling constants as follows:

{A,B,C,D,L} → {−A, − B,−C,−D,−L}. (14)

The polarization operator thus has the right symmetry to couple
to an external electric field.

Importantly, our derivation assumes that the pseudospin
operators transform as pseudovectors under space group
operations. These transformations are however expected to be
more complicated in the case of “dipolar-octupolar” doublets,
where one of the pseudospin components transforms as part of
a magnetic octupolar tensor [45,46]. This physics is expected
to be relevant in Nd and Ce-based pyrochlores, which also
include promising QSL candidates [47,48].

B. Coupling to a uniform external electric field

The coupling to a uniform external electric field E is given,
to leading order, by

HE = α
∑
�

P� · E, (15)

where α is a coupling constant, which allows to keep track of
the perturbation theory (see below) and � denotes a sum over
all tetrahedra. Hence the full spin Hamiltonian, in the presence
of an electric field, is given by

H = H + HE, (16)

where H is given by Eq. (1). To simplify calculations
illustrating the novel effects of the above magnetoelectric
coupling, we concentrate on the case L = C = D = 0 in
Eqs. (9–13). We shall discuss the effects of some of these
couplings in due course.

C. Effective low-energy Hamiltonian in the presence
of an external electric field

We now consider the regime where Jzz � J±,|E|. In this
regime, we can perform perturbation theory to get the effective
Hamiltonian in the presence of the electric field, to the leading
nonzero order in A and B, by extending the calculations of
Hermele et al. [2]. This is done in Appendix C. To the leading
nontrivial (third) order, the effective Hamiltonian is given by
(up to constants)

Heff = −g
∑
�

(O� + H.c.)

− gχ

4∑
m=1

[3(Ê · t̂m)2 − 1]
∑
�⊥t̂m

(O� + H.c.), (17)

where χ ≡ α2B2E2/2J 2
± is a dimensionless parameter, Ê

is the unit vector pointing in the direction of the external
electric field, and O� = s+

1 s−
2 s+

3 s−
4 s+

5 s−
6 (1, . . . 6 ∈ �), g =

12J 3
±/J 2

zz as before. This expression reduces to Eq. (2) when
E = 0. As a side remark, we note that the above polarization
also affects the dielectric properties of the system. As discussed
in Appendix C, the coupling in Eq. (15) leads to additional
contributions to the dielectric constant, which can be of
experimental interest, similar to that of classical spin ice [43].

Following the mapping described in Sec. II, the effective
Hamiltonian [Eq. (17)] can be rewritten as

Heff = U

2

∑
〈rr′〉

b2
rr′ − 2g

∑
〈ss′〉

cos (ess′ )

− 2gχ

4∑
m=1

[3(Ê · t̂m)2 − 1]
∑

〈ss′〉‖t̂m

cos(ess′ ). (18)

This should be contrasted with Eq. (6). It is now clear that
even in the presence of an external electric field, we have a
pure compact U(1) lattice gauge theory at low energies, albeit
with anisotropic couplings.

We now introduce a more convenient labeling convention.
Taking r and s to represent only up-tetrahedra, we denote the
bonds on the direct and dual diamond lattices, respectively, by

(r,n) ≡ (r,r + tn) and (s,m) ≡ (s,s + tm), where tn = a0
√

3
4 t̂n

(similarly for tm) and a0 is the dimension of the cubic unit cell
(see Appendix A).2 We thus rewrite Eq. (18) as

Heff = U

2

∑
r,n

b2
r,n −

∑
s,m

Mm cos(es,m), (19)

where the coefficients Mm are given by

Mm = 2g(1 − χ + 3χ (Ê · t̂m)2). (20)

Having derived the low-energy Hamiltonian in the presence
of an external electric field, we now explain the implication of
this coupling for the low-energy physics of quantum spin ice.
To this end, we note that while Jzz � J±,|E| throughout this
work, the relative strength of J± and |E|, characterized by the
dimensionless ratio χ = α2B2E2/2J 2

±, leads to two possible
regimes: small electric fields (when χ � 1) and large electric
fields (when χ � 1). We discuss the physics of both these
regimes in turn, starting with the small-field limit.

IV. SMALL-FIELD LIMIT: EMERGENT BIREFRINGENCE

As discussed earlier, the ground state of the minimal
quantum spin ice model, Eq. (2), is a U(1) QSL with a low-
energy spectrum dominated by the gapless, linearly-dispersing
emergent photons. The QSL is a deconfined phase of the gauge
theory. One can neglect the gapped electric and magnetic
charges at low energies, and hence neglect the compactness
of the gauge group. Thus the cosine terms in the Hamiltonian
in Eq. (19) can be expanded to give

Heff = U

2

∑
r,n

b2
r,n + 1

2

∑
s,m

Mme2
s,m. (21)

We show next that, when subjected to a small, uniform
external electric field (χ � 1), the emergent photons acquire a
birefringent behavior.

2Similarly, we label the bonds directed from down-tetrahedra
to up-tetrahedra as (r, − n) ≡ (r + tn,r) and (s, − m) ≡ (s + tm,s).
However, to avoid double-counting, these bonds do not appear in the
Hamiltonian [Eq. (19)].
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A. Continuum theory

The Hamiltonian in Eq. (21) is quadratic in the fields and
can be diagonalized to find the dispersion of the excitations—
the emergent photons. However, before obtaining the full
solutions on a lattice (see Sec. IV B), it is insightful to obtain
the continuum theory which is valid for long wavelengths.
Extending the prescription outlined in the previous section to
the Hamiltonian in Eq. (21), we get

Hcontinuum
eff = 1

2

∫
d3r(Ub2 + eαKαβeβ ), (22)

where U = 4U/3l, and the matrix K is given by

K = K0

⎡
⎢⎣

1 2χÊxÊy 2χÊxÊz

2χÊxÊy 1 2χÊyÊz

2χÊxÊz 2χÊyÊz 1

⎤
⎥⎦, (23)

where K0 = 8g/3l as before, Êx ≡ Ê · x̂, and similarly for
the y and z directions. (Einstein summation convention is
assumed on all repeated Greek indices.) Comparing Eq. (22)
with Eq. (8), we note that the effect of the external electric
field is to make the coupling of the emergent electric field
nondiagonal while keeping the other basic features of the
Maxwell theory intact.

The photon dispersion relations can now be obtained by
diagonalizing K. The eigenvalues of this matrix are positive
definite for small values of the electric field (we consider the
case of large electric fields in the next section) and hence
using the Cholesky decomposition [49] of symmetric positive-
definite matrices, we can write

K = � · �T , (24)

where � is a lower triangular matrix and �T is its transpose.
We introduce the vector (gauge) potential A, which is related
to the emergent fields using

b = ∇ × A, eα = −[K−1]αβ∂tA
β, (25)

and we quantize A as

Aα(r) =
∑

λ

∫
d3k

(2π )3

�αβ

√
2ωλ(k)

[
e−ik·rεβ

λ (k)aλk

+ eik·r{εβ

λ (k)
}∗

a
†
λk

]
, (26)

where ωλ(k) and ελ(k) are respectively the frequency and the
unit polarization vector associated with polarization mode λ.
From Eq. (25), the electric field is obtained:

eα(r) = i
∑

λ

∫
d3k

(2π )3

√
ωλ(k)

2
[(�T )−1]αβ

× [e−ik·rεβ

λ (k)aλk − eik·r{εβ

λ (k)
}∗

a
†
λk

]
, (27)

where we used the Cholesky decomposition of K−1. Using
Eq. (25), the magnetic field is given by

bα(r) = εαβγ ∂βAγ (r)

= −iεαβγ
∑

λ

∫
d3k

(2π )3

�γρkβ

√
2ωλ(k)

[
e−ik·r ερ

λ (k)aλk

− eik·r{ερ
λ (k)

}∗
a
†
λk

]
. (28)

We now impose that the bosonic operators satisfy the commu-
tation relations [aλk,a

†
λ′k′] = (2π )3δλλ′δkk′ . This gives rise to

the appropriate commutation relations for the gauge potential
and the electric field, i.e.,

[eα(r),Aβ(r′)] = iδαβδrr′ . (29)

Inserting the above expressions for the emergent electric and
magnetic fields [Eqs. (27) and (28), respectively] into the
continuum Hamiltonian in Eq. (22), we obtain the dispersion
relation for the photons (see Appendix D 1):

ωλ(k) = |ξλ(k̂)||k|, (30)

where ξ 2
λ (k̂) denote the eigenvalues of the Hermitian, positive-

definite matrix

Q(k̂) = U�T

⎛
⎜⎝

1 − k̂2
x −k̂x k̂y −k̂x k̂z

−k̂x k̂y 1 − k̂2
y −k̂y k̂z

−k̂x k̂z −k̂y k̂z 1 − k̂2
z

⎞
⎟⎠�, (31)

which only depends on the direction of k (not on its
magnitude). Therefore the photons are indeed gapless and
linearly dispersing, as expected from gauge invariance.

However, the speed of emergent light depends on both
the direction of propagation—encoded in Q(k̂)—and the
polarization mode λ, as shown in Fig. 2 for electric fields in the
[011] and [111] directions. This is very similar to the physics
of birefringent materials; however, we stress that the photons
discussed here are emergent and do not exist outside the mate-
rial. As expected from U(1) gauge invariance, one of the three
polarization modes obtained from diagonalizing Q(k̂), that al-
ways has zero energy, is unphysical and does not couple to any
observable. This leaves us with only the two familiar propagat-
ing modes, that are in general not transverse to the propagation
direction k of the photons—again in analogy with birefringent
materials. Somewhat similar birefringent behavior of emergent
photons was recently suggested in the context of hexagonal
water ice [50]. However, in contrast to the present case, there
the birefringence stems from the inherent layered structure of
the system which gives rise to inequivalent directions.

We note that electric fields applied along the crystallo-
graphic cubic axes ([100], [010], or [001]) lead to a diagonal
matrix K [see Eq. (23)], and thus do not produce any
birefringence. For all other directions, the external electric
field leads to birefringence for the emergent photons.

B. Lattice theory

The continuum theory described above is valid only for
long wavelengths, i.e., near the Brillouin zone center. We now
turn to the full lattice theory of emergent electromagnetism
in quantum spin ice under a small, uniform external electric
field. To this end, we generalize the approach taken by Benton
et al. [8] but starting with the lattice Hamiltonian in Eq. (21).
As in the continuum theory, we introduce a vector (gauge)
potential A, defined on the bonds of the dual diamond lattice
as

A(s,m) =
√

2

N

∑
k,λ

√
Mm

ωλ(k)
[e−ik·(s+tm/2)ηmλ(k)aλk

+ eik·(s+tm/2)η∗
mλ(k)a†

λk], (32)
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FIG. 2. Frequency of the emergent photons under a uniform electric field along the [011] direction (left) and the [111] direction (right). The
two physical polarization modes are shown, for applied electric field strengths χ in the low-field regime. (Top) Frequencies in the lattice theory,
as obtained from Eq. (38). (Bottom) The solid lines represent the lattice theory, and the circles come from the continuum theory [Eq. (30), in
units of

√
UK0], the latter being valid only near the center of the Brillouin zone. The labels on the horizontal axis correspond to the following

high-symmetry points of the FCC lattice: U = [π/2,2π,π/2], X = [0,2π,0], W = [π,2π,0], L = [π,π,π ], and K = [3π/2,3π/2,0], with the
cubic lattice constant set to a0 = 1.

where m = 1–4, N is the number of spins in the system, and
the four-component vectors ηλ are analogous to the polariza-
tion vectors ελ of the continuum theory, but expressed in the
sublattice (t̂m) basis. The electric field is defined as

e(s,m) = − 1

Mm

∂A(s,m)

∂t

= i

√
2

N

∑
k,λ

√
ωλ(k)

Mm

[e−ik·(s+tm/2)ηmλ(k)aλk

− eik·(s+tm/2)η∗
mλ(k)a†

λk]. (33)

The emergent fields A and e are directed variables on the dual
diamond lattice, i.e., A(s,−m) = −A(s,m) and e(s,−m) = −e(s,m).
Enforcing the bosonic commutation relations [aλk,a

†
λ′k′] =

δλλ′δkk′ leads to the correct commutation relations from
electromagnetism, which on the lattice are given by

[e(s,m),A(s′,m′)] = iδss′ (δmm′ − δm,−m′ ). (34)

The magnetic field b is obtained by taking the lattice curl
of the gauge field A(s,m) on the dual diamond lattice,

b(r,n) = (∇� × A(s,m))(r,n). (35)

The details of the computation of the lattice curl are given in
Appendix D 2. We get

b(r,n) =
√

2

N

∑
k,λ,m

√
Mm

ωλ(k)
[e−ik·(r−tn/2)Znm(k)ηmλ(k)aλk

+ eik·(r−tn/2)Zmn(k)η∗
mλ(k)a†

λk], (36)

where, following Ref. [8], we defined the Hermitian matrix

Z(k) = −2i

⎛
⎜⎜⎜⎝

0 s01(k) s02(k) s03(k)

−s01(k) 0 s12(k) s13(k)

−s02(k) −s12(k) 0 s23(k)

−s03(k) −s13(k) −s23(k) 0

⎞
⎟⎟⎟⎠,

(37)

with

snm(k) ≡ sin

(
k · a0√

8

t̂n × t̂m
|t̂n × t̂m|

)
.

Inserting Eqs. (33) and (36) for the emergent fields in the lattice
Hamiltonian [Eq. (21)], we arrive at the following dispersion
relation for the photons (see Appendix D 2):

ωλ(k) = |ζλ(k)|, (38)

where ζ 2
λ (k) are the eigenvalues of the Hermitian, positive-

definite matrix T (k) with elements given by

Tm′m(k) = U
√

Mm′Mm[Z2(k)]m′m. (39)

We present in Fig. 2 the photon dispersion relations obtained
for electric fields of various strengths in the [011] and [111]
directions, using Eq. (38).

As expected from U(1) gauge invariance, we always obtain
only two physical (nonzero energy) polarization modes. The
speed of emergent light becomes direction- and polarization-
dependent (for χ �= 0), and the low-energy limit of the
lattice theory [Eq. (38)] reproduces the continuum calculations
[Eq. (30)] near the Brillouin zone center. We comment here on
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two striking features. Firstly, some propagation directions are
unaffected by the electric field—e.g., the �-X and X-W bands
for E ∝ [011]—because of the symmetries of the pyrochlore
lattice under the applied field. Secondly, for a critical value of
the field (χ = 1 for the [011] direction, and χ = 1.5 for the
[111] direction), the speed of the emergent photons vanishes
for some wave vectors and polarization modes. We thus expect
instabilities to develop and the nature of the ground state to
change, as explained in Sec. V.

C. Spin structure factors

Having obtained the photon dispersion relations, we now
investigate the spin structure factors, which are measured in
neutron scattering experiments, in the presence of an external
electric field. Such measurements are already quite common
in the context of multiferroics.

The energy-integrated (or equal-time) spin structure factor
is given by

Iαβ(k,t = 0) =
∫

dωIαβ (k,ω), (40)

where Iαβ(k,ω) is the dynamic spin structure factor:

Iαβ(k,ω) =
∫

dte−iωt 〈sα(−k,t)sβ(k,0)〉. (41)

We use the mapping of spins s onto the emergent lattice
magnetic field b [given by Eq. (36)], projecting the corre-
sponding spin quantization axis t̂m (t̂n) onto the axis of interest
represented by the unit vector α̂ (β̂) [8]:

〈sα(−k,t)sβ(k,0)〉 =
∑
m,n

(t̂m · α̂)(t̂n · β̂)

×〈bm(−k,t)bn(k,0)〉. (42)

We find that the equal-time (zero-temperature) structure factor
becomes, for χ � 1 (see Appendix E),

Iαβ(k,t = 0) = 1

8

∑
λ,m,n,l,l′

(t̂m · α̂)(t̂n · β̂)

ωλ(k)
η∗

l′λ(k)ηlλ(k)

×
√

Ml′Zl′n(k)Zml(k)
√

Ml . (43)

Following the convention used in Ref. [51] for a polarized
neutron scattering experiment, we define the following coor-
dinate system:

x ‖ k, y ‖ ην × k, z ‖ ην,

where ην ⊥ k is the neutron polarization direction, and we
specialize to the spin-flip channel, where α̂ = β̂ = ŷ. Thus
Eq. (43) is rewritten as

I yy(k,t = 0) = 1

8

∑
λ,m,n,l,l′

(t̂m · ŷ)(t̂n · ŷ)

ωλ(k)
η∗

l′λ(k)ηlλ(k)

×
√

Ml′Zl′n(k)Zml(k)
√

Ml . (44)

We plot the equal-time structure factor in the spin-flip
channel in Fig. 3 for two directions of the external electric
field: [011] and [111]. Clearly, as the external electric field is
increased, the structure factors evolve differently depending
on the direction of the former. Indeed, the changes are more

prominent for the direction [111], compared to the direction
[011]. This can possibly be detected in experiments (see
Sec. VII for an estimate of the field strengths required).

As mentioned in the caption of Fig. 3, the intensity of
each of the plots is chosen independently. This is because the
above expression, Eq. (44), is correct up to an anisotropic
renormalization factor, which arises upon integration of
the high-energy modes. We shall discuss the issue of the
anisotropic renormalization of the structure factor intensities
in Sec. VI. However, here we note that such effects are not
expected to change the qualitative nature of the results shown
in Fig. 3.

V. LARGE-FIELD LIMIT: QUANTUM SPIN LIQUIDS
WITH EMERGENT ELECTRIC π FLUXES

In Sec. IV, we described the small electric field regime,
which leads to birefringent behavior for the emergent photons.
However, another interesting effect occurs when the field-
induced terms in Eqs. (19–20) become comparable to the usual
third-order perturbation term, i.e., χ � 1. In this section, we
show that instabilities then develop, signaled by the effective
velocity of the photons vanishing in some directions. This
happens when at least one coupling constant Mm of the
emergent electric field [see Eq. (19)] changes sign. From
Eq. (20), we see that this occurs when

1 − 3(Ê · t̂m)2 >
1

χ
(45)

for some m, i.e., some orientation of the hexagons. Then, the
coupling to the electric field term, cos(es,m), becomes positive
for all hexagons perpendicular to t̂m. At the mean-field level,
the energy is minimized for es,m ∼ π , i.e., the corresponding
hexagons now trap a background electric flux of π around
which all fluctuations occur. Such trapping of π fluxes in
quantum spin ice was first described in Ref. [11] for a model
with frustrated (J± < 0) transverse exchange interactions. In
contrast, here only a subset of the hexagons trap a π -flux, in
a way which depends sensitively on the applied electric field
direction.

Exploiting the fact that cos(es,m) = − cos(es,m − π ), the
low-energy expansion in this situation is obtained as follows.
We rewrite Eq. (19) as

Heff = U

2

∑
r,n

b2
r,n −

∑
s,m

|Mm| cos(ẽs,m), (46)

where

ẽs,m =
{
es,m − π, Mm < 0
es,m, Mm > 0 (47)

and, expanding the cosine term, we get

Heff = U

2

∑
r,n

b2
r,n + 1

2

∑
s,m

|Mm|ẽ2
s,m, (48)

which is the same Hamiltonian as in Eq. (21), but with a
background electric field of π for a subset of the hexagons.

Below we describe three phases obtained for three different
directions of the external electric field. Note that each of
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(a)

(b)

FIG. 3. Equal-time spin structure factors in the spin-flip channel [obtained from Eq. (44)] for (a) E ∝ [011] and (b) E ∝ [111]. The top
panels show the [h0l] scattering plane (using polarized neutrons with ην ∝ [010]), and the bottom panels show the [hhl] scattering plane (using
polarized neutrons with ην ∝ [110]). We use W/2Ug = 0.1 to regularize the theory near the phase transition, as explained in Sec. VI [see
Eqs. (50) and (51)]. Each subplot has an independent color scale (see Sec. VI for a discussion of the intensity of the structure factors).

these phases has gapless emergent photons. The gapped, but
deconfined, magnetic monopole excitations would see the
electric fluxes as sources of Aharonov-Bohm phase and hence
their band structure would change compared to the zero electric

flux state. In other words, in the background of π -electric flux,
the monopoles would transform under a different projective
representation of the symmetry group of the system. Also,
the state does not break time-reversal symmetry as π → −π
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FIG. 4. Schematic representation of the “flux patterns” on the dual pyrochlore lattice. Red sites are located at the center of flux-carrying
hexagons on the direct pyrochlore lattice, while blue sites correspond to hexagons without a flux. (a) For E ∝ [001], no fluxes are trapped.
(b) For E ∝ [011], flux-carrying sites form lines along [01̄1] (perpendicular to the applied field). (c) For E ∝ [111], flux-carrying sites form
kagome planes perpendicular to the applied field.

under time-reversal. As a result, the total (emergent) electric
charge in the π -flux states is zero. All these suggest that
the present U(1) QSLs are different from the zero-flux U(1)
QSL and are characterized by a different projective symmetry
group. The comparative differences in the monopole band
structure can have experimental consequences, e.g., in the
finite energy part of the spin structure factor or in possible
quantum phase transitions brought about by the condensation
of such monopoles.

A. E ∝ [001]

For an electric field along one of the crystallographic axes,
Mm = 1 and the phase transition does not occur. This is
depicted in Fig. 4(a).

B. E ∝ [011]

For an electric field in the [011] crystallographic direction,
we have Ê = 1/

√
2{0,1,1}, and

(Ê · t̂1(4))
2 = 2/3, (Ê · t̂2(3))

2 = 0.

Using Eq. (45), we see that the hexagons oriented along
t̂1 and t̂4 never trap a flux, while those oriented along t̂2 and
t̂3 do so for χ > 1. Since the hexagon centers on the direct
pyrochlore lattice correspond to sites of the dual pyrochlore
lattice, the flux lines are best viewed in the latter. In this dual
lattice, they correspond to one-dimensional strings of electric
flux running along [01̄1] directions, as shown in Fig. 4(b).

C. E ∝ [111]

For an electric field in the [111] crystallographic direction,
we have Ê = 1/

√
3(1,1,1), and

(Ê · t̂1)2 = 1, (Ê · t̂2(3,4))
2 = 1

9 .

Using Eq. (45), we see that the hexagons oriented along
t̂1 never trap a flux, but those oriented along t̂2, t̂3, and t̂4

trap fluxes for χ > 3/2. As shown in Fig. 4(c), in the dual
pyrochlore lattice, this results in a “flux pattern” of parallel

kagome planes of sites with fluxes, and triangular planes of
sites without fluxes.

D. Other possibilities

One can also obtain kagome planes of sites not trapping a
flux, and triangular planes of sites trapping a flux [see Fig. 4(c),
with blue and red colors inverted]. This phase is achieved,
e.g., by choosing an electric field in the [2̄11] direction and
1 < χ < 3. We also note that, given Eq. (45), it is impossible
to find a direction Ê such that all sublattices trap a flux.

VI. RENORMALIZED SPIN STRUCTURE FACTOR
AND RE-EMERGENCE OF PINCH POINTS NEAR

THE PHASE TRANSITION

It is now interesting to ask about the nature of the phase
transition between the U(1) QSLs without (at low external
electric field) and with (at high external electric field) emergent
electric π fluxes. It is clear from the discussion above that this
transition is brought about by the condensation of emergent
electric flux lines, the detailed pattern of which is dictated by
the direction of the external field. The discontinuous jump of
the trapped electric flux from 0 to π through some hexagons
indicates that the transition is possibly first order. Even then, we
expect such a Landau-forbidden transition between two long-
range entangled states of matter to be quite interesting [52]—
however, we leave its investigation for a separate study.

In this section, we comment on the re-emergence of a
set of pinch points in the spin structure factor, characteristic
of classical spin ice [33–36], near the phase transition. To
understand this, we return to Eq. (21) and approach the
transition from the low external electric field (zero-flux) side.
As the photon velocity, given by Eq. (38), vanishes at the
transition (for certain directions), zero modes are generated
and the theory appears unstable. To remedy this, we need to
consider the next-to-leading order in perturbation theory that
generates a dispersion for the emergent photons. Following
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FIG. 5. Photon spectrum near the � point for an electric field
along the [011] direction (left) and the [111] direction (right),
regularized using W/2Ug = 0.1. The solid lines represent the
regularized lattice theory [Eq. (50)], and the circles represent the
unregularized lattice theory [Eq. (38)] for reference.

Benton et al. [8], this is given by (also see Appendix F)

Heff = U

2

∑
r,n

b2
r,n + 1

2

∑
s,m

[
Mme2

s,m + Wm(∇ × b)2
s,m

]
, (49)

where the couplings Wm(> 0) are direction-dependent, and
can in principle be obtained from higher-order terms in
perturbation theory, similarly to what is presented in detail in
Appendix C. This direction dependence is however not crucial
for the regularization procedure, because the Wm coefficients
do not vanish for the same electric field strength as the
leading-order coefficients Mm. Hence we take Wm = W > 0
(say) for all directions. The regularized theory [Eq. (49)] then
leads to a corrected dispersion relation for the photons given
by (see Appendix F)

ωλ(k) = |ζλ(k)|, (50)

where ζ 2
λ (k) are the eigenvalues of the Hermitian, positive-

definite matrix

T (k) + W[Z(k)]4, (51)

where, as before, T (k) and Z(k) are given by Eqs. (39)
and (37), respectively.

As discussed in Ref. [8], the effect of this new term is to
endow the photons with a quadratic dispersion when the speed
of light vanishes, as shown in Fig. 5 for external electric fields
ranging from 0 up to the critical point.

With a regularized effective lattice theory at hand, we are
now in a position to examine the possible experimental signa-
tures of the external electric field near the phase transition. In
Fig. 3, the rightmost column shows the spin structure factors
close to the critical point. Strikingly, for an external electric
field in the [111] direction, the pinch points re-emerge in the
[hhl] plane as χ is tuned towards the critical value of 1.5.
However, no such pinch points are seen for an external field
in the [011] direction. As argued in Ref. [8], we expect pinch
points to appear when the photon dispersion is dominated by
the quadratic behavior. This is precisely what happens here; for
E ∝ [111], the photon velocity vanishes in the [111] direction
for both polarization modes, while this is not the case for
E ∝ [011] (see the �-L direction in Fig. 5).

At this point, we note that our expressions for the equal-time
spin structure factor [Eqs. (43) and (44)] do not take into
account the possible renormalization of the fields due to the
integration of higher-energy modes. This renormalization is

FIG. 6. Equal-time spin structure factor in the spin-flip channel
[Eq. (44)], with an electric field in the [111] direction and χ = 1.49.
We show the [h0l] plane with ην ∝ [010] (left) and the [hhl] plane
with ην ∝ [110] (right). We use W/2Ug = 0.1 to regularize the
theory, and the rescaling parameters for the emergent magnetic field
bm(k) are �1 = 1 and �2 = �3 = �4 = 2.

accounted for by rescaling the emergent magnetic field as

bm(k) → �m(k̂)bm(k),

where �m(k̂) is a rescaling factor. Since the system, even in the
absence of an external electric field, does not have a full rota-
tional symmetry [see Eq. (1)], the rescaling factor is in general
direction dependent. However, the effective low-energy theory
near k = 0 [Eq. (8)] has an emergent rotation symmetry and,
in this limit, the rescaling factor can be chosen to be isotropic
as in Refs. [8,53]. In presence of an electric field, even near
k = 0, the theory is not rotation invariant [see Eq. (22)],
as is evident from emergent birefringence. This renders the
rescaling factor direction dependent even near k = 0. Since
the external electric field is even under time reversal, we must
have �m(k̂) = �m(−k̂). The net factor rescaling the intensity
of the structure factors being quadratic in �m(k̂), it transforms
as a biaxial nematic [54] with two independent parameters:
one denoting the strength along the direction of the external
electric field and the other perpendicular to it. However, the
values of these two parameters cannot be calculated within
our effective field theory, but only from more microscopic
techniques such as quantum Monte Carlo [8,53].

That being said, we do not expect our results to change
qualitatively because of this anisotropic renormalization.
Specifically, the re-emergence of the pinch points is robust
under including rescaling parameters �m(k̂) respecting the
symmetries of the biaxial nematic tensor. This is shown in
Fig. 6 for the particular choice �1 = 1, �2 = �3 = �4 = 2
and E ∼ [111].

VII. RELEVANCE TO QUANTUM SPIN ICE MATERIALS

Are the effects described above observable? One immediate
concern is that the minimal Hamiltonian in Eq. (1) does
not adequately describe any of the currently known quantum
spin ice candidates. There are additional symmetry-allowed
terms in the Hamiltonian which seem to have large coupling
constants. While a calculation incorporating all these coupling
constants, as well as all the allowed terms in the polarization
operator [Eqs. (11)–(13)] is beyond the scope of this work,
we estimate the electric field strength required to observe the
effects described within the present framework.
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In rare-earth pyrochlores, typically Jzz ∼ 1K, while the
other couplings (including additional interactions present in
real materials) are smaller. Taking J± = pK, the strength of
the quantum term [in Eqs. (19) and (20) in absence of the
external electric field] is ∼p3K. The strength of the additional
terms in the presence of the electric field is ∼pB2E2K, where
B is measured in C m and E is measured in K C−1 m−1. For the
magnetostriction mechanism, B ≈ eu, where e is the electron
charge and u is the deformation of the lattice. This makes the
latter term ∼pe2u2E2K. Thus, for the two terms to be of the
same order, we need

E ∼ p

eu
K C−1 m−1. (52)

For u ≈ 0.001–0.01 Å (about 0.1%–1% of a typical bond
length), we get

E ∼ p × (106 − 105) V/mm, (53)

To establish whether these effects can be observable, we
note that neutron scattering experiments in the presence of
an external dc electric field of the order of 104 V/mm
have been reported [55,56]. Noting that p < 1 in candidate
systems, the effect proposed in this work seems to be in an
experimentally observable realm. Regarding the effectiveness
of the magnetostriction mechanism in the context of quantum
spin ice materials, we note that in materials with softer triplet
phonon modes, the above effect would be further enhanced.

VIII. ELECTRIC FIELD AT THE SURFACE
OF A NON-KRAMERS QUANTUM SPIN ICE

Having discussed the effect of an external electric field in
the bulk of quantum spin ice, we now turn to its potential
surface effects. This is particularly striking for non-Kramers
systems where the linear terms in the polarization operator
[see Eqs. (11)–(13)] are allowed, i.e., L �= 0. The contribution
of the polarization through this term is

P (T )
x = L

(− sx
1 − sx

4 + sx
2 + sx

3

)
,

P (T )
y = L

[
1

2

(
sx

1 + sx
3 − sx

2 − sx
4

)−
√

3

2

(
s
y

1 + s
y

3 − s
y

2 − s
y

4

)]
,

P (T )
z = L

[
1

2

(
sx

1 + sx
2 − sx

3 − sx
4

)+
√

3

2

(
s
y

1 + s
y

2 − s
y

3 − s
y

4

)]
,

(54)

for an up tetrahedron (and the same expression with L → −L

for a down tetrahedron). Thus, for an inversion symmetric
lattice without a surface,

Honly L term = α
∑
�

P(T)
� · E = 0 (55)

identically. However, on a surface, this is no longer the case.
To be concrete, let us choose a [111] surface terminating

in a triangular layer. Then, for the spins sitting on the last
triangular layer, the contributions do not cancel and we have

Hsurface,L = α
∑

i∈�surface

P(T )
i · E, (56)

where (in our notation)

P
(T )
i,x = −Lsx

i = −L

2
[s+

i + s−
i ], (57)

P
(T )
i,y = L

[
1

2
sx
i −

√
3

2
s
y

i

]
= −L

2
[ω2s+

i + ωs−
i ], (58)

P
(T )
i,z = L

[
1

2
sx
i +

√
3

2
s
y

i

]
= −L

2
[ωs+

i + ω2s−
i ], (59)

with ω = exp(i2π/3). Due to the [111] surface termination,
all surface spins are taken to belong to sublattice 1 without loss
of generality. Other surfaces can be similarly considered. Let
us now choose an ac electric field that acts on the surface, i.e.,

E = E0(r) cos(�t)n̂, (60)

where n̂ is the direction of the electric field, and the field
profile E0(r) is chosen appropriately to decay away from the
surface into the bulk.

It is clear that the linear terms create monopoles and
antimonopoles on the tetrahedra to which the surface spins
belong. The frequency of the spin flips is equal to �. This
corresponds to an oscillation in surface monopole density,
which then results in emergent radiation that can propagate
inside the bulk of the system. Thus the above protocol achieves
the conversion of an ac signal of real electric fields to that of
emergent fields.

However, in candidate materials, the situation is expected
to be more complicated. Apart from the fact that additional
interactions need to be considered, surface imperfections and
the possibility of polar surfaces also need to be accounted for.
However, given the rapid development in material sciences and
the striking nature of the above effect, we hope that the present
discussion will motivate future exploration in this direction.

IX. SUMMARY AND OUTLOOK

In this paper, we investigated various effects of applying
an external electric field on the minimal quantum spin ice
Hamiltonian, exhibiting a U(1) QSL ground state, which could
be realized in some rare-earth pyrochlores. Using a symmetry-
based approach, we obtained the general form of the effective
low-energy electric polarization operator in these systems, as a
function of the spin operators. Such electric polarization then
couples to an external electric field, leading to qualitatively
new effects in the quantum spin ice ground state, as well as in
the low-energy excitations—the gapless emergent photons.

For small electric fields, the speed of the emergent photons
becomes both polarization as well as direction dependent, in
striking analogy with birefringent materials. On increasing the
external electric field further, the photon velocity vanishes, sig-
naling an instability of the low-field, zero-flux QSL state. The
high-field states trap π -electric fluxes on certain plaquettes,
the detailed pattern of these fluxes depending on the direction
of the external electric field. The high-field states are thus
new types of time-reversal invariant three-dimensional U(1)
QSLs (with gapped electric and magnetic charges), which are
different from the low-field state in terms of the projective
symmetry classification of QSLs.
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The quantum phase transition between the low-field and
high-field QSLs is associated with the re-emergence of a subset
of the pinch points characteristic of classical spin ice. Single
electric and magnetic charges remain gapped throughout
the transition. This represents a (most likely discontinuous)
transition between different long-range entangled phases of
condensed matter. In addition, we found that the typical field
magnitudes required to observe the effects studied here are in
an experimentally accessible regime.

In this work, we elucidated the novel effects of an external
electric field on quantum spin ice systems within a minimal
approach. The Hamiltonian describing candidate materials
such as Yb2Ti2O7 [22–25,57] and Tb2Ti2O7 [27,28,58–60]
likely include terms beyond the ones considered here, the
effect of which may be worth analyzing in detail. However,
the fact that new candidate materials are constantly being
added—such as most recently Pr2Hf2O7 [61–63]—is cause
for optimism that the physics discussed here will be subjected
to experimental scrutiny in the not too distant future.

In the same spirit, it is useful to note that in this work,
a term linear in the external electric field does not occur in
the effective low-energy Hamiltonian [Eq. (18)] because the
underlying system/phase does not break inversion symmetry
explicitly/spontaneously and hence cannot have a net electric
dipole moment. This is a crucial difference with the case of
an applied magnetic field, which normally couples linearly
to the underlying pseudo-spin degrees of freedom due to
explicit breaking of time-reversal symmetry. Such Zeeman
coupling, although in principle can lead to a magnetic analog
of the anisotropic responses studied here, usually has a natural
instability to magnetically polarized phases and leads to
qualitatively different effects than phase transitions between
QSLs [64]. (The coupling to electromagnetic radiation was
also explored recently in the context of Raman scattering [65].)

However, inversion symmetry is explicitly broken in
a class of pyrochlore magnets dubbed breathing py-
rochlores (e.g., LiGaCr4O8 [66,67], LiInCr4O8 [66,67], and
Ba3Yb2Zn5O11 [68]), where the effect of such linear terms may
lead to interesting experimental consequences, particularly in
the context of quantum spin liquid physics [69].
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APPENDIX A: THE PYROCHLORE LATTICE

The magnetic moments of (quantum) spin ice are located on
the sites of the pyrochlore lattice, a network of corner-sharing
tetrahedra with alternating “up” and “down” orientation, as
shown in Fig. 7(a). In other words, the pyrochlore lattice is
a FCC lattice, but decorated at each site with an “up” (say)

FIG. 7. The pyrochlore lattice, whose sites (where spin ice
magnetic moments are located) are depicted in blue. One cubic unit
cell of side a0 is shown. (a) The pyrochlore lattice realizes a network
of corner-sharing tetrahedra, shown in gray. (b) The centers of those
tetrahedra form the medial diamond lattice (shown in black). The
magnetic moments sit on the bonds of this diamond lattice, and the
local spin quantization axes point in the direction of the bond.

tetrahedron. The primitive unit cell is a single tetrahedron
with four sublattice sites, as shown in Fig. 8. The local spin
quantization axes are different for each sublattice site; the
explicit expressions are given below. It is also useful to define
a cubic unit cell, of side a0, that comprises 16 lattice sites.

The centers of the tetrahedra form a diamond lattice
(referred to as the medial or direct diamond lattice in the text),
as shown in Fig. 7(b). The magnetic moments (or pyrochlore
lattice sites) are located on the middle of the diamond lattice
bonds, whereas the local spin quantization axes point in
the diamond bond directions (that is, “in” or “out” of every
tetrahedron).

1. Local spin quantization axes

The local quantization axes, t̂i (as shown in Fig. 8), are
given by

t̂1 = 1√
3

[111], t̂2 = 1√
3

[1̄1̄1],

t̂3 = 1√
3

[1̄11̄], t̂4 = 1√
3

[11̄1̄]. (A1)

FIG. 8. The local spin quantization axes for spin ice. Thick lines
denote t̂i , the thin lines denote ŷi and the dashed lines denote x̂i .
These directions are given by Eqs. (A1) and (A2).
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Therefore the local axes x̂i and ŷi that form the local triads are
given by (as shown in Fig. 8)

x̂1 = 1√
6

[2̄11], ŷ1 = 1√
2

[01̄1],

x̂2 = 1√
6

[21̄1], ŷ2 = 1√
2

[011],

x̂3 = 1√
6

[211̄], ŷ3 = 1√
2

[01̄1̄],

x̂4 = 1√
6

[2̄1̄1̄], ŷ4 = 1√
2

[011̄]. (A2)

APPENDIX B: THE POLARIZATION OPERATOR

There are 24 elements in the tetrahedral group, Td , divided
into five classes. These are

Td : E;
{
c3,c

2
3

}
(8);

{
S4,S

3
4

}
(6);

{
S2

4 = C2
}
(3); {σd}(6). (B1)

Hence there are five irreducible representations:
A1, A2, E, T1, and T2. The octahedral group is obtained by
taking the direct product of Td with the inversion group I , i.e.,
Oh 
 Td

⊗
I . Thus the representations of Td can be further

classified according to their behavior, i.e., even (g) or odd (u),
under inversion.

Consider a single up tetrahedron. The transformation of
the sz component under various generators of the point group
symmetries of Td are given by

C3[111] :
{
sz

1,s
z
2,s

z
3,s

z
4

}→ {
sz

1,s
z
4,s

z
2,s

z
3

}
,

C2[ẑ] :
{
sz

1,s
z
2,s

z
3,s

z
4

}→ {
sz

2,s
z
1,s

z
4,s

z
3

}
,

S4[−ẑ] :
{
sz

1,s
z
2,s

z
3,s

z
4

}→ {
sz

3,s
z
4,s

z
2,s

z
1

}
,

σd [x = y] :
{
sz

1,s
z
2,s

z
3,s

z
4

}→ {
sz

1,s
z
2,s

z
4,s

z
3

}
, (B2)

while the transverse components transform as

C3[111] :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sx
1 → − 1

2 sx
1 +

√
3

2 s
y

1 ; s
y

1 → −
√

3
2 sx

1 − 1
2 s

y

1

sx
2 → − 1

2 sx
4 +

√
3

2 s
y

4 ; s
y

2 → −
√

3
2 sx

4 − 1
2 s

y

4

sx
3 → − 1

2 sx
2 +

√
3

2 s
y

2 ; s
y

3 → −
√

3
2 sx

2 − 1
2 s

y

2

sx
4 → − 1

2 sx
3 +

√
3

2 s
y

3 ; s
y

4 → −
√

3
2 sx

3 − 1
2 s

y

3

or

s±
1 → e∓i 2π

3 s±
1 ; s±

2 → e∓i 2π
3 s±

4 ; s±
3 → e∓i 2π

3 s±
2 ; s±

4 → e∓i 2π
3 s±

3

(B3)

C2(z) :

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

sx
1 → sx

2 ; s
y

1 → s
y

2

sx
2 → sx

1 ; s
y

2 → s
y

1

sx
3 → sx

4 ; s
y

3 → s
y

4

sx
4 → sx

3 ; s
y

4 → s
y

3

or
s±

1 → s±
2 ; s±

2 → s±
1 ; s±

3 → s±
4 ; s±

4 → s±
3

(B4)

S4[−ẑ] :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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1 → − 1

2 sx
3 +

√
3
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y
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y
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3
2 sx
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√
3
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y
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y

2 →
√

3
2 sx

4 + 1
2 s

y

4

sx
3 → − 1

2 sx
2 +

√
3
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y

2 ; s
y

3 →
√

3
2 sx

2 + 1
2 s

y

2

sx
4 → − 1

2 sx
1 +

√
3

2 s
y

1 ; s
y

4 →
√

3
2 sx

1 + 1
2 s

y

1

or
s±

1 → e±i2π/3s∓
3 ; s±

2 → e±i2π/3s∓
4 ; s±

3 → e±i2π/3s∓
2 ; s±

4 → e±i2π/3s∓
1

(B5)

σd [x = y] :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sx
1 → − 1

2 sx
1 +

√
3

2 s
y

1 ; s
y

1 →
√

3
2 sx

1 + 1
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y

1

sx
2 → − 1

2 sx
2 +

√
3

2 s
y

2 ; s
y

2 →
√

3
2 sx

2 + 1
2 s
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2

sx
3 → − 1

2 sx
4 +

√
3
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y

4 ; s
y

3 →
√

3
2 sx

4 + 1
2 s

y

4

sx
4 → − 1

2 sx
3 +

√
3

2 s
y

3 ; s
y

4 →
√

3
2 sx

3 + 1
2 s
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3
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s±

1 → e±i2π/3s∓
1 ; s±

2 → e±i2π/3s∓
2 ; s±

3 → e±i2π/3s∓
4 ; s±

4 → e±i2π/3s∓
3

(B6)

These give two contributions to the polarization operator,
which transforms under the T1u representation of the octahe-
dral group. We can then write the polarization operator for
the up tetrahedron as given in Eq. (9) where the different
contributions are given by Eqs. (10)–(13).

APPENDIX C: PERTURBATION THEORY IN QUANTUM
SPIN ICE WITH A UNIFORM ELECTRIC FIELD

In the limit where Jzz is larger than J± and |E| in the
Hamiltonian in Eq. (16), we can derive the effective low-energy
theory (below the energy scale of O(Jzz)). This effective
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Hamiltonian is given by

Heff = P[Hp + HpG′
0Hp + · · · ]P, (C1)

where P is the projector to the ice manifold and

Hp = HE − J±
∑
〈ij〉

(s+
i s−

j + s−
i s+

j ),

G′
0 = (1 − P)

1

E − Hzz

(1 − P),

Hzz = Jzz

∑
〈ij〉

sz
i s

z
j . (C2)

a. First order. At the first order, all terms in Hp take the
state out of the ice manifold and P(L) is identically zero in this
manifold. So there are no first-order contributions.

b. Second order. The second-order term has the form

H
(2)
eff = P[HpG′

0Hp]P. (C3)

There are three types of contributions:
(1) O(J 2

±). This term is a constant [2].
(2) O(αJ±). To calculate this term, it is enough to consider

an electric field along the z direction, i.e., E = Eẑ. We
immediately notice that the longitudinal part cannot contribute
since P (L)

z P = 0 identically. The transverse terms cancel.
(3) O(α2). These lead to contributions of the form ∼E · E,

which renormalize the dielectric constants. Such terms gener-
ally arise at all even orders and hence they will be not discussed
here, though they can change the dielectric properties of the
system in response to dc electric fields.

c. Third order. The third-order term has the form

H
(3)
eff = P[HpG′

0HpG′
0Hp]P. (C4)

The nontrivial contributions come from the hexagons. The four
types of contributions are:

(1) O(J 3
±). This is the usual ring-exchange term [2]

−12
J 3

±
J 2

zz

∑
�,(1,...6∈�)

(s+
1 s−

2 s+
3 s−

4 s+
5 s−

6 + H.c.). (C5)

(2) O(αJ 2
±). The terms at this order cancel out (as shown

in Fig. 9) due to inversion symmetry.

FIG. 9. Two typical terms of order αJ 2
± coming from the same

hexagon. The ± labels denote the contribution of s± at each site.
The blue bonds denote the contributions coming from H± while the
orange bonds denote the contributions coming from HE. Because of
inversion symmetry, the mutual coefficients of the orange bonds have
a relative minus sign since one of them comes from an up tetrahedron
(in gray) while the other comes from a down tetrahedron (in cyan).
Therefore they cancel pairwise.

FIG. 10. Summing all the contributions of order α2J± coming
from the hexagons perpendicular to t̂3. Because the hexagons now
have two orange bonds, the contributions from the left and right
columns add up, for each line (a), (b) and (c). The total contribution

is therefore given by −12 α2J±B2(−ExEy+ExEz−EyEz)

J 2
zz

(Ô� + H.c.). The

other three three types of hexagons, perpendicular to t̂1, t̂2, and t̂4,
work similarly.

(3) O(α3). Due to inversion symmetry, these terms too
cancel pairwise.

(4) O(α2J±). The contribution from this term is (as shown
in Fig. 10)

− 6
α2J±B2[3(E · t̂1)2 − E · E]

J 2
zz

∑
�⊥t̂1

(Ô� + H.c.),

− 6
α2J±B2[3(E · t̂2)2 − E · E]

J 2
zz

∑
�⊥t̂2

(Ô� + H.c.),

− 6
α2J±B2[3(E · t̂3)2 − E · E]

J 2
zz

∑
�⊥t̂3

(Ô� + H.c.),

− 6
α2J±B2[3(E · t̂4)2 − E · E]

J 2
zz

∑
�⊥t̂4

(Ô� + H.c.), (C6)

where Ô� = s+
1 s−

2 s+
3 s−

4 s+
5 s

,
6(1, . . . ,6 ∈ �) and the four

contributions come from four types of hexagons that are
perpendicular to t̂i for i = 1–4.
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APPENDIX D: EMERGENT PHOTONS UNDER A UNIFORM ELECTRIC FIELD

1. Continuum theory

Here we derive the photon dispersion in the continuum limit for the Hamiltonian given by Eq. (22). Using Eqs. (27) and (28)
for the emergent fields e and b, respectively, the electric and magnetic contributions to the Hamiltonian become:

He2 = 1

4

∑
λ,λ′

∫
d3k

(2π )3

√
ωλ(k)ωλ′(k)

∑
σ

[[
εσ
λ′(k)

]∗
εσ
λ (k)aλka

†
λ′k − εσ

λ′(−k)εσ
λ (k)aλkaλ′,−k + H.c.

]
, (D1)

Hb2 = 1

4

∑
λ,λ′

∫
d3k

(2π )3

k2

√
ωλ(k)ωλ′(k)

∑
σ,ρ

Qσρ(k̂)
[[

εσ
λ′(k)

]∗
ε

ρ
λ (k)aλka

†
λ′k + εσ

λ′(−k)ερ
λ (k)aλkaλ′,−k + H.c.

]
, (D2)

where we defined Q(k̂) = U�T R(k̂)�, which is a Hermitian
matrix, with

R(k̂) =

⎛
⎜⎝

1 − k̂2
x −k̂x k̂y −k̂x k̂z

−k̂x k̂y 1 − k̂2
y −k̂y k̂z

−k̂x k̂z −k̂y k̂z 1 − k̂2
z

⎞
⎟⎠ (D3)

and k̂ ≡ k/|k|.
We can now choose a specific basis for the photon polar-

ization vectors ελ(k). We remark that choosing such a basis
amounts to choosing an “electromagnetic” gauge because,
using Eq. (26), the divergence of the vector potential A is now
fixed. For convenience, we choose the polarization vectors to
be the eigenvectors of Q(k̂) with positive eigenvalues ξ 2

λ (k̂)—
this is allowed because Q is a positive-definite, Hermitian
matrix (for small applied electric fields). Then∑

ρ

Qσρ(k̂)ερ
λ (k̂) = ξ 2

λ (k̂)εσ
λ (k̂), (D4)

and because Q(−k̂) = Q(k̂)∗, its eigenvectors satisfy

εσ
λ (−k̂) = [εσ

λ (k̂)]∗,

while the unitarity of the matrix of eigenvectors enforces∑
σ

[
εσ
λ′(k̂)

]∗
εσ
λ (k̂) = δλλ′ .

Using the above identities and putting together the electric and
magnetic contributions, Eqs. (D1) and (D2), respectively, we
get

Hcontinuum
eff = 1

4

∑
λ

∫
d3k

(2π )3

[(
k2

ωλ(k)
ξ 2
λ (k̂) + ωλ(k)

)
aλka

†
λk

+
(

k2

ωλ(k)
ξ 2
λ (k̂) − ωλ(k)

)
aλkaλ,−k + H.c.

]
.

(D5)

Finally, the photon dispersion relation is obtained by requiring
that the terms which do not conserve photon number van-
ish, i.e.,

ωλ(k) = |ξλ(k̂)||k|, (D6)

which is just Eq. (30) in the main text. The Hamiltonian then
assumes the usual form

Hcontinuum
eff =

∑
λ

∫
d3k

(2π )3
ωλ(k)

[
a
†
λkaλk + 1

2

]
. (D7)

2. Lattice theory

a. Computation of the lattice magnetic field

On the pyrochlore lattice, the magnetic field and the vector
potential are related by Eq. (35):

b(r,n) = (∇� × A(s,m))(r,n).

To compute this curl, we take the sum of the fields A(s,m) living
on the six bonds of an hexagonal plaquette. These bonds have
midpoints—corresponding to sites on the dual diamond lattice
spanned by (s,m)—located at

(
r − tn

2

)
± hnm, hnm = a0√

8

t̂n × t̂m
|t̂n × t̂m| , (D8)

where (r − tn/2) represents the middle of the hexagonal
plaquette, hnn = 0 and hnm = −hmn by construction. Here,
the ± encodes the fact that the six sites forming an hexagonal
plaquette are arranged by pairs, at the same distance but in
opposite directions from the middle of the hexagon. When
summing over the 6 plaquette bonds, the sign of neighboring
terms alternate because they come either from an up → down
bond or a down → up bond [remember that A(s,m) is a directed
variable]. Using Eq. (32) for the gauge potential, we get

b(r,n) =
√

2

N

∑
k,λ,m

√
Mm

ωλ(k)

[
e−ik·(r−tn/2)

× {−2i sin(k · hnm)
}
ηmλ(k)aλk + H.c.

]
. (D9)

This expression is simplified by introducing a Hermitian,
antisymmetric matrix [8]

Z(k) = −2i

⎛
⎜⎜⎝

0 s01(k) s02(k) s03(k)
−s01(k) 0 s12(k) s13(k)
−s02(k) −s12(k) 0 s23(k)
−s03(k) −s13(k) −s23(k) 0

⎞
⎟⎟⎠,

(D10)

with snm(k) ≡ sin(k · hnm). Using this, we get Eq. (36).
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b. Photon dispersion

Here we review how to derive the dispersion relation for lattice photons [Eq. (38)], starting from the lattice Hamiltonian for
quantum spin ice [Eq. (21)]. Using Eqs. (33) and (36) for the emergent electric and magnetic fields, respectively, we calculate the
electric and magnetic contributions to the Hamiltonian (note that the sums over r and s in Eq. (21) run over N/4 up tetrahedra):

He2 = 1

4

∑
k,λ,λ′

√
ωλ(k)ωλ′(k)

∑
m

[η∗
mλ′(k)ηmλ(k)aλka

†
λ′k − ηmλ′(−k)ηmλ(k)aλkaλ′,−k + H.c.], (D11)

Hb2 = 1

4

∑
k,λ,λ′

1√
ωλ(k)ωλ′(k)

∑
m′,m

Tm′m(k)[η∗
m′λ′(k)ηmλ(k)aλka

†
λ′k + ηm′λ′(−k)ηmλ(k)aλkaλ′,−k + H.c.]. (D12)

For simplicity of notation, we defined a Hermitian matrix T (k) whose elements are given by

Tm′m(k) = U
∑

n

√
Mm′Zm′n(k)Znm(k)

√
Mm, (D13)

and used the property Znm′ (−k) = Zm′n(k), which follows from Eq. (D10).
Here we make a choice of basis for the polarization vectors ηλ(k)—equivalent to a choice of “electromagnetic” gauge, since

the lattice divergence of A is now fixed, using Eq. (32). We take the polarization vectors to be the eigenvectors of T (k) with
positive eigenvalues ζ 2

λ (k) [because T (k) is positive-definite for small values of the applied electric field)], that is,∑
m

Tm′m(k)ηmλ(k) = ζ 2
λ (k)ηm′λ(k). (D14)

Because of the property T (−k) = T (k)∗, the eigenvectors satisfy

ηmλ(−k) = η∗
mλ(k),

and the unitarity of the matrix of eigenvectors implies∑
m′

η∗
m′λ′(k)ηm′λ(k) = δλλ′ .

Using these identities, and putting together the electric and magnetic contributions, Eqs. (D11) and (D12), respectively, we
obtain for the full Hamiltonian:

Heff = 1

4

∑
k,λ

[(
ζ 2
λ (k)

ωλ(k)
+ ωλ(k)

)
aλka

†
λk +

(
ζ 2
λ (k)

ωλ(k)
− ωλ(k)

)
aλkaλ,−k + H.c.

]
. (D15)

For the anomalous terms not conserving photon number to vanish, we enforce

ωλ(k) = |ζλ(k)|,
which is the photon dispersion on the lattice, or Eq. (38) in the main text. The Hamiltonian becomes, as expected,

Heff =
∑
k,λ

ωλ(k)
[
a
†
λkaλk + 1

2

]
.

APPENDIX E: STRUCTURE FACTORS

In this section, we summarize the calculations leading to Eq. (43). To this end, we first express the magnetic field in momentum
space as

bn(k,t) = 1√
N

∑
r

e−ik·(r−tn/2)b(r,n)(t), (E1)

where b(r,n)(t) is the magnetic field at the lattice site r − tn/2 and at time t . As a straightforward generalization of Eq. (36) to
arbitrary time, we get

b(r,n)(t) =
√

2

N

∑
k′,λ,l

√
Ml

ωλ(k′)
[e−ik′ ·(r−tn/2)−iωλ(k′)tZnl(k′)ηlλ(k′)aλk′ + eik′ ·(r−tn/2)+iωλ(k′)tZln(k′)η∗

lλ(k′)a†
λk′]. (E2)

Inserting Eq. (E2) in Eq. (E1), we get

bn(k,t) =
√

2

4

∑
λ,l

√
Ml

ωλ(k)
[e−iωλ(k)tZnl(−k)ηlλ(−k)aλ,−k + eiωλ(k)tZln(k)η∗

lλ(k)a†
λk], (E3)
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where we used ωλ(−k) = ωλ(k), and
∑

r e−i(k±k′)·r = N
4 δk,∓k′ . The two-point correlation function is then given by

〈bm(−k,t)bn(k,0)〉 = 1

8

∑
λ,λ′,l,l′

√
MlMl′

ωλ(k)ωλ′(k)
〈[e−iωλ(k)tZml(k)ηlλ(k)aλk + eiωλ(k)tZlm(−k)η∗

lλ(−k)a†
λ,−k]

× [Znl′ (−k)ηl′λ′(−k)aλ′,−k + Zl′n(k)η∗
l′λ′(k)a†

λ′k]〉

= 1

8

∑
λ,l,l′

√
MlMl′

ωλ(k)
η∗

l′λ(k)Zl′n(k)Zml(k)ηlλ(k) × [e−iωλ(k)t 〈aλka
†
λk〉 + eiωλ(k)t 〈a†

λ,−kaλ,−k〉], (E4)

where, in the last equality, we dropped the terms that do not conserve photon numbers and those with cross-polarization, because
their expectation value is 0. We also used the fact that ηλl(−k) = η∗

λl(k) and Zl′n(−k) = Znl′ (k).
Since the photons follow Bose-Einstein statistics, in thermal equilibrium at temperature T , we have

〈a†
λkaλk〉 = nλ(k) = 1

eωλ(k)/T − 1
(E5)

and

〈bm(−k,t)bn(k,0)〉 = 1

8

∑
λ,l,l′

√
MlMl′

ωλ(k)
η∗

l′λ(k)Zl′n(k)Zml(k)ηlλ(k) × [e−iωλ(k)t (1 + nλ(k)) + eiωλ(k)t nλ(k)]. (E6)

Therefore the dynamic structure factor [Eq. (41)] is given by

Iαβ(k,ω) = 1

8

∑
λ,m,n,l,l′

(t̂m · α̂)(t̂n · β̂)

√
MlMl′

ωλ(k)
η∗

l′λ(k)Zl′n(k)Zml(k)ηlλ(k)

× [δ(ω + ωλ(k))(1 + nλ(k)) + δ(ω − ωλ(k))nλ(k)], (E7)

and the equal-time structure factor [Eq. (40)] is given by

Iαβ(k,t = 0) = 1

8

∑
λ,m,n,l,l′

[
(t̂m · α̂)(t̂n · β̂)

√
MlMl′

ωλ(k)
η∗

l′λ(k)Zl′n(k)Zml(k)ηlλ(k)

]
coth

(
ωλ(k)

2T

)
. (E8)

On taking the zero-temperature limit, coth (ωλ(k)
2T

) → 1 for
T → 0, we obtain Eq. (43) in the main text.

APPENDIX F: LATTICE THEORY NEAR
THE PHASE TRANSITION

1. Calculating the (∇ × b)2 term

In order to take the lattice curl of the magnetic field (living
on the direct diamond lattice), we sum over the six bonds of
an hexagonal plaquette, taking into account the directedness
of the field b(r,n) in a similar way to what was presented in
Appendix D 2. We get

(∇� × b(r,n))(s,m) =
√

2

N

∑
k,λ,l,n

√
Ml

ωλ(k)
[e−ik·(s+tm/2)

×Zmn(k)Znl(k)ηlλ(k)aλk + H.c.], (F1)

and thus, computing the curl of b introduced an extra
component of Z(k). We stress that, near the Brillouin zone
center, this becomes an extra factor of k, which leads to the
quadratic part of the photon dispersion relation.

2. Regularizing the photon frequency

We now consider the regularized lattice Hamiltonian in
Eq. (49), and take Wm = W > 0 for simplicity. As discussed
in the main text, neglecting the direction dependence of W
does not affect the results below in a qualitative way. The
new term becomes, following the calculational steps shown in
Appendix D 2:

H(∇×b)2 = W

4

∑
k,λ,λ′,l,l′

1√
ωλ(k)ωλ′(k)

Z̃l′l(k)[η∗
l′λ′(k)ηlλ(k)

×{aλka
†
λ′k + aλkaλ′,−k} + H.c.], (F2)

where we defined the matrix Z̃(k) with elements given by
Z̃l′l(k) = √

Ml′[Z(k)]4
l′l

√
Ml .

We now add this new term to the lattice Hamiltonian
already analyzed in Appendix D 2. Choosing the ηλ to be
the eigenvectors of the following Hermitian matrix,

(T (k) + WZ̃(k))ηλ(k) = ζ 2
λ (k)ηλ(k), (F3)

with positive eigenvalues ζ 2
λ (k) as before, and using the

unitarity of the η matrix, which enforces λ = λ′, we
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finally have

Heff = 1

4

∑
k,λ

[(
ζ 2
λ (k)

ωλ(k)
+ ωλ(k)

)
aλka

†
λk

+
(

ζ 2
λ (k)

ωλ(k)
− ωλ(k)

)
aλkaλ,−k + H.c.

]
, (F4)

from which we obtain the dispersion relation of the photons,
ωλ(k) = |ζλ(k)|.

Let us now consider the limit where the speed of light
vanishes (that is, when coefficients Mm go to zero). One has
to be careful now because the higher-order operator (∇ × b)2

is irrelevant in the RG sense. We thus take the limit while
keeping

W
√

Ml′
√

Ml (F5)

constant. Thus absorbing these factors into W3 leads to
the following eigenvalue equation determining the photon
frequency:

(T (k) + W[Z(k)]4)ηλ(k) = ζ 2
λ (k)ηλ(k), (F6)

where W is taken to be constant near the phase transition. This
is equivalent to Eqs. (50) and (51) in the main text.

3Note that the higher-order term included in Eq. (49) is manifestly
gauge invariant [hence, so are Eqs. (F1)–(F3)]. However, the
approximation made by taking the renormalized W [see Eq. (F5) and
the discussion below it] as the isotropic regulator leads to Eq. (F6), and
consequently Eq. (51) in the main text, not being invariant under the
U(1) gauge transformations. This choice of regulator thus generates
a third, spurious finite-energy mode, which has to be discarded, e.g.,
from the computation of spin structure factors. However, such a
spurious mode is not expected to change the reappearance of pinch
points when the photon velocity goes to zero, as its dispersion is ∼kγ

where γ > 1.
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