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Rydberg atoms have attracted considerable interest due to their huge interaction among each other and with
external fields. They demonstrate characteristic scaling laws in dependence on the principal quantum number
n for features such as the magnetic field for level crossing or the electric field of dissociation. Recently, the
observation of excitons in highly excited states has allowed studying Rydberg physics in cuprous oxide crystals.
Fundamentally different insights may be expected for Rydberg excitons, as the crystal environment and associated
symmetry reduction compared to vacuum give not only optical access to many more states within an exciton
multiplet but also extend the Hamiltonian for describing the exciton beyond the hydrogen model. Here we study
experimentally and theoretically the scaling of several parameters of Rydberg excitons with n, for some of which
we indeed find laws different from those of atoms. For others we find identical scaling laws with n, even though
their origin may be distinctly different from the atomic case. At zero field the energy splitting of a particular
multiplet n scales as n−3 due to crystal-specific terms in the Hamiltonian, e.g., from the valence band structure.
From absorption spectra in magnetic field we find for the first crossing of levels with adjacent principal quantum
numbers a Br ∝ n−4 dependence of the resonance field strength, Br , due to the dominant paramagnetic term
unlike for atoms for which the diamagnetic contribution is decisive, resulting in a Br ∝ n−6 dependence. By
contrast, the resonance electric field strength shows a scaling as Er ∝ n−5 as for Rydberg atoms. Also similar
to atoms with the exception of hydrogen we observe anticrossings between states belonging to multiplets with
different principal quantum numbers at these resonances. The energy splittings at the avoided crossings scale
roughly as n−4, again due to crystal specific features in the exciton Hamiltonian. The data also allow us to assess
the susceptibility of Rydberg excitons to the external fields: The crossover field strength in magnetic field from
a hydrogenlike exciton to a magnetoexciton dominated by electron and hole Landau level quantization scales as
n−3. In electric field, on the other hand, we observe the exciton polarizability to scale as n7. At higher fields,
the exciton ionization can be studied with ionization voltages that demonstrate an n−4 scaling law. Particularly
interesting is the field dependence of the width of the absorption lines which remains constant before dissociation
for high enough n, while for small n � 12 an exponential increase is found. These results are in excellent
agreement with theoretical predictions.

DOI: 10.1103/PhysRevB.96.125142

I. INTRODUCTION

The recent observation of highly excited excitons in bulk
cuprous oxide crystals up to principal quantum numbers
of n = 25 has opened appealing perspectives for studying
Rydberg physics in the solid state [1]. The exciton Rydberg
energy R of about 90 meV is reduced by more than two
orders of magnitude relative to the atomic Rydberg energy.
This reduction makes excitons quite susceptible to external
fields as compared to their atomic counterparts and enables
reaching the strong field regime where the characteristic
interaction energies with an electric or magnetic field prevail
over the Coulomb interaction. Furthermore, the different states
of the hydrogenlike excitonic series are spaced rather closely
facilitating systematic high resolution studies because the
absorption across the whole series can be recorded by tuning a
single light source such as a frequency stabilized laser with neV
resolution.

These opportunities have been exploited already to start
elaborating similarities and differences of atom and exciton
Rydberg systems. A particular example is the quantum defect,
which for atoms comprises the deviation of the energy levels
of the valence electron from a pure hydrogen series in a
simple way. Similar deviations were observed for Rydberg
excitons in cuprous oxide whose binding energies can be also

approximately cast into the form [2]:

En,l = R
n2

(
1 − δn,l

n

)2 , (1)

where δn,l is the quantum defect of the exciton in the
state with principal quantum number n and orbital angular
momentum l of the envelope wave function, using the spherical
approximation, see below. Despite this similarity the origin of
the quantum defect is very different: For atoms it accounts
for the shielding of the Coulomb potential of the nucleus by
the closed shells of inner electrons, leading to an effective
deviation from the 1/r dependence. In semiconductors like
Cu2O, it results predominantly from the details of the valence
band structure, which has a dispersion deviating strongly from
a parabolic law.

This exemplary finding asks for a more detailed study
of the two different classes of Rydberg objects. Particularly
useful in this respect is the application of external electric and
magnetic fields, which cause characteristic shifts of the energy
levels and also lift level degeneracies. For atoms, e.g., the
degeneracy in the magnetic quantum number m, caused by the
spherical symmetry of the system, is lifted by a magnetic field.
Unlike for atoms, the anisotropic crystal structure makes this
description approximative only for excitons as demonstrated
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by the observation of a triplet splitting of the F excitons, l = 3,
in the absence of an external field [3].

While the effects of external fields were investigated
already right after the first observation of excitons in cuprous
oxide [4–6], recently corresponding studies were performed
in both electric [7] and magnetic [8] field with unprecedented
resolution. Elaborated calculations accounting for the details
of the band structure allowed a quantitative description of the
observed field dispersions in the regime of low n � 6, where
the exciton lines can be reliably assigned. For higher n an
exact solution of the Hamiltonian becomes difficult. The field
induced splittings become so diverse that statistical methods
have to be applied for the level analysis. In magnetic field, this
analysis revealed quantum chaotic behavior [9].

The focus here is placed on the high-n Rydberg regime
(n > 6) addressing quantities that can be uniquely determined
and are therefore characteristic for the exciton states, in
particular in an external electric or magnetic field. These
quantities are the field strengths of the first resonance of
states belonging to adjacent manifolds with principal quantum
numbers n and n + 1, and in electric field the polarizability,
the spectral linewidth, and the dissociation field strength. We
also address the multiplet width at zero field as a function
of n. A systematic picture is developed by scanning the
excited state resonances from low n up to the band gap, from
which similarities to atoms can be extracted such as the n−5

scaling of the first resonance with voltage in electric field
[10]. At these resonances anticrossings are observed which we
attribute mainly to nonparabolic terms in the kinetic energy
of the valence band hole, which clearly represents a crystal
specific feature distinctly different from atoms. At higher field
strengths, exciton dissociation takes place at voltages that scale
as n−4 like in the atomic case. On the other hand, in magnetic
field we find a scaling different from the n−6 law in atoms,
namely an n−4 law of the resonance field strength. This differ-
ence arises from the mixing of hydrogenlike states in the crystal
due to which the optical selection rules give access to the
whole exciton multiplet in absorption compared to the limited
set of spectral lines for atoms. As a result, the states with large
paramagnetic energy shift are involved in the resonances in
contrast to the dominant diamagnetic behavior for atoms.

A comprehensive understanding of the scaling laws for ex-
citonic properties in cuprous oxide not only allows us to draw
analogies to and underline differences from atomic physics and
in particular to elucidate the role of the crystalline environment
for excitons as compared with atoms, but also provides access
to the evaluation of the properties of excitonic states with
large n. Indeed for n � 5 . . . 7 the direct calculation of the
exciton binding energies, fine structure splittings, multiplet
behavior in external electric, and magnetic field [3,7,8,11–14]
becomes computationally so demanding that scaling laws
with transparent physical origin whose validity has been
assessed in the intermediate n regime both theoretically and
experimentally become an indispensable tool to predict the
properties of the whole Rydberg exciton state series.

After presenting the experimental details in Sec. II, we
discuss the scaling law behavior in Sec, III, considering first
the zero-field situation and then turning to the behavior in
external fields. In each part we also give the corresponding
theoretical analysis. The paper is concluded in Sec. IV.

II. EXPERIMENT

The experiments were performed on bulklike cuprous oxide
crystal slabs that were cut and polished from a natural rock
[15]. The samples were placed strain free in a sample holder
that allowed application of an electric field. The holder was
placed at T = 1.3 K in the liquid helium insert of an optical
cryostat equipped with a magnet coil for fields up to 7 T. Both
electric and magnetic field were applied in longitudinal field
configuration, i.e., they were oriented along the optical axis
normal to the crystal slab plane. Further technical details can
be found in Refs. [7,8].

The absorption was measured, depending on the required
spectral resolution, by using either a broadband white light
source or a frequency stabilized dye laser with neV linewidth
for excitation. For the white light source the bandwidth was
reduced to the wavelength range of interest by a double
monochromator. After transmission through the crystal the
white light was dispersed by another double monochromator
and detected by a Si-charge coupled device camera. The
spectral resolution provided is less than 10 μeV which is
sufficient for exciton states with n < 20 to study the effects of
interest here. When the laser was used to obtain a particularly
high spectral resolution, its output was stabilized by a noise
eater. After transmission through the sample it was detected by
an avalanche photodiode. The power density of the exciting
light was chosen low enough that the excitation of dressed
states as discussed in Ref. [16] can be neglected and the
experimentally observed spectral lines correspond to resonant
absorption peaks.

Recently we showed that the absorption spectra of cuprous
oxide crystals vary with the light polarization in combination
with the chosen crystal orientation. For example, in electric
field applied to a [110] oriented crystal, the quadrupole allowed
transitions to the S and D excitons which can be observed for
light polarized linearly along the [001] direction are absent for
light polarized along the [11̄0] direction, simplifying the spec-
tra significantly [7]. Depending on the problem to be studied,
we chose the appropriate polarization configuration. If the task
was to address the whole multiplet belonging to a particular n

for which as many states as possible need to be resolved in a
manifold, we used the [001] polarization, while the [11̄0] po-
larization was chosen when, for example, the field dispersion
of the P excitons was to be measured with high accuracy.

For the subsequent discussion several remarks are due. For
atoms, in a constant external field the spherical symmetry
is reduced, but the rotational symmetry about the field is
maintained, so that the angular momentum component along
the field direction m remains a good quantum number. In
a longitudinal field configuration, where the optical axis is
oriented along the field, the selection rules in electric dipole
approximation lead to excitation of particular states in single
photon absorption: Starting from an electron in an s shell, only
transitions to p-shell states are possible due to the restriction
�l = ±1, whereby all states in this state triplet can be excited
leaving the magnetic quantum number unchanged, �m = 0,
or changing it by unity, �m = ±1, for linearly or circularly
polarized light, respectively. Other states of the Rydberg
manifold with higher angular momenta l > 1, for example,
cannot be excited out of an s-shell state.
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The situation is different for the yellow excitons in cuprous
oxide, where the dominant dipole-allowed excitons are those
with P -type envelope wave function. The absorption of light
takes place through excitation of an exciton in a particular
quantum state out of the ground state of the crystal. Due to
the reduction from continuous to discrete symmetry oscillator
strength is shuffled from the P states to other odd exciton
states, namely the F -, H -, . . . excitons, even though it remains
at least two orders of magnitude smaller compared to the
P states. Furthermore, the S-exciton transitions are allowed
in quadrupole approximation, and, through the exchange
coupling, also the D excitons become accessible. Thereby,
if allowed by the transition matrix elements, the observation
of states is facilitated or enhanced at the expense of the P

excitons, as described quantitatively in recent studies of low
lying excitons (n � 7) [7,8].

A magnetic field enhances the visibility of the weak states
that are accessible through the crystal symmetry-induced
mixing of excitons with odd parity envelope as this mixing is
strongly increased by the field. Quadrupole-allowed excitons
with even parity remain weak [8]. By contrast, in electric
field the excitons with opposite parity become mixed from
which the even parity excitons profit in oscillator strength.
Hence, the S-, D-, ...excitons become more pronounced in
the absorption spectra. As a consequence of this mixing by
the crystal structure and by the external field, the majority of
states within an exciton multiplet become easily detectable, in
contrast to atoms. This allows for access also to high angular
momentum states by single photon absorption.

III. SCALING OF EXCITON PROPERTIES

Before discussing the different scaling laws, we first present
briefly the comprehensive set of data from which the laws are
extracted. These data comprise spectra recorded in magnetic
and electric field, from which also the understanding of the zero
field level spectrum can be deepened. Figure 1 shows a contour
plot of exciton absorption spectra versus the magnetic field
applied in the Faraday geometry. At zero field the hydrogenlike
series of exciton states is seen, out of which a complex
Zeeman splitting pattern arises. Detailed insight into these
spectra can be obtained by taking their second derivatives from
which weak features become well resolved. The corresponding
contour plot of second derivatives is shown in Fig. 2: in panel
(a) for the states with n > 4 up to B = 7 T, while in panel (b)
a closeup of the low-field range up to 2 T is shown for n > 6.
The focus here will be on this range for which a concrete state
assignment is complicated. At zero field the levels belonging
to a particular principal quantum number are spread over
an energy range which becomes narrower the higher n is.
Applying a magnetic field, the splitting of a multiplet becomes
larger for higher n, because higher angular momentum states
limited by l � n − 1 contribute.

Due to the multitude of observed levels in particular at
medium field strengths it is difficult to extract generally valid
scaling laws for the dependences on the principal quantum
number there. For that purpose we restrict our analysis to
ranges, where states can be identified well. This is the case at
low fields up to the point, where resonances of states belonging

to exciton multiplets with different principal quantum numbers
occur. Similarly, states can be quite well identified in high
magnetic fields, where the dominant observed lines tend to
cluster around transitions that correspond to those between
Landau levels, see Fig. 1. In fact, the closeup of Fig. 1 shown
in Appendix A as Fig. 13 reveals transitions which can be
associated with Landau level quantum numbers up to 55,
which arise in magnetic field from P excitons with n = 55
in zero field, see also discussion below in Sec. III B. The
corresponding average radius of this exciton wave function
would be 5.04 μm, which is squeezed in magnetic field,
thereby enhancing the oscillator strength so that these highly
excited states become visible. The n = 55 state can be
observed starting from 0.8 T, where the Landau level extension
is about 210 nm.

Exciton level splitting can be also induced by applying an
electric field and exploiting the Stark effect. Corresponding
spectra are shown in Fig. 3 where their second derivatives
are plotted as a function of the voltage applied to the sample
for the excitons with n � 5, largely complementary to those
shown in Ref. [7]. Overall, the number of lines observed there
remains smaller than in magnetic field because already for
pretty low voltages below 10 V the exciton states with n >

10 are subject to field-induced dissociation. For identifying
scaling laws, one has to restrict also here to the low field
strength regime or to lines with dominant oscillator strength
compared to the other features. As discussed above, variation
of the linear polarization of the exciting light allows one to vary
the number of detected spectral lines. In Fig. 3(a), the light
polarization was ê ‖ [11̄0] and in Fig. 3(c) the polarization
was ê ‖ [001]. In the former case, the quadrupole-active, even
exciton states (e.g., S and D excitons) are forbidden, while
in the latter case they are allowed, giving the spectra a more
complex appearance.

A. Zero-field behavior

The exciton energies in zero external field can be described
well by the quantum defect formalism of Eq. (1) [2]. We
recall that in Cu2O the origin of the quantum defect is quite
different from that in many-electron Rydberg atoms and is
mainly related with the complex valence band structure. We
demonstrate below that the concept of the quantum defect
naturally arises in the perturbative treatment of the valence
band mixing effects, which applies to high-n excitonic states.

The separation between the topmost �+
7 and the closest

�+
8 valence subbands in cuprous oxide is of the same order

of magnitude as the exciton Rydberg energy R. Hence,
the mixing of these bands via the off-diagonal elements
of the Luttinger Hamiltonian gives rise to the deviation
of the excitonic series from a hydrogenic one and to the
fine structure of the exciton energy spectrum [3,11,17–19].
Moreover, the exchange interaction between the electron and
the hole also contributes significantly to the exciton state
splitting and mixing [7,11,18]. For excitons with principal
quantum numbers n � 4 the exciton binding energyR/n2 � 5
meV is, however, much smaller than the spin-orbit splitting
between the valence bands. Correspondingly, the off-diagonal
elements of the Luttinger Hamiltonian mixing the �+

7 and
�+

8 bands can be treated perturbatively. In zero-order ap-
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FIG. 1. Contour plot of absorption spectra versus magnetic field applied in the Faraday configuration (light propagation along the magnetic
field), recorded at T = 1.3 K on a Cu2O crystal slab. The dashed line indicates the band gap at zero field. Landau level quantum numbers that
can be approximately assigned to a bunch of clustered transitions are indicated at the right and top axes. They are identical to the principal
quantum number of the P exciton from which they emerge. The black frame indicates the area from which a closeup is shown in Appendix A
as Fig. 13. The scale on the right gives the strength of the absorption features in arbitrary units.
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FIG. 2. (a) Same data as in Fig. 1 but in the form of a contour plot of the second derivative of the absorption spectra versus magnetic field
for n � 5. (b) Closeup of the states for n � 7 in B up to 2 T. T = 1.3 K. The scales on the right give the strength of the features in arbitrary
units. The weak equidistant vertical stripes which are apparent mostly at low energies in the upper panel (a) are artifacts of taking the second
derivative.

proximation where the admixture of the �+
8 band is ignored

one recovers the standard hydrogen-like Hamiltonian for the
electron-hole relative motion. The first-order mixing effects

are absent and, in the second-order of perturbation theory
one obtains the corrections to the hydrogen-like Hamiltonian.
The effective Hamiltonian can be recast in the following

FIG. 3. Contour plot of the second derivatives of absorption spectra versus applied voltage. The spectra were recorded by white light
excitation at T = 1.3 K on a Cu2O crystal slab with [110] orientation. The light was polarized along the [11̄0] direction in the left panel (a)
and along the [001] direction in the right panel (c). The mid panel (b) shows a closeup of the section of the contour plot in the left panel,
marked there by the solid box, in order to highlight the anticrossing at the first resonance involving the state of the n = 6 multiplet showing
the strongest field dispersion to higher energies and the state of the n = 7 multiplet with the strongest dispersion to lower energies. The weak
equidistant vertical stripes in the left and right panel are artifacts of taking the second derivative.
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form (cf. [2,7]):

H = p2

2μ
− e2

εr
+ Ap4 (2)

+ e2

εr3
[Be(l · se) + Bh(l · sh)] (3)

+Cδ(r)(se · sh) + Hcubic + Hsd . (4)

Here and through the rest of the paper, we consider excitons
with center of mass wave vector K = 0. In Eq. (2) the first
two terms, subsequently denoted in short by H0, describe
the standard hydrogenlike problem with the relative motion
momentum p, reduced mass μ, the relative motion coordi-
nate r , the electron charge e, and the dielectric constant ε.
It gives rise to the excitonic series with R = μe4/(2ε2h̄2)
and δn,l ≡ 0 in Eq. (1). The quartic term Ap4 describes
the nonparabolicity of the kinetic energy with A being a
constant. The parameter A can be estimated in the spherical
approximation by second-order perturbation theory via the
Luttinger parameter γ2 as A ≈ 2γ 2

2 /(m2
0�), where m0 is the

free electron mass and � is the splitting between the �+
8 and �+

7
bands. Note that accounting for the anisotropic contributions
in the valence band Hamiltonian, γ2 �= γ3 [3,11] produces p4

anisotropic terms in the hole dispersion. The k · p mixing
with remote bands produces additive contributions to A but
these contributions are much weaker due to the substantial
distance to remote bands. The second line of Eq. (2) describes
the spin-orbit interaction, where l = h̄−1[r × p] is the angular
momentum operator, se (sh) are the electron (hole) spin-1/2
operators acting on the basis functions of the �+

6 and �+
7

representations, respectively, and Be (Bh) are constants. These
contributions can be derived accounting for the �+

7 and �+
8

bands mixing and evaluating the matrix elements of the
Coulomb 1/r potential on the mixed Bloch functions. In the
third line, the term Cδ(r)(se · sh) describes the short-range
electron-hole exchange interaction with the exchange constant
C, and the additional terms Hcubic and Hsd account for the
cubic anisotropy and the S-D-exciton mixing, respectively. In
the following the terms Hcubic and Hsd are neglected because
they give little contribution to the quantities discussed below.
The Hamiltonian (2) produces quantum defects that are in
reasonable agreement with the experiment. To that end we
first solve the hydrogenic problem and obtain �nlm(r), which
are the eigenfunctions of H0. The remaining terms are treated
perturbatively. We introduce the Hamiltonian that is within
the applied approximations the extension of the Hamiltonian
beyond the hydrogen model:

Hd = Ap4 + e2

εr3
[Be(l · se) + Bh(l · sh)] + Cδ(r)(se · sh),

(5)

and thus is responsible for the quantum defects. Furthermore,
the space dispersion of the dielectric constant and the spin-
independent short-range part of the electron-hole interaction,
i.e., central-cell corrections [12,20,21], can be also recast in
the C ′δ(r) form with the additional parameter C ′.

Using the first-order perturbation theory inHd and retaining
the contributions leading in the inverse principal quantum

number we arrive at [22,23]

〈p4〉nlm =
(

h̄

aB

)4 4

n3(l + 1)
, (6a)

〈
1

r3

〉
nlm

= 1

a3
B

1

n3l(l + 1/2)(l + 1)
, (6b)

〈δ(r)〉nlm = δK
l,0

π

1

aBn3
, (6c)

where 〈. . .〉nlm denotes the quantum-mechanical average of the
corresponding quantity over the exciton state �nlm(r), aB =
h2ε/(μe2) ≈ 1.11 nm is the exciton Bohr radius suitable for
the description of the P -excitonic series [24], and δK

a,b is the
Kronecker δ symbol. As a result, the corrections due to the
Hamiltonian Hd produce level shifts and splittings ∝1/n3.
This behavior is consistent with Eq. (1) with n-independent
defects, δn,l ≡ δl :

En,l ≈ R
n2

+ 2δlR
n3

. (7)

The analysis of the experimental data shows that the exciton
quantum defects for large n quickly converge to constant
values for fixed angular momentum l. This observation is
supported by Eqs. (6), which show that each contribution to
the energy deviation of the levels within a multiplet from the
simple hydrogen formula scales as 1/n3, in agreement with
the quantum defect description, Eqs. (1) and (7). Furthermore,
we found experimentally that with increasing l the quantum
defects drop continuously from finite positive values towards
zero, again, in full agreement with Eqs. (6). The S excitons
demonstrate the largest quantum defect δn,l=0 ≈ 0.65, for the
P excitons it is about 0.34 and for the D and F excitons it
is reduced to 0.18 and 0.12, respectively, in the large-n limit.
Theoretical estimates of the nonparabolicity contribution to
the quantum defects, Eq. (6a), for γ2 = 0.8 [3,11,19,25] yield
δn,l=0 = 0.87, δn,l=1 = 0.43, δn,l=2 = 0.28 and δn,l=3 = 0.21
in reasonably good agreement with experiment. This supports
our conjecture that the dominant contribution to the quantum
defects arises from the p4 nonparabolic term in the valence
band dispersion.

The consequence of the quantum defect series for a
particular principal quantum number is that the associated
states are spread over a finite energy range with the low (high)
angular momentum states on the low (high) energy side, as
clearly seen in the spectra in Fig. 2 and in Fig. 3. The widths
of these multiplets were determined from the data in zero field
and also in weak external fields, applied to optically activate
excitons that are dark without field or to enhance their visibility
so that their energies could be extrapolated to zero field with
high accuracy. The widths of the multiplets are plotted in
Fig. 4 as function of n in double-logarithmic representation
and show a strong drop with increasing principal quantum
number from almost 3 meV for n = 3 to less than 0.1 meV
for n exceeding 10. The plot suggests that the data can be well
described by a power law proportional to n−d . A corresponding
fit gives d = 2.75 ± 0.02 and is shown by the light grey
area. From our theoretical considerations above we expect
a 1/n3 scaling according to Eqs. (6), shown by the red line fit.
The n−3 fit is in reasonable accord with the data, showing
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FIG. 4. Energy spread of the exciton states within a multiplet
with fixed principal quantum number versus n in a double logarithmic
representation. The squares give the experimental data. The red line
gives a fit to the data after an n−3 scaling law, following the theoretical
considerations in the text, see Eq. (6). The black line gives a fit to the
data according to a power law ∝n−d , which gives d = 2.75 ± 0.02.
The error is indicated by the light grey area.

that our model underlying the quantum defect description
captures the essential features. The small difference between
the experimental and theoretical slopes, if relevant at all, may
be related to higher order corrections of the valence band
dispersion and other minor effects. Also for the spreads at
high n some error might occur from inaccuracies related to
incomplete identification of all states within a multiplet or
from some minor variations of the energies determined from
the spectra and their derivatives. However, we note that the
n−3 fit falls within the experimental error of the data points.

The definition of the Rydberg exciton regime is to some
extent arbitrary. We take it here as the regime in which the
principal quantum number exceeds n = 5, because the exciton
extension given by twice the average exciton radius exceeds
then 100 nm, which is roughly two orders of magnitude larger
than the ground state wave function extension. Correspond-
ingly the data in Fig. 4 and also in all subsequent scaling plots
were fitted for n � 6, but the plots of the fits were extended
also towards lower n in case corresponding data were available
like for the multiplet splitting just discussed.

B. Scaling in magnetic field

The magnetic field behavior of the excitons in the Rydberg
regime has been assessed in Ref. [9]. Entering this regime of
n � 6, the density of states becomes so large that a precise
assignment of the observed states is difficult, in particu-
lar, because avoided crossings and therefore state mixings
dominate. Hence statistical methods have been applied by
analyzing the distribution of field separations between nearest
exciton levels at fixed transition energies. For n > 6 clear
signatures of quantum chaos were found due to the dominance
of anticrossings as can be seen also from the spectra in Fig. 2
in the energy range above about 2.170 eV. Here we focus

on different features that can be uniquely determined: (i) an
estimate of the size of the excitons and (ii) the magnetic field
induced crossing of states with adjacent n.

Exciton size evaluation. So far, the Rydberg exciton size has
been determined somewhat “indirectly” from their principal
quantum number n using the formula for the average radius of
an orbital in the hydrogen model. This average radius is given
by [1,23]

〈r〉nlm = aB

2
[3n2 − l(l + 1)] ≈ 3aB

2
n2 (8)

with the approximation being appropriate for n � 6 for the
P excitons. The magnetic field introduces an independent
length scale given by the magnetic length 	c = √

h̄c/eB

that is independent of material parameters and characterizes
the extension of the magnetic confinement potential, which
competes with the Coulomb interaction: At low magnetic
fields, the main P -exciton lines in Fig. 1 show a rather
weak dependence on magnetic field, corresponding to a
diamagnetic shift ∝B2, which changes with increasing field to
a stronger shift that can be roughly approximated by a B-linear
dependence. In order to assess this transition theoretically, it
is sufficient to present the effective Hamiltonian of the exciton
in a magnetic field B ‖ z in the form:

HB = H0 + h̄eB

2μc
lz + h̄2e2B2

8μc2
(x2 + y2). (9)

As we focus on the P excitons, the terms responsible for
the quantum defect are not of importance here. We also
disregard the electron and hole Zeeman spin splittings. For
strong magnetic fields one can neglect in first approximation
the Coulomb interaction and describe the states by Landau
levels. More precisely, even at strong magnetic fields the
Coulomb interaction provides bound magnetoexciton states
with the binding energy scaling as R ln(aB/	c) [23].

With increasing field the changeover from an exciton
behavior dominated by the Coulomb interaction at low fields to
a behavior with dominant magnetic confinement at high fields,
where Landau levels are formed, occurs. Correspondingly, an
exciton resonance in the optical spectrum transforms to a good
approximation into a transition between electron and hole
Landau levels. Roughly, P excitons with principal quantum
number n transform into transitions between Landau levels
with quantum number n [26,27]. The extension of these
Landau levels in real space is given by

	c,n ≈ 	cn
1/2 =

√
h̄cn

eB
(10)

for not too small n. Obviously, the magnetic length does
not contain any material-dependent parameters. The transition
takes place for

	c,n ≈ 〈r〉nlm,

i.e., where the Landau level extension is about equal to
the Coulomb extension, which can be achieved by in-
creasing the magnetic field to a particular crossover field
strength Bc,n. From this crossover field one obtains 	c,n ≈
25.6 nm

√
n/

√
Bc,n[T], where Bc,n should be inserted in units

of Tesla. In the experiment we can determine Bc,n as the
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FIG. 5. Red circles: crossover field strength Bc,n from diamag-
netic to Landau-level-like behavior as function of principal quantum
number. The red dotted line is a fit to the data using an n−3 dependence
as derived from the model considerations. The black line gives a fit to
the data with a power law n−d , yielding d = 2.94 ± 0.05, in almost
perfect agreement with the expectations. Black squares: Landau level
radius 	c,n, Eq. (10), estimated from Bc,n as function of n. The black
solid line gives the average radius of the orbital ∝n2, according to the
hydrogenic formula, Eq. (8). Here we do not show the variable power
law fit, as it almost perfectly coincides with the expected dependence.

field strength at which the quadratic field dependence of the
P -exciton energies changes into a linear one.

From the spectra it is confirmed that the transition to
Landau-level-like behavior occurs at continuously decreasing
magnetic fields with increasing principal quantum number. In
the high field regime, where also quantum chaos was detected
for n > 6 no single strong transition is observed for a particular
n, but bunches of lines which cluster around the Landau level
transitions appear. Technically, to determine the crossover
field we have taken the center of the line multiplet around
a Landau transition and have extrapolated its energy linearly
to lower fields, so that we could determine the crossing point
Bc,n with the quadratic diamagnetic shift of the P -exciton
line. Note that the crossover fields and the resulting Landau
level extensions can be only approximately determined in that
way, but they are nevertheless sufficient to test their scaling
with n. From the considerations above we expect a scaling
with n−3 for Bc,n. The Bc,n determined from the data are
shown by the red circles in Fig. 5, demonstrating a strong
drop with increasing n. The dotted line gives an n−3 fit to
the data from which excellent agreement is seen. A fit with
a variable exponent power function, n−d , gives an exponent
d = 2.94 ± 0.05, which very well matches the expectations.

From these fields 	c,n(Bc,n) can be calculated. The Landau
level extensions determined in that way are shown in Fig. 5 by
the black squares and compared to the average exciton radius
rn,l according to the hydrogenic formula. For example, for n =
6 the hydrogenic formula (8) gives an average radius of 60 nm.
The changeover field strength, on the other hand, is 1.3 ± 0.3 T,
from which we obtain 	c,6(Bc,6) ≈ 55 ± 8 nm which are quite
close values. For all other n we find similarly good agreement
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FIG. 6. Squares give the resonant magnetic field strengths Br

at which the first crossing between states belonging to the exciton
multiplets n and n + 1 occurs, as a function of the principal quantum
number n in a double logarithmic presentation. The red line is a fit to
these data following an n−4 law after Eq. (13). The black line together
with the surrounding light grey area gives the result of a fit to the data
using an n−d power law, giving d = 3.72 ± 0.08.

between 	c,n and (rn,l), confirming the expected n2 scaling
of the wave function extension: 	c,n ∝ (n/Bc,n)1/2 ∝

√
n/n−3.

Note that the inaccuracy in determining Bc,n translates through
the square-root connection in moderate inaccuracies of the
Landau level extension 	c,n that are indicated by the error
bars. For high n sufficient accuracy was achieved by recording
the spectra in 5 mT steps which in combination with the
steeper slope of the Landau level transitions facilitates the
separation from the low-field behavior. While the observed
agreement with the hydrogenic formula may be expected,
it also validates the applied exciton description using, for
example, a uniform dielectric screening over large length
scales. Further, it reassures the huge extension of the highly
excited Rydberg exciton, for which we estimate for n = 20 an
average radius of about 0.7 μm.

Magnetic field-induced crossings. For the field-induced
resonances we focus on the first one between exciton states
belonging to the multiplets with principal quantum numbers
n and n + 1, as shown in detail in Fig. 2(b) for field strengths
up to 2 T. Here a unique determination of the resonance
field strengths is possible. At these resonances we observe
systematic crossings, in contrast to the general trend of
anticrossings in the spectra. From lower to higher energies we
clearly see that the field strength Br at which these crossings
occur shifts strongly to lower values. This can be expected
from (i) the reduced splitting between the exciton states at
zero field, (ii) the enhanced field-induced splitting of each of
them involving larger angular momenta, and (iii) the stronger
diamagnetic shift of each multiplet for higher n.

From the data we can determine the resonant field strengths
Br versus the principal quantum number. This dependence is
shown in Fig. 6 using a double-logarithmic representation.
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The resonant fields decrease from Br = 2 T for n = 6 to
Br = 0.04 T for n = 16. Fitting the observed data for the
Rydberg exciton regime with a power law with a variable
exponent, n−d gives d = 3.72 ± 0.08, which is distinctly
different from the behavior of Rydberg atoms, where one finds
an n−6 dependence [10].

This scaling can be well understood by applying the sim-
plified hydrogenlike model, which is to a good approximation
justified because of the quite small impact of the quantum
defect on the large-n Rydberg states, as already demonstrated
by the n−3 scaling of the multiplet width in Fig. 4. Using
atomlike excitonic units, i.e., 2R = μe4/(ε2h̄2) as the unit of
energy, the Bohr radius aB as the unit of length, and h̄c/(ea2

B )
as the unit of magnetic field, and

〈r2〉nlm = n2

2
[5n2 + 1 − 3l(l + 1)] ∝ n4 (11)

for sufficiently large n, we obtain for the level energies to a
good approximation:

Enl ≈ − 1

2n2
+ mB

2
+ Aln

4B2. (12)

Here Al is a constant that depends on the angular momentum l

of the studied level. Neglecting the diamagnetic shift ∝B2, we
obtain for the resonance field of the sublevels n,l = n − 1,m =
n − 1 and n + 1,l = n,m = −n, which are involved in the
crossing (corresponding to the states with the maximal m of the
nth multiplet and with the minimal m of the n + 1st multiplet),
in perturbation approach:

Br (n) ∝ 1

n4
. (13)

The corresponding fit to the data is shown by the red line which
is also in reasonable accord with the data, taking into account
the experimental errors. Slight variations between experiment
and model might arise again from limited resolution in
particular for high n.

It is noteworthy that for the crossing of these states the dia-
magnetic contribution can be neglected, because Aln

4B2
r (n) ∝

1/n4 � mB ∝ 1/n3 in Eq. (12). This is different from the
atomic physics case where one, as a rule, has access only to
states with magnetic quantum numbers, m = 0 or 1, as only
these states can be observed in single photon absorption out
of an s state. Correspondingly, in the atomic case the param-
agnetic term ∝mB/2 in Eq. (12) is not important and the dia-
magnetic term ∝Aln

4B2 dominates [10]. For atoms one finds
therefore an n−6 dependence of the resonance field strength.

C. Electric field

Let us turn now to the scaling of exciton properties in
electric field. As outlined in Sec. II, we recorded spectra
for two different configurations, taken on a [110] oriented
crystal. For the exciting light propagating along the same [110]
direction the linear light polarization was chosen either along
[11̄0] [Fig. 3(a)] or along [001] [Fig. 3(c)]. In the first case
the quadrupolar transitions are forbidden so that it is easy to
follow the dispersion of the P excitons, which is the first major
point of this subsection. In the latter case, they are allowed, so
that S and D excitons appear, allowing a more comprehensive
insight into the different states within an exciton multiplet [7].

This is exploited here to determine the fields at which states
from different multiplets come in resonance, representing the
second major point of this part. The same configuration was
also used to study the polarizability of the S excitons which
are well separated on the low energy flanks of the P excitons.
Finally we also address exciton ionization processes, for which
we use again the first configuration (without quadrupolar
transitions) to determine the ionization field strength as well
as the linewidth of P excitons.

Scaling of S- and P -exciton polarizability. For the P -
exciton dispersion, we have to distinguish between the low-n
and high-n states. For low n the effect of the quantum
defect, namely the lifting of level degeneracy, is particularly
relevant. In electric field, this leads to the observation of a
quadratic Stark effect for the nondegenerate states, because
in centrosymmetric crystals any nondegenerate excitonic
state has no electric dipole moment without electric field
application. The dipole moment is induced by the electric field
which subsequently orients it, leading to the quadratic energy
shift. This is in contrast to the linear Stark effect obtained
by degenerate perturbation theory for a multiplet of levels
each having the same energy. In this case, the degenerate
states in the multiplet that become coupled by the electric field
are linearly combined such that an electric dipole moment is
established. The dipole moment is oriented by the field leading
to linear energy shifts with increasing field. This situation
is to a good approximation relevant for the high n range.
Strictly speaking, the exciton differentiation between small
and large values of the principal quantum number as well as
between nondegenerate and degenerate states depends on the
experimental resolution: For each n, independent of its value,
there is a range of small fields in which a quadratic Stark shift
occurs due to level splitting in the crystal. This is the range in
which the associated quantum defect exceeds the field induced
energy shift. The range of quadratic Stark effect decreases,
however, strongly with increasing n.

The quadratic Stark effect is described by

�E
(2)
nl = −αnlF

2, (14)

where αnl is the polarizability of the exciton state (n,l).
Although a quadratic Stark effect is already expected for the
hydrogen model with αnl ∝ n6 due to the field induced mixing
of the multiplets with different principal quantum numbers
[23], the presence of the quantum defect leads to an important
change of the polarizability scaling with n: Mixing becomes
possible not only for states of different multiplets, but also for
the states within a multiplet of particular n, which are split
due to the Hd part of the Hamiltonian, Eq. (5). The scaling
relation of the polarizability can be understood making use
of second order perturbation theory to evaluate the quadratic
Stark shift: Taking into account the dipole moment operator
matrix elements between neighboring states with the same n

that scale as e〈r〉nlm ∝ n2, Eq. (8), and the scaling of the energy
gap between these states ∝1/n3, see Fig. 4 and Sec. III A, the
polarizability scales as

αnl ∝ n7, (15)

in accordance with the behavior typically observed for Ryd-
berg atoms except of hydrogen [28,29].
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FIG. 7. Polarizability αn,l of the P (left panel) and S excitons
(right) versus principal quantum number n. The symbols give the
experimental data. The red lines are fits to the data following the
n7 scaling law expected from the model considerations, Eq. (15).
The black line gives a fit to the data with a power law nd with the
light grey area indicating the fit errors. For the P excitons we obtain
d = 7.16 ± 0.14, for the S excitons d = 6.82 ± 0.22.

Here, we observe for the P excitons in Fig. 3 a quadratic
Stark effect for n � 13, while the splitting pattern for the
higher-n excitons approaches the linear Stark fan of hydrogen.
In Fig. 3(a) the shift of the P excitons to lower energies
with increasing field can be well resolved and increases
drastically with increasing principal quantum number, see the
blue-colored feature of lowest energy in each n manifold. From
the data we can assess the polarizability αn,P (l = 1) which is
shown by the solid squares in Fig. 7, left panel, as a function
of n in a double-logarithmic plot. The polarizability increases
from about 5 μeV/V2 for n = 5 to about 2000 μeV/V2 for
n = 12. The red solid lines give the fit to these data by a
power law scaling with the seventh power of n, in accordance
with the theoretical expectations, Eq. (15), from which a good
description of the data is obtained. Using a variable power law
for describing the data, as shown by the black line and area,
one obtains an exponent of d = 7.16 ± 0.14, which is within
the experimental error in perfect accord with the model.

In Fig. 3(c), due to the chosen polarization configuration,
the S excitons can be observed as well, which show also a
quadratic Stark effect. Deriving also for them the polarizability,
which is possible for n � 10, one obtains the data shown in
the right panel of Fig. 7. Within the experimental error no
difference in polarizability between S and P excitons can be
resolved. Therefore an n7 power law dependence (the red line)
gives a good description which is corroborated by a variable
exponent fit, giving d = 6.82 ± 0.22.

Scaling of electric field induced resonances. Next we turn
to the first resonances occurring with increasing electric field
between states of adjacent principal quantum numbers. Similar
to the magnetic field case, we find also here a strong shift of
the resonance voltage Ur to lower values with increasing n.
Looking at the resonances in closer detail, we find, however,
that at these resonances levels do not cross but systematically
avoid each other, as highlighted in the mid panel (b) of Fig. 3.
Extrapolating the dispersions, one can determine the resonance
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FIG. 8. Principal quantum number n dependence of the resonance
voltage Ur at which the first resonance of levels belonging to the
multiplets with principal quantum numbers n and n + 1 occurs. At
these resonances avoided crossings are observed. The red line shows
a fit according to an n−5 scaling law, Eq. (18). The black line shows
a fit with a variable exponent power law n−d with d = 5.33 ± 0.11.

voltages which are shown in Fig. 8 in a double logarithmic
representation versus n. Ur decreases from 8 V for n = 5 to
about 40 mV for n = 13. The data obviously follow again a
power law, where the fit according to n−d gives d = 5.33 ±
0.11, see the black line and the correspondingly light grey area
indicating the fit error. Drawing the comparison to Rydberg
atoms, one would expect a power law scaling like n−5 which
is in reasonable accord with the data. The deviations might
be again due to uncertainties between the voltages determined
directly from the spectra and their second derivatives, by which
the weak anticrossing features can be revealed.

Resonance voltage and field strength Fr are connected
by a simple proportionality relation for the chosen capacitor
geometry by which the field is applied. However, care needs
to be exercised in doing this conversion using just the nominal
geometric and dielectric parameters, because surface charges,
charged defects, etc. can lead to depolarization effects in the
crystal, so that there may be some discrepancy between the
nominally calculated and the actually present field strength by
a factor of 3 . . . 5, as discussed in detail in Ref. [7].

This behavior can be understood again using the hydro-
genlike model, because the quantum defect is not essential
for the evaluation of the resonant fields. In the presence of an
electric field the simplified Hamiltonian of the exciton reads,
neglecting possible effects causing the anticrossing:

HE = H0 + eFz, (16)

where we assumed that the field F is applied along the
z direction. In first-order perturbation theory:

Enl

2R = − 1

2n2
+ 3

2
F̃ n(n1 − n2), (17)

where F̃ = FaB/(2R) is the reduced electric field. Here
n1 and n2 are the parabolic quantum numbers being non-
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FIG. 9. Black squares: Dependence of the energy splittings due
to anticrossings at the first resonances of states from the exciton
multiplets n and n + 1, induced by the electric field, on the principal
quantum number. The black line with the light grey area gives a power
law fit to the data, resulting in n−3.30±0.43. The red line gives a fit to
the data according to an n−4 dependence, Eq. (20).

negative integers with n = n1 + n2 + |m| + 1. The resonance
field strength, Fr , can be evaluated from Eq. (17) putting
n1 − n2 ≈ ±n for n � 1 and for the states with highest and
lowest energy of the manifold with the result [10]:

Fr ∝ 1

3n5
. (18)

Note that the power-law dependence is different from the
magnetic field case. This is because the electric dipole moment
increases as n2 [23], whereas the magnetic field induced
splitting is determined by the paramagnetic contribution,
which scales linearly with n for the lowest and highest energy
states in a multiplet.

We have also determined the energy splittings at these
anticrossings as a function of n which are shown in Fig. 9.
The data show a strong drop with n, even though one has to
emphasize that the splitting magnitude is only slightly larger
than the linewidths of the involved transitions, resulting in
considerable error bars, despite of which the drop from about
80 μeV splitting for n = 5 to about 10 μeV for n = 10 can
be determined. The data can be reasonably well described by
an n−(3.30±0.43) fit as demonstrated by the black line and the
large light grey area corresponding to the fit error due to the
considerable inaccuracies.

In order to estimate the anticrossing energy we follow
Refs. [10,30] and use perturbation theory for evaluating the
matrix elements of the “quantum defect” Hamiltonian (5)
on the eigenfunctions of the hydrogen atom in the parabolic
coordinates �nn1n2m(r), where n1, n2, and m are the parabolic
quantum numbers. The avoided crossing energy reads

δEanti = 2

∣∣∣∣
∫

d r�∗
n′n′

1n
′
2m

(r)Hd�nn1n2m(r)

∣∣∣∣. (19)

For the hydrogenic states with adjacent principal quantum
numbers n′ = n ± 1 we have [10]∫

d r�∗
n′lm(r)Hd�nlm(r) ∼ Rδnl

n3
.

Finally, taking into account that

∑
l

∫
d r�∗

n′n′
1n

′
2m

(r)�nlm(r) ∝ 1

n − m
,

we obtain the scaling law

δEanti ∼ Rδnl

n3(n − m)
∝ 1/n4. (20)

Using for a rough estimate δnl = 0.5 (Sec. III A) we obtain
for the n = 5 and n = 6 multiplets an anticrossing energy of
about 70 μeV in reasonable agreement with the data in Fig. 9.
The red line in Fig. 9 shows a fit to the data using the derived
n−4 dependence which also describes the data well within the
experimental errors.

Crossing vs anticrossing. To understand the origin of cross-
ing or anticrossing at the first resonance of states arising from
the multiplets with principal quantum number n and n + 1 in
magnetic and electric field, respectively, we have to consider
the problem in more detail: Both electric and magnetic field
preserve the axial symmetry of the “hydrogenic” problem,
therefore the z component of the angular momentum or
“magnetic” quantum number m is a good quantum number.
In magnetic field the first crossing occurs between the states
with m = n − 1 (the maximal m in the manifold with n) and
m = −n (the minimal m in the manifold with n + 1). The
difference of the angular momentum components of these
states is

�lz = 2n + 1. (21)

This is an odd number 1, 3, . . . , so that the parity of excitonic
states which cross in magnetic field is different. In the
centrosymmetric point group Oh the states are characterized
by a definite parity as well and, therefore, states with odd �lz
do not mix. Hence, one may expect that the first crossing in
magnetic field is indeed an allowed crossing. In electric field
the situation is different. One can readily check by perturbative
calculations that the first resonance occurs for states with
m = 0, e.g., |n = 2S〉 + |n = 2Pz〉 and |3S〉 − |3Pz〉. These
states have the same symmetry and, hence, the crossing of
these states is avoided.

However, one has to be careful when using this line
of argumentation to discuss the crossings/anticrossings of
observed states in the transmission spectra. In fact, the
consideration above neglects the symmetry of the two-particle
Bloch function of the exciton [3]. All observed excitonic states
(in a given geometry and polarization) interact with light
and, hence, have the same symmetry, �−

4 . For example, the
states observed in the geometry where light with [11̄0] ‖ y

polarization propagates along the [110] ‖ z direction, couple
to the y component of the electric field and therefore transform
as this y coordinate. Hence, at least the light-matter interaction,
i.e., the polariton effect [31–33], can convert allowed crossings
into avoided ones. However, the polariton effect is relatively
weak in cuprous oxide crystals where the direct interband
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FIG. 10. High resolution absorption spectra of the n = 11 exciton
multiplet recorded with a frequency stabilized laser for different
applied voltages.

transitions are forbidden at the � point of the Brillouin
zone, leading to a small oscillator strength of allowed exciton
transitions [13,14,32–34]. The quantitative measure for the
strength of the polariton effect is the longitudinal-transverse
splitting, h̄ωnlm,LT , of the exciton state with quantum numbers
(n,l,m). Provided that the longitudinal-transverse splitting is
smaller than the nonradiative damping of the excitonic states,

h̄ωnlm,LT < h̄�nlm,

the light-matter interaction is in the weak coupling regime
so that polariton modes are not observable, and also the
anticrossings are hidden in the optical spectra. In fact, we
do not find indications for a polariton normal mode splitting
for n � 25.

Ionization in electric field. A particularly appealing feature
of Rydberg excitons in comparison to Rydberg atoms is the fact
that the true high electric field regime, in which the interaction
strength with the field exceeds the Coulomb interaction, can
be reached easily in the laboratory, while for atoms it is much
harder to enter this limit. This is mostly due to the different
Rydberg energy in cuprous oxide, ∼90 meV, which is more
than two orders smaller than the hydrogen atom Rydberg
energy. From Fig. 3 one sees that for elevated electric field
strengths the excitons dissociate: The absorption lines fade
away and finally disappear with increasing field. The fields
required for dissociation are smaller the higher the principal
quantum number of the involved exciton state is. A series
of spectra recorded for the n = 11 multiplet is shown in
Fig. 10, from which the drop of the P -exciton resonance
with increasing applied voltage can be quantitatively assessed.
Simultaneously with the line drop the width of the resonance
increases.

On the high energy side of the P exciton another peak can be
seen, which can be associated with the F excitons that cannot
be identified without applied voltage, but become more and
more pronounced with increasing voltage. At higher energies

even further weak features appear. This increase of visibility
is partly related to the transfer of oscillator strength from the
P to the F and other higher angular momenta excitons. It
is somewhat surprising that the F -exciton absorption is still
growing even when the P -exciton absorption has basically
completely vanished. A potential explanation is the action
of the centrifugal barrier in the kinetic energy which varies
with the angular momentum of the involved state. Due to its
action the particles are kept away from the field axis z, making
these states more robust with respect to field application
with increasing l. However, the complex phenomenology
associated with these excitons has not yet fully been developed
so that we will not discuss it here in further detail.

To assess the P -exciton behavior more quantitatively, we
have to consider the impact of the electric field in more detail.
The associated potential leads to a tilting of the Coulomb
potential between electron and hole along the field direction.
Due to this tilting eventually tunneling of carriers through
the potential can occur for sufficiently high applied voltages.
Ultimately in the high field regime the exciton state is moved
into the state continuum so that it can no longer be observed.
This behavior determines both the absorption strength (given
by the area below a resonance) and its linewidth (given by
the lifetime of the state): At low fields where tunneling is still
not relevant, both quantities should stay constant, while in the
tunneling regime we expect an exponential dependence for
both the spectral area and linewidth.

For determining the ionization field strength we have
calculated the area below each resonance. For that purpose
we have fitted each resonance with the Toyozawa formula
[35–37]

αn(E) = Cn

�n

2 + 2qn(E − En)(
�n

2

)2 + (E − En)2
, (22)

from which we obtain also the linewidth. Here En and �n

are the energy and the damping of the state n. qn describes
the asymmetry of the observed resonance and Cn gives its
amplitude. Here we have restricted to the voltage regime
in which the P -exciton line represents a well isolated line
that is not influenced by adjacent absorption features. This
is the regime in which the emerging F excitons are still
much weaker in comparison. Once higher angular momentum
excitons become prominent, the spectra on the high energy
flank of each P exciton show pronounced modulations which
we attribute to interactions with the electron-hole continuum
that are not fully understood so far. This modulation also
aggravates a lineshape analysis so that we refrain from such
an analysis in this regime. In Fig. 10 this regime corresponds
to voltages higher than 0.25 V and is decreasing for higher n.
Then the area below each absorption peak indeed shows to a
good approximation an exponential drop with applied voltage
as soon as effects of the applied voltage set in, up to the point
where the line disappears.

From this dependence we have determined the effective
ionization voltage taken as the voltage at which the area below
the resonance divided by the zero field area has dropped to
1/e. The drop has in fact two origins: (1) the redistribution

125142-12



SCALING LAWS OF RYDBERG EXCITONS PHYSICAL REVIEW B 96, 125142 (2017)

10 11 12 13 14 15 16 17 18 19

0.1

1

effective ionization voltage
n-4 fit
n-3.79 0.34

ef
fe
ct
iv
e
io
ni
za
tio
n
vo
lta
ge
(V
)

principal quantum number n

FIG. 11. Dependence of the dissociation voltage, determined by
taking the 1/e value of the relative area below a resonance, on the
principal quantum number. The red line shows a fit to the data by
an n−4 dependence. The black line surrounded by the light grey area
gives an n−d fit to the data giving d = 3.79 ± 0.34.

of oscillator strength to other excitons due to state mixing;
(2) the actual dissociation of the excitons. As all states
are affected similarly by these two factors, we still use the
voltage determined in the described way as characteristic for
ionization. This voltage is plotted in Fig. 11 as a function of the
principal quantum number. The data can be well described by
a dependence proportional to n−4. This is the dependence that
is also expected by setting Eq. (17) for the exciton energy En,l

in electric field to zero. For comparison, we have also fitted
the data with a power law n−d resulting in d = 3.79 ± 0.34,
in good agreement with the expectations.

Exciton linewidth. Finally, we turn to the dependence
of the linewidth on the electric field strength, for which
one would expect—as described above—a transition for
increasing voltage from being constant for negligible tunneling
to strongly increasing as soon as tunneling can occur until
ultimately the potential barrier is lowered to an extent that
the excitons become unbound. The experimental data for the
excitons from n = 10 up to n = 16 are shown in Fig. 12. At
zero electric field we observe the well known decrease of the
linewidth with increasing n that has been described already
in Ref. [1]. For sufficiently low excitation powers such that
effects like power broadening can be disregarded, the linewidth
dependence on the principal quantum number can be described
by an n−3 law due to the corresponding scaling of the transition
rates for photon and phonon emission.

When applying the electric field, we find that the low lying
excitons in the series indeed follow roughly the expected
dependence (dashed line in Fig. 12) which according to the
theoretical calculations should be given by [31,38]

� ∝ exp

(
− 2

3n3F

)
, (23)
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FIG. 12. Dependence of the linewidth of the P -exciton reso-
nances on the applied voltage for different principal quantum numbers
from n = 10 up to n = 16. The dashed lines show a fit to the data of
the excitons n = 10 and n = 11 according to Eq. (23). For separation
of the data, in the left (right) panel the even (odd) n states are shown.

see Appendix B for details. Somewhat surprisingly, the
linewidth shows a different behavior for the high lying excitons
in the shown set of states. Even though they are expected to
be more sensitive to the electric field, their linewidth stays
constant within the experimental accuracy over the range of
fields where they can be observed until they disappear.

This behavior can be understood as follows. The exponent
becomes significant at the critical field, see Fig. 11,

F� ∼ 1

n3
. (24)

Since this field is parametrically larger than the ionization field
Fi for the states with large n, the increase in the linewidth is
not seen, because of faster ionization of the state.

IV. CONCLUSION

In summary, we have studied the scaling of several
characteristic quantities with the principal quantum number
in the series of Rydberg excitons in cuprous oxide and drawn
the comparison to Rydberg atoms. The parameters considered
are related to the energy range covered by states at zero field
due to finite quantum defects and resonant field strengths in
external field. They are comprised in Table I. The comparison
shows that for most of the considered parameters the scaling
laws are identical, even though there are differences in absolute
magnitude due to the strikingly different Rydberg energy.
Despite the same scaling, the origin of the parameter can
be distinctly different: While for the field-induced changes
of energies, the model description is basically the same for
Rydberg excitons and atoms, for quantities such as state
splittings and mixings as well as the coupling to the light
field, the behavior is quite different.

A prominent example for an identical scaling law but with
totally different origin is the zero field multiplet splitting:
For atoms the deviation from a 1/r potential leads to this
splitting described by the quantum defect, while for excitons
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TABLE I. Comparison of scaling laws with principal quantum number n for Rydberg atoms and Rydberg excitons.

Rydberg atoms Origin Rydberg excitons Origin

Zero field
Multiplet splitting ∝n−3 DCP ∝n−3 DPD
due to quantum defect (except of hydrogen)

Electric field
Polarizability ∝n7 splitting by DCP ∝n7 splitting by DPD

(∝n6 for hydrogen)
Resonance field of states ∝n−5 Stark effect ∝n−5 Stark effect
from multiplets n and n + 1
Anticrossing energy ∝n−4 DCP ∝n−4 DPD
at first resonance
Ionization voltage ∝n−4 Stark effect ∝n−4 Stark effect

Magnetic field
Crossover field to magnetoexciton ∝n−3 Landau quantization ∝n−3 Landau quantization
Resonance field of states ∝n−6 paramagnetic shift ∝n−4 diamagnetic shift
from multiplets n and n + 1 due to OSPS due to OSDAM

by DPD state mixing

Legend: DCP = deviation from 1/r-Coulomb potential; DPD = deviation from parabolic disperosion; OSP = observation of S- and P -states
only due to selection rules; OSDAM = observation of states with different from l = 0,1 angular momenta.

the splitting originates mostly from the complex valence band
structure deviating from a quadratic dispersion law. When
an external field is applied, identical scaling laws hold for
atoms and excitons for all parameters, but in magnetic field
we find differences between the two systems, mostly related
to the different optical selection rules that lead to a different
scaling law for the resonance field strength of the states from
the multiplets with principal quantum number n and n + 1.
However, even when the same scaling law is found like for
the energy splitting at the resonance, the origin might be quite
different as its magnitude in the exciton case is determined by
crystal specific features of the Hamiltonian that are absent in
the hydrogen case.

From first sight the exciton level spectrum appears to be
very complex, particularly under field application. Here, the
demonstrated scaling laws are particularly appealing as they
represent some generally valid rules for the exciton spectrum
which help to establish systematics in the diversely looking
spectra. From them the energies of exciton energy levels
and their evolution in external fields can be derived, which
provides a solid basis for extending the studies from the
linear to the nonlinear regime, which is appealing due to
the remarkable coherence properties of the Rydberg excitons.
Possible future studies may address the Rydberg blockade,
also in the nondegenerate regime, the excitation of quantum
superpositions of several exciton states, the demonstration
of Rabi oscillations etc. to give just a few examples. The
scaling laws may be transferred in a similar form also to other
semiconductors.
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APPENDIX A: LANDAU LEVEL TRANSITIONS

Figure 13 zooms into the region of absorption spectra
indicated by the black box in Fig. 1, from which the resonances
that can be in lowest approximation assigned to transitions
between electron and hole Landau levels with high quantum
number can be resolved in more detail. This assignment is only
approximate as for the corresponding energy range the system
shows quantum chaotic behavior with multiple anticrossings,
so that no strict B-linear behavior of spectral line energies with
some Coulomb related modification can be identified. Still the
transitions bunch around these pure Landau level transitions
so that a corresponding identification becomes possible.

From the representation in Fig. 13 we can identify tran-
sitions up to Landau level quantum number 57. Transitions
associated with a particular Landau level quantum number n

arise with increasing magnetic field from the B = 0 transitions
associated with P excitons with the same principal quantum
number n. Experiments have shown that under the chosen
experimental conditions it is very hard to observe P excitons
with principal quantum number higher than 25 at T = 1.2 K
without magnetic field, not only because the energy spacing is
well below 1 meV, but also because of the decreasing oscillator
strength with increasing n. Field application increases the split-
ting between the levels and enhances the oscillator strength
through squeezing the exciton wave function. However, at
B = 0.8 T the extension of the n = 55 Landau level orbit
is still about 210 nm.
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FIG. 13. Closeup of the black boxed region of the magnetic field spectra in Fig. 1, which allows one to resolve higher Landau level
transitions. The scale on the right hand side gives the relative intensities of the absorption lines.

APPENDIX B: EXCITON IONIZATION IN
ELECTRIC FIELD

Equation (17) allows us also to estimate the ionization field
strength from the condition Enl = 0:

Fi ∼ 1

n4
. (B1)

Note that the precise numerical coefficient depends on the an-
gular momentum of the state due to the centrifugal barrier [10].

The estimates (B1) and (23) can be obtained in the
quasiclassical picture considering the trajectory corresponding
to an energy below barrier. With exponential accuracy it is
sufficient to study the one-dimensional motion along the field.
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Two turning points can be found from the equation

1

2n2
= 1/z + F̃ z,

which yields

z1,2 = 1/(2n2) ±
√

1/(2n2)2 − 4F̃

2F
.

In weak fields

z1 ≈ 2n2, z2 ≈ 1

2F̃ n2
.

The barrier vanishes if z1 = z2. Hence F̃ = 1/(4n4) yielding
the “classical” ionization condition (the numerical coefficient
can be specified more accurately following Ref. [10]). The
quasiclassical motion under the barrier provides the following
action (z1 → 0, triangular barrier approximation):

S =
∫ z2

z1

√
1/z + Fz − 1/(2n2)dz ∼ F 1/2z

3/2
2 ∼ 1

Fn3
,

which gives the field and principal quantum number depen-
dence of the exponent in Eq. (23).
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