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The random phase approximation (RPA) for total energies has previously been shown to provide a qualitatively
correct description of static correlation in molecular systems, where density functional theory (DFT) with local
functionals are bound to fail. This immediately poses the question of whether the RPA is also able to capture the
correct physics of strongly correlated solids such as Mott insulators. Due to strong electron localization, magnetic
interactions in such systems are dominated by superexchange, which in the simplest picture can be regarded as the
analog of static correlation for molecules. In this paper, we investigate the performance of the RPA for evaluating
both superexchange and direct exchange interactions in the magnetic solids NiO, MnO, Na3Cu2SbO6, Sr2CuO3,
Sr2CuTeO6, and a monolayer of CrI3, which were chosen to represent a broad variety of magnetic interactions.
It is found that the RPA can accurately correct the large errors introduced by Hartree-Fock, independent of the
input orbitals used for the perturbative expansion. However, in most cases, accuracies similar to RPA can be
obtained with DFT+U, which is significantly simpler from a computational point of view.
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I. INTRODUCTION

The random phase approximation (RPA) was introduced in
the early 1950s by Bohm and Pines as a means to provide
a collective description of interacting electrons [1–3]. The
approach naturally incorporates long-range correlations and
thus provides a qualitative account of collective excitations
in metallic systems—the plasmons. A few years later, it was
shown that the RPA could be understood as a resummation of
the most divergent terms emerging in a perturbative treatment
of the Coulomb interaction, and an analytical expression for
the RPA correlation energy of the interacting electron gas
was derived by Gell-Mann and Brueckner [4]. Whereas the
second-order perturbative correction to the total energy of the
homogeneous electron gas gives rise to a divergence, the full
RPA resummation can be interpreted as a renormalization of
the Coulomb interaction, due to screening of itinerant elec-
trons, and provides a finite total energy. Nevertheless, while the
significance of RPA for understanding many-body phenomena
cannot be overestimated, the accuracy of the approximation
for total energies is somewhat unsatisfactory. A comparison
with quantum Monte Carlo simulations [5] shows that RPA
underestimates the total energy per electron by approximately
0.5 eV per electron for the homogeneous electron gas with
densities corresponding to those of common metals [6–8].

The perturbative evaluation of correlation energies within
RPA is easily generalized to nonuniform systems. In general,
the correlation energy can be written as a functional of the
interacting density-density response function [9], which can
be calculated from the noninteracting density-density response
function within RPA. For the homogeneous electron gas,
it is natural to use noninteracting orbitals and eigenvalues
as input for the evaluation of the noninteracting response
function. However, for typical nonuniform systems, the bare
noninteracting orbitals usually provide a poor starting point for
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perturbation theory, and much better results can be obtained
if either Hartree-Fock or Kohn-Sham orbitals are used. While
such a scheme generally provides more reliable results, it also
means that the calculated RPA correlation energy becomes
dependent on the choice of input orbitals or—in the context
of density functional theory (DFT)—the choice of exchange-
correlation functional used to generate the input orbitals.
Alternatively, it is possible to define a local RPA exchange-
correlation potential from the total energy expression by
means of the optimized effective potential approach [10,11],
and thus obtain the self-consistent RPA total energy using
the framework of DFT. However, for most applications, the
self-consistent approach is prohibitively demanding in terms
of computational power and one must resort to the perturbative
evaluation of RPA correlation energies, which then acquire a
dependence on input orbitals.

In general, the absolute RPA correlation energy is always
severely underestimated—typically on the order of 0.5 eV
per electron. Nevertheless, due to the universal nature of
this self-correlation error, there is a large degree of er-
ror cancellation whenever one is calculating total energy
differences. The non-self-consistent RPA scheme has been
applied to molecular atomization energies [12–15], barrier
heights [13,16], cohesive energies of solids [14,15,17–21],
adsorption energies [14,15,22–24], van der Waals bonded
systems [13,14,25–31], and dissociation of small molecules
[12,14,22,32–35]. To summarize the general trends, RPA
tends to perform slightly worse than Perdew-Burke-Ernzerhof
(PBE) for covalent bonds. For example, RPA gives a mean
absolute relative error of 7% for the cohesive energies of solids,
whereas PBE gives a 5% error, and RPA and PBE both give
an error of 6% for the atomization energies of molecules—
typically corresponding to a total error of 0.5–1.0 eV for
small molecules [15]. In contrast, the nonlocal nature of the
RPA total energy functional naturally encompasses dispersive
interactions, and RPA thus provides a good account of van der
Waals interactions, although small systematic errors have been
reported [36]. A rather surprising property of the RPA for the
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energies is the qualitatively correct description of molecular
dissociation of closed-shell molecules. In the case of N2

[12] and H2 [13,14,37], RPA accurately reproduces the strict
dissociation limit if one compensates for the self-correlation
error of the individual atoms. This limit comprises a prime
example of static correlation, where the input Kohn-Sham
Slater determinant is a very poor approximation to the true
ground state wave function, and the dissociation cannot be
correctly described by common semilocal functionals such as
LDA and PBE.

The fact that the RPA can account for static correlation
in simple molecules provides hope that RPA may give a
good description of the ground state energy of strongly
correlated materials in general. In particular, static correlation
is known to play an important role in Mott insulators such as
NiO and MnO, and Kohn-Sham DFT usually predicts such
materials to be metals or small-gap semiconductors. This is
not a problem in itself since DFT can only be expected to
reproduce the ground state density and energy. However, it is
highly challenging for any approximate exchange-correlation
functional to reproduce the correct ground state properties
based on a Kohn-Sham Slater determinant that does not re-
semble the true many-body wave function. A common feature
in many of these materials is an antiferromagnetic ground
state resulting from superexchange interactions between spin
states localized on the transition metal atoms [38,39]. In
general, the magnetic structure can be described in terms
of Heisenberg Hamiltonians, which are characterized by a
set of exchange couplings, Jij . These coupling constants
represent the exchange interactions between spins localized
at atoms i and j , and knowledge of the Jij will allow
one to calculate various observables such as the magnetic
susceptibility, transition temperature, and magnetic excitation
spectra. In principle, the Jij can be calculated by comparing
ground state energies of different spin configurations [40,41]
and should thus be accessible by standard DFT calculations. In
practice, however, it is often challenging for standard semilocal
functionals, due to the static correlation inherent in many
magnetic materials.

In this paper, we investigate the performance of the RPA
for evaluating the magnetic coupling constants Jij in magnetic
materials. We compare with LDA+U [42], PBE+U, and
HSE06 [43] calculations and assess the performance for the
materials NiO, MnO, Sr2CuO3, SrCuTeO6, Na3Cu2SbO6, and
a monolayer of CrI3, which are chosen in order to represent a
broad class of magnetic interactions. We evaluate the magnetic
coupling constants for various values of the on-site Coulomb
repulsion U with either LDA, PBE, or HSE06, and show that it
is often possible to obtain good agreement with experiments if
U is chosen “correctly.” In contrast, RPA is rather insensitive
to the choice of U used to obtain the input orbitals, and
provides good agreement with experiments for a wide range of
U values. It should be noted that the term RPA is also used in
spin-wave theory, where it comprises a simple means to include
interactions between magnons [44]. In this paper, however,
RPA will exclusively denote the perturbative treatment of total
electronic energies.

The paper is organized as follows. In Sec. II, we lay out
the foundations necessary to evaluate RPA total energies and
summarize how magnetic coupling constants can be obtained

from the energy-mapping method. In Sec. III, we present the
results of the computations, and in Sec. IV we provide a brief
discussion and outlook.

II. THEORY

A. Random phase approximation

The RPA for total energies is straightforward to derive from
the adiabatic connection and fluctuation-dissipation theorem.
Briefly, the correlation energy within DFT can be written as

Ec = −
∫ 1

0
dλ

∫ ∞

0

dω

2π
Tr[vcχ

λ(iω) − vcχ
KS(iω)], (1)

where vc is the Coulomb interaction and χλ(iω) is the
response function of an interacting system where the Coulomb
interaction has been rescaled by λ, evaluated at the imaginary
frequency iω. In the context of time-dependent DFT, the RPA
response function can be derived from the Dyson equation:

χλ
RPA(iω) = χKS(iω) + χKS(iω)λvcχ

λ
RPA(iω). (2)

Inserting the solution of Eq. (2) into Eq. (1) and carrying out
the λ integration then yields

ERPA
c =

∫ ∞

0

dω

2π
Tr{ln[1 − vcχ

KS(iω)] + vcχ
KS(iω)}. (3)

For solid state systems, it is convenient to expand the
wave functions in a basis of plane waves, ∼eiG·r, where G
is a reciprocal lattice vector. In this basis, the noninteracting
response function can be written as

χKS
GG′(q,iω)

= 1

V

∑
m,n

∑
k∈BZ

fnk − fmk+q

iω + εnk − εmk+q

× 〈ψnk|e−i(q+G)·r|ψmk+q〉〈ψmk+q|ei(q+G′)·r|ψnk〉, (4)

where fnk and εnk are the occupation factors and eigenenergies
of the Bloch states |ψnk〉, respectively. In this representation,
the trace in Eq. (3) becomes a Brillouin zone integral over q
in addition to the trace over G vectors.

Compared to standard semilocal functionals, the RPA
correlation energy is much more computationally demanding.
The two main reasons for this are: 1) The RPA correlation
energy is a functional of the two-point function χKS

GG′ rather
than the single-point density nG, which is sufficient for
semilocal functionals. 2) The noninteracting response function
depends on the unoccupied bands as well as the occupied
ones, whereas explicit density functionals only depend on the
occupied orbitals. For large systems, absolute convergence
with respect to plane waves and unoccupied states becomes
unfeasible and one has to resort to an extrapolation scheme
in order to obtain converged results. It has previously been
demonstrated that the energy as a function of cutoff scales as
[14,26,45]

ERPA(Ecut) = ERPA + A

E
3/2
cut

, (5)

where Ecut is an energy cutoff determining how many plane
waves are included and the number of states included in
the summation entering Eq. (4). With this expression, the
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converged energy ERPA can be computed accurately by
extrapolation.

B. Heisenberg model

The Heisenberg Hamiltonian can be derived as a low energy
approximation to the full many-body Hamiltonian using first-
order perturbation theory in the Coulomb interaction as a
starting point. Except for a spin-independent constant, the
Hamiltonian then becomes

H = −1

2

∑
ij

Jij Si · Sj , (6)

where Sj is the total spin operator for site i and

J exc
ij = 2

S2

∑
ninj

∫
drdr′

|r′ − r|ϕ
∗
ni

(r)ϕ∗
nj

(r′)ϕni
(r′)ϕnj

(r) (7)

is the exchange integral with S being the maximal allowed
eigenvalue of S. In Eq. (7), it was assumed that the magnetic
moment at lattice site i is comprised of the localized orbitals
ϕn and the sum runs over the occupied orbitals if the ϕn shell
is less than half-filled, and over unoccupied orbitals if the ϕn

shell is more than half-filled [44]. It is readily verified that the
exchange integral Eq. (7) is strictly positive.

However, the model Eq. (6) may also be derived from a
completely different point of view. In materials with strongly
localized orbitals, it will be a better approximation to start
with the atomic limit of lattice sites with addition and
removal energies U on the individual sites. Including intersite
hybridization perturbatively then yields the model Eq. (6), but
with the coupling parameters given by

J se
ij = − 4

S2

∑
ninj

|tninj
|2

U
, (8)

where tninj
is the hopping integral between orbitals ϕni

(r −
Ri) and ϕnj

(r − Rj ). The physical origins of J exc
ij and J se

ij

are very different; whereas the exchange coupling J exch
ij

originates from a first-order perturbative treatment of the
Coulomb interaction, J se

ij is strictly nonperturbative in the
on-site Coulomb interaction U . The coupling constants J se

ij are
typically mediated by nonmagnetic anions and the mechanism
is denoted superexchange [38,39].

In general, both exchange and superexchange may con-
tribute to the Jij and we may consider the model Eq. (6) with

Jij = J exc
ij + J se

ij . (9)

Finally, we note that the Hamiltonian Eq. (6) may contain
other terms describing magnetic anisotropy, Dzyaloshinskii-
Moriya interaction [46,47], biquadratic exchange, and four-
spin interactions [44]. However, these terms are usually less
significant and, in this paper, we will only be concerned with
the determination of the Jij from first principles.

C. Energy-mapping scheme

In principle, one could try to obtain the coupling parameters
in the model Hamiltonian Eq. (6) from Eqs. (7) and (8). Starting
with a set of Kohn-Sham Bloch states, one would be required
to construct Wannier functions and then evaluate the relevant

Coulomb and hopping integrals. Even if this procedure could
be completed, it may not be very accurate due to the explicit
dependence on Kohn-Sham orbitals, which are not required
to give a faithful representation of the true many-body wave
function. Instead, the ground state energy for a given spin
configuration should be accurately described within DFT—
at least if a good approximation to the exchange-correlation
functional is applied.

We thus choose a spin configuration l and fix the spin state of
the lattice sites Sl

i accordingly. Since we are only considering
collinear spin configurations, the Si can take the values of ±S.
We thus obtain a set of equations:

El = −1

2

∑
ij

Jij S
l
i S

l
j , (10)

which are solved for the Jij [48]. To determine N parameters
Jij , we need N + 1 ab initio calculations to obtain the needed
El . The spins in the DFT calculations are unconstrained in the
sense that only an initial spin configuration is provided and the
spins and density are thus relaxed until a local minimum of
the total energy is reached. Usually the local minimum will
retain the qualitative spin configuration that was provided, and
one obtains El for a well-defined spin configuration. However,
it may happen that the spin configuration is lost, such that the
minimization does not find a local minimum and one has to
try another configuration.

When solving Eq. (10) for the parameters, we always
use an exact half-integer for the total spin S based on the
oxidation number of the magnetic ion. It is possible to extract a
measure of the effective spin residing on a magnetic ion based
on the DFT calculations, but the construction is somewhat
arbitrary and we have thus chosen to use the full spin here for
consistency. More precisely, the oxidation number of an atom
in an insulting solid can be defined rigorously based on the
Berry phase [49], and this uniquely determines the spin of an
atom using Hund’s rule. However, the Berry phase calculation
is rather involved, and here we have simply chosen to extract
the spin of the magnetic ions based on the ferromagnetic
electronic structure of the Kohn-Sham system, which always
yields an integer number of Bohr magnetons for an insulator.

D. Calculational details

All calculations were performed with the electronic struc-
ture software package GPAW [50], which is based on the
projector augmented-wave method [51] combined with the
Atomic Simulation Environment (ASE) [52]. The LDA+U
and PBE+U calculations are self-consistent, whereas the
HSE06 and RPA calculations are performed on top of PBE+U.
The calculations were performed in plane-wave mode and
all densities and wave function were generated from spin-
polarized collinear input calculations with a cutoff of 600 eV.
For the RPA calculations, we applied a two-point extrapolation
using Eq. (5) with Ecut = 114 eV and Ecut = 150 eV. With
these cutoff energies, the energy differences between various
spin states are accurately converged and for all systems we
tested that a two-point extrapolation from a different pair
of cutoff energies yielded the same energy difference to less
than one percent accuracy. The k-point meshes applied to the
individual materials will be stated below. We note that the exact
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exchange calculations for some materials required rather tight
convergence criteria on the Kohn-Sham orbitals and we used a
criteria of 1014 eV2 per valence electron for the integrated value
of the square of the residuals of the Kohn-Sham equations in
order to obtain convergence.

III. RESULTS

A. NiO and MnO

The transition metal oxides comprise prototypical Mott
insulators with a charge transfer gap and antiferromagnetic
ground states [53]. The oxygen ions are O−2, and for NiO
and MnO the transition metal atoms thus constitute S = 1
and S = 5/2 systems originating from the 3d8 and 3d5 shells,
respectively. In both systems, the ground state is comprised of
ferromagnetic planes that are antiferromagnetically coupled.
We will use this case to exemplify the energy-mapping scheme.
Each transition metal atom has 12 equivalent nearest neighbors
and six equivalent next-nearest neighbors. A given transition
metal ion in the antiferromagnetic ground state has all next-
nearest atoms anti-aligned, six nearest neighbors aligned,
and six nearest neighbors anti-aligned. The nearest-neighbor
magnetic coupling is denoted by J1 and the next nearest
neighbor coupling—mediated by an intermediate oxygen
atom—by J2. To compute these parameters, we consider
three spin configurations: the antiferromagnetic (AF) ground
state, a completely ferromagnetic state (F), and another
antiferromagnetic state (AF’) that differs from the ground state
in that all spins connected by an oxygen bridge are aligned and
only four of the nearest neighbors are aligned. Although the
antiferromagnetic ground state can be obtained with a unit cell
containing two Mn/Ni atoms, the AF’ configuration cannot be
described in this cell and we used a cubic cell with 8 Mn/Ni
atoms for all calculations to minimize errors in the energy
differences and a gamma-centered k-point grid of 4 × 4 × 4.

For a single Mn/Ni atom the three energies can then be
written:

EAF = − 1
2 (−6S2J2), (11)

EF = − 1
2 (12S2J1 + 6S2J2), (12)

EAF ′ = − 1
2 (−4S2J1 + 6S2J2), (13)

and the couplings are thus

J1 = 1

8S2
(EAF ′ − EF ), (14)

J2 = −J1 − 1

6S2
(EF − EAF ). (15)

In Fig. 1 we display exact exchange (EXX) and RPA
calculations for NiO performed non-sel-fconsistently on top
of PBE+U orbitals and eigenvalues. The coupling constants
J1 and J2 have been determined experimentally from inelastic
neutron scattering measurements [54] and is shown as a grey
horizontal line. It is evident that EXX is strongly dependent
on the input orbitals—for small values of U, the orbitals are
rather delocalized and EXX is very far from the experimental
results. This is indeed expected since the the ground state of
NiO is dominated by superexchange effects that anti-align all
Ni atoms connected by an oxygen bridge, and this is reflected
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FIG. 1. J1 and J2 parameters for NiO calculated with EXX
and RPA calculated as a function of U used in the input PBE+U
calculations. The experimentally determined values are shown as a
horizontal grey line.

in the fact that J2 is an order of magnitude larger than J1. Since
superexchange is far more important in this case, we expect
that the correlation energy must play a significant a role, and we
observe that RPA is able to accurately correct the errors intro-
duced by EXX for all the applied values of U. We note that, due
to the linearity of the energy-mapping scheme, we can write

Jij = J EXX
ij + J RPA

ij , (16)

where J RPA
ij is a correction coming from the correlation energy

alone. From Fig. 1, it is then clear that RPA provides a large
correction for small values of U and a small correction for large
values of U. It is highly remarkable that a perturbative treat-
ment within RPA is almost able to completely eliminate the
initial state dependence. A similar result was noted in Ref. [21],
where the RPA energy difference between anatase and rutile
TiO2 was shown to be nearly independent of the value of U used
to generate input orbitals. Unfortunately, it was not possible to
extend the calculations to U = 0. Although the PBE ground
state has a (small) gap, the ferromagnetic state used for the en-
ergy mapping becomes metallic for U < 1.0 eV and it becomes
highly nontrivial to converge the EXX calculations in that case.

Although non-self-consistent EXX completely fails in the
description of the exchange parameters Jij , standard Hubbard-
corrected local and semilocal functions such as LDA+U and
PBE+U are able to give a good account of the interactions if U
is chosen correctly. This is shown in Figs. 2 and 3 for the case of
NiO and MnO, respectively. In both cases, RPA provides good
agreement with experimental values, but so do LDA+U and
PBE+U if one chooses U in the vicinity of 5 eV. However,
both of these functionals show a strong dependence on U
and all coupling parameters tend to vanish as U is increased.
Nevertheless, LDA+U and PBE+U calculations are one to
two orders of magnitude faster than RPA calculations and may
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FIG. 2. J1 and J2 for NiO calculated as a function of U
using LDA+U, PBE+U, HSE06@PBE+U, and RPA@PBE+U. The
experimental values [54] are indicated with grey horizontal lines.
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FIG. 3. J1 and J2 for MnO calculated as a function of U
using LDA+U, PBE+U, HSE06@PBE+U, and RPA@PBE+U. The
experimental values [55] are indicated with grey horizontal lines.

comprise a practical choice if one is able to judiciously choose
a suitable value of U. Finally, the HSE06 functional gives a
very similar trend as RPA, with a shallow extremum when U
is close to 5 eV.

B. Na3Cu2SbO6

The Na/Cu antimonate Na3Cu2SbO6 [56] has attracted a
sizable amount of interest due to evidence of a quasi-one-
dimensional (1D) nature of the magnetic structure [57]. Briefly,
the Cu2+ ions are arranged in a distorted 2D honeycomb lattice
and thus comprise a spin-1/2 system. The distortion results in
the Cu atoms forming dimers with intradimer coupling J1.
In addition, the dimers interact by an interdimer coupling J2

and the system can be regarded as a quasi-1D chain of dimers
interacting through J2. The sign of the interdimer coupling J1

is of fundamental importance to understand the spin dynamics
in the system [58], but there has been some controversy
regarding the sign of J1 [58,59], as both antiferromagnetic and
ferromagnetic values of J1 are consistent with experimental
data. In Ref. [58], the values J1 = 17.8 meV and J2 =
−15.0 meV were obtained by fitting quantum Monte Carlo
simulations to the measured susceptibility, and we will take
these values as a reference here.

To map out the energies of different spin configurations,
we used a unit cell containing two units of Na3Cu2SbO6 and a
gamma-centered k-point grid of 4 × 4 × 2. In Fig. 4, we show
the coupling constants calculated with LDA+U, PBE+U,
HSE06, and RPA, and we see that all calculations except
HSE06 at low values of U predict a ferromagnetic intradimer
coupling. Again, RPA is seen to be much less sensitive to the
value of U and generally agrees well with quantum Monte
Carlo simulations fitted to experiment [58].

2 4 6 8
U [eV]

0

20

40

60

80

J
[m

eV
]

J1

LDA

PBE

HSE

RPA

2 4 6 8
U [eV]

−60

−40

−20

0

20

J
[m

eV
]

J2

LDA

PBE

HSE

RPA

FIG. 4. J1 and J2 for Na3Cu2SbO6 calculated as a function of
U using LDA+U, PBE+U, HSE06@PBE+U, and RPA@PBE+U.
The experimental values [58] are indicated with grey horizontal lines.
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FIG. 5. Nearest neighbor coupling J for Sr2CuO3 calculated as
a function of U using LDA+U, PBE+U, HSE06@PBE+U, and
RPA@PBE+U. The experimental span of values is indicated by the
grey area. (Lower bound: inelastic Neutron scattering [60]. Upper
bound: susceptibility measurements [61].)

C. Sr2CuO3

Superconductivity in the strongly correlated cuprates are
suspected to be closely related to magnetic interactions and it
is thus of vital importance that reliable values of the exchange
coupling constants can be obtained in these materials. Here
we will consider the case of Sr2CuO3, which exhibits strong
magnetic interactions. In this material, the Cu planes form 1D
chains of Cu atoms connected by oxygen bridges that facilitate
superexchange interaction, and the magnetic structure is thus
dominated by a single J parameter. The experimentally
determined values of J range from −0.241 eV from inelastic
neutron scattering [60] to −0.146 eV based on susceptibility
measurements [61]. In Ref. [62], a value of −0.159 eV was
obtained from extensive diffusion Monte Carlo simulations.

To map out the energies of the two different spin configu-
rations needed to calculate J , we used a unit cell containing
four units of Sr2CuO3 and a gamma-centered k-point grid
of 6 × 6 × 2. We present the results obtained from LDA+U,
PBE+U, HSE@PBE+U, and RPA@PBE+U in Fig. 5. Again
we see the trend that LDA+U and PBE+U provides a good
approximation for U in the range 5–10 eV, but severely
overestimates the magnitude of J for small values of U. RPA
shows less sensitivity to U, but seems to overestimate J for
intermediate values of U. HSE06 follows the same trend as
RPA, but gives the wrong sign of J for U < 1.

D. Sr2CuTeO6

Another magnetic material that has recently been scruti-
nized theoretically [63] is the double perovskite Sr2CuTeO6.
Here the magnetic Cu2+ ions comprise two-dimensional
(2D) square planes where the superexchange interactions are
mediated by intermediate TeO6 octahedra, which make the in-
teractions rather weak compared to oxygen-mediated superex-
change. In addition to nearest-neighbor antiferromagnetic
interactions J1, there are also next-nearest antiferromagnetic
interactions J2 that introduce a frustration in the 2D magnetic
lattice and is thus a prime example of a frustrated 2D magnet
on the rectangular lattice. Due to the strongly correlated nature
of the material and the very weak interactions, it has proven
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FIG. 6. J1 and J2 for Sr2CuTeO6 calculated as a function of U
using LDA+U, PBE+U, HSE06@PBE+U, and RPA@PBE+U. The
experimental values [63] are indicated with grey horizontal lines.

highly challenging to faithfully reproduce coupling constants
determined from inelastic neutron scattering. However, in
Ref. [63] it was demonstrated that agreement with experiments
could be obtained with sophisticated quantum chemistry
methods.

We used a unit cell containing four units of Sr2CuTeO6 and
a total of 16 k-points to construct the three spin configurations
needed to evaluate J1 and J2. In Fig. 6 we present the results,
and it is evident that RPA and HSE have severe problems in
capturing the correct interactions for small values of U. In
particular, RPA and HSE06 give the wrong sign of J2, which
is experimentally determined to be −0.21 meV. LDA+U and
PBE+U, on the other hand, give the correct sign of J2 for
small values of U, but become positive for U > 3 eV.

E. Monolayer of CrI3

The simple Heisenberg model Eq. (6) cannot accommodate
magnetic order in a purely 2D system according to the Mermin-
Wagner theorem. However, if one includes the effects of either
magnetic anisotropy or a quasi-2D material it becomes pos-
sible to bypass the Mermin-Wagner theorem, as was recently
demonstrated experimentally for CrI3 [64] and a bilayer of
Cr2Ge2Te6 [65], respectively. The possibility of magnetic
order in 2D systems constitutes an intriguing route to construct
nanoscale spintronics devices, and accurate determination of
the magnetic interactions and magnetic anisotropy in such
systems are crucial prerequisites for a faithful prediction of the
magnetic properties. Here we consider a monolayer of CrI3 as
an example of a pure 2D magnetic system. The magnetic Cr
ions form a honeycomb lattice such that each ion has three
nearest neighbors; we will neglect all but the nearest neighbor
interactions and consider only a single magnetic interaction J .
In Fig. 7, we show the calculated value J as a function of U .
Once again, LDA+U and PBE+U give rise to monotonously
increasing values of J when U is increased. HSE06@PBE+U,
on the other hand, is seen to be largely independent of the value
of U, but yields values of J similar to LDA and PBE, whereas
RPA@PBE+U yield much larger values of J . In particular,
it has been shown that the electronic properties of Cr-based
halides [66] are well reproduced with U = 0 and, at this point,
RPA yields J = 10.5 meV, whereas LDA and PBE give J =
5 meV. Thus the magnetic interaction differ by a factor of two
when comparing LDA and PBE with RPA, which is bound to
have a crucial influence on the predicted values of the Curie
temperature for this material.

FIG. 7. Nearest neighbor coupling J for a monolayer of CrI3 cal-
culated as a function of U using LDA+U, PBE+U, EXX@PBE+U,
HSE06@PBE+U, and RPA@PBE+U.

The fact that J increases with larger values of U indicates
that the superexchange plays an important role, although this
material seems to be dominated by direct exchange at first
sight. Larger values of U tend to localize the orbitals carrying
the magnetic moments and thus decrease the hybridization
that gives rise to direct exchange. This is also confirmed
by EXX@PBE+U calculations in Fig. 7. There is presently
no reliable experimental estimates of J for this material, so
with the data at hand it is not possible to determine whether
the semilocal functionals or RPA provides the most accurate
prediction. Nevertheless, the calculations demonstrate that
one should be careful in trusting the accuracy of semilocal
functionals for magnetic interactions in this case. Based on the
failure of LDA and PBE at U = 0 for magnetic interactions of
the other materials studied in this paper, it is likely that RPA
provides a better estimate of J for this material and perhaps
2D materials in general.

Regardless of the values of J , magnetic order can only
exist in a purely 2D material if magnetic anisotropy is present.
We have calculated the anisotropy by including the spin-orbit
coupling non-self-consistently [67] and obtain an energy
difference between magnetic moment in plane and out of plane
of 0.9 meV per Cr atom. The easy axis is out of plane, which
is also what is found experimentally [64].

IV. CONCLUSION

We have performed first-principles calculations of mag-
netic interactions in the magnetic materials NiO, MnO,
Na3Cu2SbO6, Sr2CuO3, Sr2CuTeO6, and a monolayer of
CrI3, within LDA+U, PBE+U and HSE06@PBE+U, and
RPA@PBE+U. The RPA can be decomposed into an EXX
part and a correlation part and, as expected, the EXX part
fails dramatically due to the presence of the superexchange
mechanism in these materials. Moreover, the results are highly
dependent of the value of U used in the calculations. In
contrast, RPA is able to accurately correct EXX results for a
wide range of the U parameters. For the classic Mott insulators,
RPA provides very good agreement with experiments, whereas
LDA+U and PBE+U only provide accurate values when
choosing U ∼ 5 eV. A similar picture arises for the materials
Na3Cu2SbO6 and Sr2CuO3 where RPA gives a much better
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estimate of the magnetic interactions for small values of U than
LDA+U and PBE+U, whereas PBE+U gives very good re-
sults for U ∼ 5 eV. For the frustrated magnet Sr2CuTeO6, RPA
seems to perform rather poorly for low values of U, whereas it
coincides with LDA+U and PBE+U for U ∼ 5 eV—close to
the experimental values. Finally, RPA predicts much stronger
magnetic interactions in the recently discovered 2D magnet
CrI3 than either LDA+U, PBE+U, or HSE06. It should be
stressed that all RPA calculations in this paper are non-self-
consistent and cannot correct for large errors in the density
that might occur in the underlying PBE calculations [68].

To conclude, EXX has been shown to fail dramatically
whenever magnetic interactions are not described by idealized
direct exchange. This has been the case for all the materials
studied in this paper—even the monolayer of CrI3, which looks
like a simple exchange-mediated ferromagnet at first sight.
RPA incorporates the correlations necessary to capture the

superexchange mechanism and effectively brings the predicted
values of ferromagnetic and antiferromagnetic magnetic inter-
actions close to experimental values. However, in many cases,
similar accuracy can be obtained with PBE+U, which is much
less demanding from a computational point of view. Applying
PBE+U, however, requires prior knowledge of suitable values
of U for particular materials. When suitable values of U are not
known or are fixed by other requirements such as values for
the band gap and magnetic anisotropy, RPA could constitute a
valuable parameter-free alternative.
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