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Phenomenological theories of the low-temperature pseudogap:
Hall number, specific heat, and Seebeck coefficient
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Since its experimental discovery, many phenomenological theories successfully reproduced the rapid rise of the
Hall number nH , going from p at low doping to 1 + p at the critical doping p∗ of the pseudogap in superconducting
cuprates. Further comparison with experiments is now needed in order to narrow down candidates. In this paper,
we consider three previously successful phenomenological theories in a unified formalism—an antiferromagnetic
mean field (AF), a spiral incommensurate antiferromagnetic mean field (sAF), and the Yang-Rice-Zhang (YRZ)
theory. We find a rapid rise in the specific heat and a rapid drop in the Seebeck coefficient for increasing doping
across the transition in each of those models. The predicted rises and drops are locked, not to p∗, but to the doping
where antinodal electron pockets, characteristic of each model, appear at the Fermi surface shortly before p∗.
While such electron pockets are still to be found in experiments, we discuss how they could provide distinctive
signatures for each model. We also show that the range of doping where those electron pockets would be found
is strongly affected by the position of the van Hove singularity.
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I. INTRODUCTION

In clean YBCO crystals, the Hall conductivity RH un-
dergoes an abrupt change at doping p∗ ∼ 0.19. In the low-
temperature, magnetic-field-induced normal state, the Hall
number nH = 1/eRH rises rapidly from nH = p at at the
end of the charge-ordered phase to nH = 1 + p, expected
for the Fermi liquid regime at high doping [1]; a loss of
carriers below p∗ is conjectured to be the cause. This discovery
received much attention, and many theoretical models were
shown to reproduce this behavior: an antiferromagnetic (AF)
mean field [2], a spiral antiferromagnetic (sAF) mean field [3],
the Yang-Rice-Zhang (YRZ) theory [2,4], a Z2 fractionalized
Fermi-liquid (FL∗) theory [5], a nematic transition [6], and
a SU(2) fluctuation model [7]. All of the above successfully
reproduce the rapid rise in Hall number because they entail
changes in the Fermi surface at p∗. They are all phenomeno-
logical theories in which those changes were set up to happen
precisely at p∗. Additional work on a unidirectional charge
density wave model [8] and an incommensurate collinear spin
density wave model [9] also provide insight on the matter.
To isolate the strengths and weaknesses of all the above
models, more comparison with experiments is needed. This
paper makes verifiable predictions for three of the above
models.

The Hall effect is not the only probe capable of studying
the changes happening at p∗. Recent resistivity measurements
were argued to account for the same loss in carrier density [10],
with theoretical investigations arriving at similar conclusions
[11,12]. Regarding earlier studies, specific heat Cv measure-
ments provided evidence that the low-temperature density
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of states increases significantly from underdoped samples to
overdoped samples [13–15], consistent with a gap closing as
doping increases [16]. As a consequence, a corresponding
increase should be observable in Cv/T at low temperature, as
a function of doping. Similarly, the finite-temperature Seebeck
Sx coefficient decreases significantly from underdoped to
overdoped samples [17–21]. As Sx must vanish at zero
temperature, the corresponding increase should be observable
in Sx/T at low temperature as a function of doping. Therefore,
under the same experimental conditions as for the Hall number
[1]—low temperature with superconductivity suppressed by
a high magnetic field—we expect that measurements of the
specific heat and Seebeck coefficient will provide clarifications
on the nature of the p∗ transition. To our knowledge, however,
no such normal state data for the specific heat nor the Seebeck
effect at low temperature as function of doping is available in
the literature.

In this paper, we compute the predictions for the low-
temperature normal-state electronic specific heat CV /T and
the Seebeck coefficient Sx/T as a function of doping,
for the antiferromagnetic (AF), incommensurate spiral anti-
ferromagnetic (sAF), and Yang-Rice-Zhang (YRZ) models
mentioned above. Thus, we extend the results of Refs. [2,3]
for the Hall number and those of Refs. [22,23] for the
specific heat and Seebeck effect in YRZ theory. All three
models are compared in a unified formalism. We also
study the effects of band structure, notably the role of the
van Hove singularity and its proximity to p∗. Finally, we
compare how the two limiting cases of isotropic mean-free
path � and constant lifetime τ approximations affect all
computations.

Our main result consists of a rapid rise in CV /T and a drop
in Sx/T when increasing doping across p∗, at low temperature.
In all three models, characteristic electron pockets appear at
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the Fermi surface when approaching p∗.1 The rise and drop
found in CV /T and Sx/T , respectively, are not located at p∗,
but rather at the lower doping pe where these electron pockets
appear. This result extends the conclusion by Storey [2] that
the width of the rise in Hall number is entirely determined
by the range of doping occupied by these antinodal electron
pockets. For the Seebeck effect and specific heat, almost no
signature appears at p∗, as if the electron pockets displaced
the transition.

The paper is divided as follows. Section II presents the three
separate starting points of the AF, sAF, and YRZ models.
Section III presents the unified formalism used to treat all
three models. Section IV discusses results. Finally, Sec. V
highlights our main conclusions, and the appendix provides
a brief analysis of bare band results across the van Hove
singularity (vHs) for the constant lifetime τ and isotropic
mean-free-path � approximations.

II. MODELS

We start with the one-band tight-binding dispersion:

ξk = −2t[cos(kxa) + cos(kya)]

− 2t ′[cos(kxa + kya) + cos(kxa − kya)]

− 2t ′′[cos(2kxa) + cos(2kya)] − μ. (1)

All energies are measured relative to the first neighbor hopping
amplitude (one can set t = 250 meV for comparison with
experiments); μ is the chemical potential, h̄k is the crystal
momentum, and a is the lattice spacing. We study various
sets of band parameters t ′ and t ′′, corresponding to the second
and third neighbor hopping, respectively. The values used are
indicated in the corresponding figures.

A. Antiferromagnetism

The AF model is defined by the Hamiltonian

H AF =
∑

k

(c†k↑ c
†
k+Q,↑)

(
ξk �

� ξk+Q

)(
ck,↑

ck+Q,↑

)
, (2)

where Q = (π,π ) is the antiferromagnetic wave vector; c
†
k↑

is the operator that creates a Bloch electron of momentum
h̄k and spin up. We only write the Hamiltonian for spin up
because the only difference for spin down is the sign of the gap
energy −�. Since both gap signs lead to the same eigenvalues,
spin up and spin down are equivalent in this model. As a
consequence, instead of working in the reduced AF Brillouin
zone and multiplying everything by 2 for spin, we ignore this
explicit factor 2 and work in the original Brillouin zone. This
helps to unify the three models in Sec. III.

1Although electron pockets appearing at the Fermi surface consti-
tute what is commonly known as a “van Hove singularity”, in this
paper we use “van Hove singularity” for when the Fermi level crosses
the saddle point of the dispersion. The former is simply called “when
electron pockets appear at the Fermi surface”.

B. Incommensurate spiral antiferromagnetism

The sAF model is defined by the Hamiltonian

H sAF =
∑

k

(c†k,↑ c
†
k+Q,↓)

(
ξk �

� ξk+Q

)(
ck,↑

ck+Q,↓

)
. (3)

In that case, Q is incommensurate and changes with doping
following Q(p) = (π − 2πp,π ) [3,11]. The sum on k spans
the original Brillouin zone. Here the sAF order parameter �

couples spin up with spin down. Consequently, the two spin
contributions to transport must be computed separately.

The only fundamental difference between the AF and the
sAF models is the Q vector. Using Q = (π,π ) in Hamiltonian
(3) would lead to antiferromagnetism perpendicular to the spin
quantization axis with the same eigenvalues as Hamiltonian (2)
and hence the same transport results. In the unified formalism
of Sec. III, the additional differences appearing simply outline
two ways of getting the same thing: the AF model could also
be formulated as a sAF model with commensurate Q = (π,π ).
However, the converse is not true: The sAF model cannot
be expressed as the AF model with incommensurate Q(p) =
(π − 2πp,π ).

C. Yang-Rice-Zhang theory

Contrary to the AF and sAF models, YRZ theory [4]
is defined not from a Hamiltonian, but from the following
Green’s function ansatz, valid for both spins:

GYRZ
k (ω) ≡ gt (p)

ω − ξ
g

k (p) −
∣∣�PG

k (p)
∣∣2

ω−ξ 0
k (p)

+ Ginc.. (4)

This ansatz uses the renormalized dispersion:

ξ
g

k (p) = −
[
gt (p) + 3χJ

8
gs(p)

]
2t[cos(kxa) + cos(kya)]

− gt (p)2t ′[cos(kxa + kya) + cos(kxa − kya)]

− gt (p)2t ′′[cos(2kxa) + cos(2kya)] − μ, (5)

with gt (p) = 2p

1+p
and 3χJ

8 gs(p) = 0.169
(1+p)2 being standard

Gutzwiller factors that flatten the band as a function of
doping p. The role of these factors is to approximate the
loss of metallicity when approaching the Mott insulator [24].
Therefore, whereas Eq. (1) represents a noninteracting band,
Eq. (5) represents the renormalized band expected from a
doped Mott insulator.

The third term in the denominator of Eq. (4), the self-energy,
relies on another dispersion:

ξ 0
k (p) = 2t

[
gt (p) + 3χJ

8
gs(p)

]
[cos(kx) + cos(ky)]. (6)

This dispersion corresponds exactly to the first term of −ξ
g

k (p)
and the resulting pseudogap opens on the so-called umklapp
surface at the core of YRZ theory. Note that ξ 0

k (p) also
corresponds to the first term of ξ

g

k+(π,π)(p), and the umklapp
surface corresponds to the AF zone boundary, explaining the
strong resemblance with the AF model. In this respect, ξ 0

k (p)
can be seen as the dispersion of ancillary excitations with
perfect Q = (π,π ) susceptibility [24].
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TABLE I. Differences of the AF, sAF, and YRZ models in the
unified formalism.

AF sAF YRZ

ξk(p) = ξk = Eq. (1) ξk = Eq. (1) ξ
g
k (p) = Eq. (5)

ξd
k (p) = ξk+Q(p) ξk+Q(p) ξ 0

k (p) = Eq. (6)
d
†
k = c

†
k+Q(p),↑ c

†
k+Q(p),↓ Ancillary

Q(p)= (π,π ) (π − 2πp,π ) None
�k= 12t 12t 3

2 t[cos(kx) − cos(ky)]

YRZ theory couples those two dispersions, ξ
g

k (p) and
ξ 0

k (p), with a d-wave pseudogap order parameter decreasing
monotonically with doping in the range 0 < p < 0.2:

�PG
k (p) = 3t

2
[cos(kx) − cos(ky)](0.2 − p). (7)

The order parameter’s maximum amplitude is at the antin-
odes, with �PG

(0,π) = −�PG
(π,0) = 3t(0.2 − p). Note that since

Gutzwiller factors flatten the band, the resulting gap-to-
bandwidth ratio is enhanced.

The ansatz (4) can be related to the matrix:

Ĥ YRZ
eff. =

(
ξ

g

k �PG
k (p)

�PG
k (p) ξ 0

k

)
, (8)

using the Green’s function matrix,

Ĝk(ω) = [
ω − Ĥ YRZ

eff.

]−1
, (9)

where the first element is the electron Green’s function,

[Ĝk(ω)]11 = 1

ω − ξk(p) −
∣∣�PG

k (p)
∣∣2

ω−ξ 0
k (p)

. (10)

Compared with (4), the only missing parts are the
Gutzwiller renormalization factor gt (p) accounting for the
loss of quasiparticle coherence and the associated incoherent
part, GYRZ

k (ω) ≡ gt (p)[Ĝk(ω)]11 + Ginc.. In Ref. [2], Storey
showed that including this renormalization was detrimental to
the fit with experimental Hall coefficients and thus left it out
of the analysis. We do the same here.

III. METHODS

We use an effective 2 × 2 Hamiltonian formalism [24–26]
to unify the AF [2], sAF [3], and YRZ [2] models, with all
differences summarized in Table I. The Hamiltonian is

H =
∑

k

	
†
kĤk	k. (11)

with the spinor 	
†
k = (c†k↑ d

†
k) and the matrix:

Ĥk =
(

ξk(p) �k(p)
�k(p) ξd

k (p)

)
. (12)

In each model, c
†
k↑ creates a Bloch electron of momentum h̄k

and spin up, and the sum over k spans the original Brillouin
zone. However, all models have different operators d

†
k and

different dispersions ξk(p) and ξd
k (p), as given in Table I.

FIG. 1. Maximum gap-to-bandwidth ratio as a function of doping
in the AF and sAF models (red) and in YRZ theory (blue). The ratio
is computed as �(0,π )(p)/[ξ(π,π )(p) − ξ(0,0)(p)]. The gap vanishes at
p∗ = 0.2. In the AF and sAF models, �k(p) = 12t(p∗ − p) and
the bandwidth is 8t , which yields a ratio of 0.3 − 1.5p. In YRZ
theory, the d-wave gap is maximum for k = (0,π ) with a value
of �(0,π )(p) = 3t(p∗ − p) and the bandwidth changes with doping
as 8t( 2p

1+p
+ 0.169

(1+p)2 ). The resulting gap-to-bandwidth ratio is thus
3
8 (0.2 − p)/( 2p

1+p
+ 0.169

(1+p)2 ).

Borrowing the idea from YRZ theory, each model’s order
parameter �k(p) vanishes at p∗ = 0.2:

�k(p) =
{
�k(p∗ − p) for 0 < p < p∗
0 otherwise . (13)

All models have different �k given in Table I, in order to
yield similar gap-to-bandwidth ratios as seen in Fig. 1. The k
dependence of the YRZ gap has negligible effect on transport
properties because it affects the low-energy spectrum only
around (π,0) and (0,π ).

A 2 × 2 unitary transformation Ûk provides the eigenvalues
Enk = [Û †

kĤkÛk]nn for Hamiltonian (12). We let the doping
dependence be implicit from now on:

E1(2),k = ξk + ξd
k

2
∓

√(
ξk − ξd

k

2

)2

+ �2
k. (14)

The eigenstate quasiparticles are given by the operator
a
†
nk = [Û †

k]n1c
†
k + [Û †

k]n2d
†
k, and the associated transformation

matrix, analogous to a Bogoliubov transformation, can be
written as

Ûk =
⎛
⎝

�k√
�2

k+(ξk−E1k)2

�k√
�2

k+(ξk−E2k)2

−�k√
�2

k+(ξk−E2k)2

�k√
�2

k+(ξk−E1k)2

⎞
⎠. (15)

A. Important quantities

1. Velocity

As in Refs. [2,3], velocities are chosen as

vnk = 1

h̄
∇kEnk (16)
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TABLE II. Differences of the AF, sAF, and YRZ models regard-
ing the definitions of quantities relevant to transport. For each model
vnk↑ = vnk and Ank↑ = [Ânk]11 from Eqs. (16) and (18), respectively.

AF sAF YRZ

vnk↓ = vnk vn,k−Q(p) vnk

Ank↓ = [Ânk]11 [Ân,k−Q(p)]22 [Ânk]11

p = Eq. (21) Eq. (21) Eq. (23)

rather than 1
h̄
∇kξk. This choice for the velocity and its

derivatives is subtle to justify rigorously [27,28].2 In Ref. [2] it
was shown that this choice is crucial to obtain agreement with
experimental Hall coefficients [1]. In all models, the velocity
of spin-up electrons is vnk,↑ = vnk, but the one for spin-down
electrons depends on the model as given in Table II.

2. Spectral weight

Since each eigenvalue has its velocity, our definitions
for transport coefficients (Sec. III B) require computing each
eigenvalue’s contribution to the spectral weight:

[Âk(ω)]ij =
∑

n

[Ûk]in[Û †
k]nj


nk

(ω − Enk)2 + 
2
nk

(17)

≡
∑

n

[Ânk(ω)]ij . (18)

Indices i,j refer to the matrix element in the spinor basis, n

refers to the band index, and k covers the original Brillouin
zone. In all models, the spectral weight for spin-up electrons
is given by Ank,↑ = [Ânk(ω)]11, but the one for spin-down
electrons depends on the model as given in Table II.

3. Scattering rates

To stay in line with Refs. [2,3], we consider the following
two scattering rates:

constant τ : 
nk = h̄

2τ
, (19)

isotropic � : 
nk = at

2�
|vnk| + ζ, (20)

where ζ = 10−5 prevents divergence of the spectral weight at
saddle points of the dispersion. The same scattering rate is used
for the two bands; i.e., hole and electron pockets are always
treated equivalently. The values used for τ and �, indicated
in each figure’s caption, were chosen as large as possible
while ensuring successful numerical integration of transport
coefficients.

The main difference between the two approximations is that
isotropic � enhances the weight of low-velocity states as shown
in Fig. 2. The Appendix provides a complete comparison for
the bare band case, also showing the effect of the van Hove
singularity.

2In particular, at p∗, the gap becomes arbitrarily small [because
of Eq. (13)] and electric breakdown should cause the failure of the
semiclassical approximation [29].

FIG. 2. Spectral weight at the Fermi level Ak(ε = 0) for band
parameters (t ′,t ′′) = (−0.17,0.05)t , at doping p = 0.24 (just passed
the van Hove singularity, at pvHs = 0.23). The comparison of the
constant lifetime τ approximation (left) and the isotropic mean-free
path � approximation (right) shows how isotropic � enhances the
spectral weight near the antinode, compensating for the lower velocity
of the states at the saddle points of the dispersion.

It was previously shown that experimental Seebeck co-
efficients [18–20] are more consistent with the isotropic-�
approximation [18,23], whereas experimental Hall coefficients
[30] are more consistent with a constant-τ approximation
[31]. To remain general, we compare both approximations
throughout the rest of the paper.

Although these two simple approximations have been
widely used [2,18,23,32–34], experiments suggest alternative
expressions for 
nk [35]. For the Hall number in the AF model
[12], those alternative 
nk yield qualitative results equivalent
to those of Ref. [2] and reproduced here. Clearly, more refined
models of impurity scattering would be interesting [36] in
future studies.

4. Doping

In the AF and sAF models, we find the chemical potential
μ associated to a given doping p with

p = 1 −
∑

n

∫
d2k

4π2
f (Enk), (21)

where the eigenstates Enk depend on μ implicitly. At zero
temperature, this is equivalent to Luttinger’s rule

p = 1 −
∑

n

∫
Re{Gnk(ω=0)}>0

d2k

(2π )2
, (22)

with G−1
nk (ω) = ω − Enk − i
nk.

However, in YRZ theory, the quasiparticle a
†
nk associated

with eigenvalue Enk represents a mixture of an electron c
†
k with

the ancillary excitation represented by d
†
k and thus Eqs. (21)

and (22) cannot be used. Instead it was prescribed [4] to count
the electrons as follows:

pYRZ = 1 − 2
∫

Re{[Ĝk(ω=0)]11}>0

d2k

(2π )2
, (23)

where the Green’s function Eq. (10) depends on μ implicitly.
Strickly speaking, the doping computed for YRZ theory cannot
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be compared to that computed for the AF and sAF models; their
natures are different: Eqs. (21) and (22) count 1 − ∑

nk a
†
nkank

while Eq. (23) counts 1 − 2
∑

k c
†
k↑ck↑, ignoring

∑
k d

†
k↑dk↑.

It is nevertheless the accepted way to proceed [2,4,22,23,37].

B. Transport coefficients

The AF, sAF, and YRZ models we study are all formulated
as 2 × 2 matrix models, so we define transport coefficients
as sums on bands n [29], each having respective energy Enk,
velocity vnk = − 1

h̄
∇kEnk, and scattering rate 
nk.

1. Hall effect

With the electron charge −e and the normalization volume
V , the Hall number nH and resistivity RH are [27]

nH = V

eRH

, RH = σxy

σxxσyy

. (24)

Given the Fermi-Dirac distribution, f (ε) = (eβε + 1)−1, con-
ductivities σxx, σyy , and σxy are expressed as

σab =
∫

dε

(
−∂f (ε)

∂ε

)
σab(ε), (25)

with

σxx(ε) = e2πh̄

V

∑
nkσ

v2
x,nkσA2

nkσ (ε), (26)

σxy(ε) = −e3(πh̄)2

3V

∑
nkσ

[
v2

x,nkσ

∂vy,nkσ

∂ky

+ v2
y,nkσ

∂vx,nkσ

∂kx

− 2vx,nkσ vy,nkσ

∂vx,nkσ

∂ky

]
A3

nkσ (ε), (27)

with a form equivalent to Eq. (26) for σyy . Those expressions
are general enough to treat any scattering rate approximations
through the spectral weight, along with the x-y asymmetry of
the sAF model. In particular, Eq. (27) is the antisymmetrized
version of Eq. (1.25) of Ref. [27], corresponding to (σxyz

H −
σ

yxz

H )/2 in their notation. It is necessary to use the antisym-
metric form, like in experiments, because the combination of
x-y asymmetry and isotropic-� approximation leads to slight
quantitative differences for σ

xyz

H and −σ
yxz

H . Possible vertex
corrections (scattering terms in the Boltzmann formalism) are
neglected here and for the Seebeck coefficient. The integral
(25) can be evaluated exactly at zero temperature using
limT →0(− ∂f (ε)

∂ε
) = δ(ε). Drude expressions σxx = e2τn/m∗

and σxy = −e3τ 2n/m∗ are only recovered in the parabolic
band limit.

2. Specific heat

Each state of energy ε contributes an entropy S(ε) =
kB[f (ε) ln f (ε) + (1 − f (ε)) ln(1 − f (ε))] to the system.
Taking the spectral weight into account is crucial [22,37]. This
yields CV = T ∂S

∂T
as

CV =
∫

dε
∂f (ε)

∂T

ε

V

∑
nkσ

Ankσ (ε). (28)

We are interested in CV /T at T → 0, which we compute with
β = 500/t , corresponding roughly to 6K (with t = 250 meV).

At such low temperature, the Sommerfeld expansion [29]
shows that the expected result is proportional to the density of
states at the Fermi level: CV /T = π2k2

BN (0)/3, valid at least
for nonsingular integrand, i.e., away from the doping pvHs

where the van Hove singularity occurs.

3. Seebeck coefficient

For the Seebeck coefficient [17,18,23], we compute

Sx = 1

−eT

∫
dε

(− ∂f (ε)
∂ε

)
ε σxx(ε)∫

dε
(− ∂f (ε)

∂ε

)
σxx(ε)

, (29)

with σxx(ω) given by (26), and with an analogous expression
for Sy to treat the x-y asymmetry of the sAF model. Again,
we are interested in Sx/T at T → 0, which we compute, in
that case, with β = 100/t , roughly equivalent to 30K. Higher
temperatures must be used, compared to CV , for the numerical
integration to succeed, but we verified that the value of Sx/T

is stabilized at that temperature (except for the vicinity of
the pvHs). More details on this expression for the Seebeck
coefficient can be found in Refs. [17,18].

IV. RESULTS

Results are very similar for all three models. In all of them,
at low doping, small hole pockets around (±π/2, ± π/2) are
the only contributors to transport. At a doping pe, electron
pockets appear around (±π,0) and (0, ± π ), and when the
gap closes at p∗, they reconnect with the (±π/2, ± π/2) hole
pockets to recover the single large Fermi surface of the bare
band ξk.

Changing band parameters has equivalent consequences in
every model studied; it changes the position of pe. Thus, to
lighten this section, we take the AF results as a reference to
compare the sAF and YRZ results. Section IV A presents the
AF results for various band structures and highlights general
observations that are representative of all three models. The
sAF results and the YRZ results follow in Secs. IV B and IV C
respectively, using only one set of band parameters for each to
highlight the differences with the AF results.

A. Antiferromagnetism

Figure 3 shows the Fermi surfaces across the p∗ transition
in the AF model, and the rises in Hall number from p to
1 + p for three different sets of band parameters and the two
scattering rate approximations.

For every set of band parameters, the appearance of the
electron pockets at pe marks the beginning of a progressive
rise of the Hall number ending at p∗, as was studied in detail
in Ref. [2].

For the same gap amplitude �k(p) = 12t(0.2 − p), differ-
ent band parameters yield different values of pe. For example,
in Fig. 3(a), the electron pockets appear at p = 0.11, while for
the band parameters of Fig. 3(c), they appear at pe = 0.195.
As one can see, the closer pvHs is above p∗, the closer pe is
below p∗. Indeed, since the electron pocket forms from the
bare band near (π,0), the closer the bare band is to (π,0), the
smaller the electron pocket is and the more quickly it vanishes
with the gap.

While the Hall numbers of Fig. 3 all follow closely
nH = p at low doping, for high dopings only the isotropic-�
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FIG. 3. Hall number (nH ) and Fermi surfaces [
∑

σ Ankσ (ω = 0)]
in the antiferromagnetic model. The rise in Hall number starts
at pe, where the electron pockets at (π,0) and (0,π ) appear at
the Fermi surface, and ends at p∗ = 0.2, where the gap van-
ishes. Three sets of band parameters (a) (t ′,t ′′) = (−0.3,0.2)t ,
similar to YBCO, (b) (t ′,t ′′) = (−0.35,0)t , similar to BSCCO, and
(c) (t ′,t ′′) = (−0.17,0.05)t similar to LSCO, yield different values of
pe. The thick lines are the AF results and the thin lines are the bare
band results; they merge together above p∗ = 0.2. Constant lifetime
τ = 5h̄/t and isotropic mean-free path � = 10a approximations are
identified. The dotted lines are guides to the eye following p and
1 + p, while dashed lines identify pe, p

∗, and the doping pvHs where
the van Hove singularity occurs. The latter is in the plot range only
in case (c).

approximation yields values that follow closely nH = 1 + p

beyond p∗. The constant-τ approximation usually yields
values exceeding 1 + p, due to the ellipticity of the electron
pockets [5] and the k dependence of the velocity [38]. In the
isotropic-� approximation, the spectral weight compensates
those effects to give precisely 1 + p (see the Appendix). Note
that experimental values for the Hall resistivity exceed nH =
1 + p [30], agreeing better with the constant-τ approximation.

Figure 4 shows the specific heat across the p∗ transition
in the AF model, for the same three sets of band parameters

and the two scattering rate approximations. The doping pe is
marked by a rapid rise in CV /T , corresponding to the gain in
density of states associated with the electron pockets appearing
at the Fermi surface. As a consequence, the position of the rise
is locked to pe, and completely independent of p∗, strongly
contrasting with the rise in Hall number.

The rises of Fig. 4 are sharper in the isotropic-� ap-
proximation than in the constant-τ approximation. This is
because the electron pockets correspond to the minima of
band E2,k and therefore their velocity vanishes, 1

h̄
∇kE2,k = 0,

at the doping where they first appear. Since the broadening is
proportional to the velocity in the isotropic-� approximation,
this vanishing causes a sharp spectral weight at the Fermi level
and consequently a very sharp jump in the density of states
when electron pockets appear at the Fermi surface, resulting
in the rise of CV /T .

Fig. 5 shows the Seebeck coefficient across the p∗ transition
in the AF model, again for the three sets of band parameters and
the two scattering rate approximations. Contrary to the Hall
number and the specific heat, the transition is accompanied not
by a rise, but by a drop in Sx/T ; the results for p < pe are a
lot higher than those for p > p∗. Furthermore, the progression
from Fig 5(a) to Fig 5(c) indicates that this drop is locked to
pe rather than to p∗.

In the isotropic-� approximation, the Seebeck coefficients
fall sharply to negative values at pe before returning to the bare
band positive values. This is because the Seebeck coefficient
is sensitive to particle-hole asymmetry, hence electron pockets
introduce a negative contribution to Sx/T . In the constant-τ
approximation, the low velocity of electron pockets reduces
this negative contribution, so the drops of Fig. 5 are not sharp
but progressive, continuing down to the bare band negative
values. As already mentioned, the experimental Seebeck
coefficients [18–20] typically agree better with the positive
values of the isotropic-� approximation [18,23], in contrast to
the Hall number.

Lastly, as one can see in Fig. 5(c) and subsequent Seebeck
results, the aforementioned numerical difficulties associated
with Eq. (29) cause some noise in the results.

B. Spiral antiferromagnetism

Figure 6 shows the signatures of the p∗ transition for the
sAF model for only one set of band parameters, (t ′,t ′′) =
(−0.35,0)t . Varying the band parameters leads to the same
observations as in the previous section for the AF model, so in
what follows we only highlight the main differences between
the sAF and the AF results already shown.

Most differences come from the Fermi surfaces, shown
respectively in Figs. 6(a) and 3(b). Because of the wave
vector (π − 2πp,π ) of the sAF model, all pockets are slightly
displaced along x and the pocket around (π,0) has a different
shape from that at (0,π ). Reference [3] gives a complete view
of these Fermi surfaces. Moreover, the velocity of the hole
pocket is higher, relative to that of the electron pocket, in
the sAF model than in the AF model (not shown). These
differences in Fermi surfaces and in velocities are the main
factor causing differences in transport coefficients.

In Fig. 6(b), the Hall number of the isotropic-� approxi-
mation deviates substantially from the monotonic rise of the
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FIG. 4. Specific heat (CV /T ) in the antiferromagnetic model, at
temperature β = 500/t , equivalent to T ≈ 6K, shown as a function
of doping for band parameters (a) (t ′,t ′′) = (−0.3,0.2)t , (b) (t ′,t ′′) =
(−0.35,0)t , and (c) (t ′,t ′′) = (−0.17,0.05)t . The corresponding
Fermi surfaces were shown in Fig. 3. Labels identify constant lifetime
τ = 5h̄/t and isotropic mean-free path � = 10a approximations,
along with the doping pe where electron pockets appear at the Fermi
surface, the doping p∗ where the gap vanishes, and the doping pvHs

where the van Hove singularity occurs. The thick lines are the AF
results and the thin lines are the bare band results; they merge together
above p∗ = 0.2.

constant-τ case studied in Ref. [3]. This deviation comes from
a reduction of σxy due to the aforementioned lower velocity
of the electron pockets. Since the isotropic-� approximation
enhances low-velocity states, this detrimental contribution
appears more clearly than in the constant-τ approximation.
In other words, the less the electron pockets contribute, as
in the constant-τ approximation, the better the agreement with
experiments [1].

Lastly, the Seebeck coefficients Sx/T and Sy/T in Fig. 6(d)
undergo strong variations in the presence of the sAF electron
pockets, stronger for Sx/T than for Sy/T . Even in the
constant-τ approximation, with a diminished electron-pocket
contribution, Sx/T and Sy/T have minima between pe and
p∗, contrasting the monotonic decrease of the corresponding
AF results in Fig. 5(c). Again, we remind the reader that the
experimental Seebeck coefficient [18–20] agrees better with
the isotropic-� approximation [18,23]. In the latter case, the AF
model and the sAF model display very similar dips, except that
they are much deeper in the sAF case, and display enhanced
substructures, with a larger range of negative values.

C. Yang-Rice-Zhang theory

Figure 7 shows the signatures obtained across the p∗
transition in YRZ theory. The usual band parameters for YRZ

FIG. 5. Seebeck coefficient (Sx/T ) in the antiferromagnetic
model, at temperature β = 100/t , equivalent to T ≈ 30K, shown
as a function of doping for band parameters (a) (t ′,t ′′) = (−0.3,0.2)t ,
(b) (t ′,t ′′) = (−0.35,0)t , and (c) (t ′,t ′′) = (−0.17,0.05)t . The cor-
responding Fermi surfaces were shown in Fig. 3. Labels identify
constant lifetime τ = 5h̄/t and isotropic mean-free path � = 10a

approximations, along with the doping pe where electron pockets
appear at the Fermi surface, the doping p∗ where the gap vanishes,
and the doping pvHs where the van Hove singularity occurs. The thick
lines are the AF results and the thin lines are the bare band results;
they merge together above p∗ = 0.2.

theory, (t ′,t ′′) = (−0.3,0.2)t , are strongly renormalized by
Gutzwiller factors, which makes them more comparable to
nonrenormalized (t ′,t ′′) = (−0.35,0)t than to nonrenormal-
ized (t ′,t ′′) = (−0.3,0.2)t . Nevertheless, renormalized bands
are very different; even the bare band results of this section
differ from those of the two previous sections. Nevertheless,
the qualitative observations highlighted in our analysis of the
AF model holds in YRZ theory; this section focuses on the
differences between both models.

Differences with the AF results are not all explained by
the Fermi surfaces of Fig. 7(a). Actually, those are so similar
to that of the AF model that most differences are caused by
the Gutzwiller factors in the dispersion. These factors cause a
chain of effects, of which the most relevant are (i) a reduction
of the bandwidth, which comes with (ii) a decreased velocity,
(iii) an increased density of states at given energy or doping,
and (iv) a relative broadening of band edges as a function of
energy or doping.

Figure 7(b) shows that the Hall number is almost in-
distinguishable from the one obtained in the AF model in
Fig. 3(b), as studied in Ref. [2]. This holds in both scattering
approximations and is consistent with the very similar Fermi
surfaces of the two models.
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FIG. 6. Hall number (nH ), specific heat (CV /T ), and Seebeck
coefficient (Sx/T and Sy/T ) in the incommensurate spiral antifer-
romagnetic model. Band parameters are (t ′,t ′′) = (−0.35,0)t . (a)
The Fermi surfaces, (b) the Hall number nH at T → 0, (c) the
specific heat CV /T at β = 500/t (T ≈ 6K), and (d) the Seebeck
coefficient Sx/T at β = 100/t (T ≈ 30K) are all shown as a function
of doping p. Labels identify constant lifetime τ = 5h̄/t and isotropic
mean-free path � = 10a approximations, along with the doping pe

where electron pockets appear at the Fermi surface, and the doping
p∗ where the gap vanishes. The thick lines are the sAF results and
the thin lines are the bare band results; they merge together above
p∗ = 0.2. Labels x and y identify which lines are the Sx/T and Sy/T

for the Seebeck coefficients.

Lastly, in Fig. 7(c), the rise in CV /T is broader than in
the AF case; in fact, for the constant-τ approximation, it
is more a change of slope than a sharp rise. Accordingly,
in Fig. 7(d), the drop in Sx/T is broader than in the AF
and the sAF models, such that it becomes negative in the
whole interval pe to p∗ in the isotropic-� approximation. This
broadening is consistent with the flattening of the band due
to Gutzwiller factors; the upper band edge, i.e., the bottom of
the electron pocket, represents a larger fraction of the overall
bandwidth. Moreover, in the constant-τ approximation, the
reduced velocity of electron pockets is further decreased by
Gutzwiller factors, making their contributions almost invisible
in YRZ transport results.

FIG. 7. Hall number (nH ), specific heat (CV /T ), and Seebeck co-
efficient (Sx/T ) in the Yang-Rice-Zhang theory. The usual YRZ band
parameters (t ′,t ′′) = (−0.3,0.2)t are renormalized by Gutzwiller
factors, so even bare band results (thin lines) are different from the
ones obtained in the AF and sAF models. (a) The Fermi surfaces,
(b) the Hall number nH at T → 0, (c) the specific heat CV /T

at β = 500/t (T ≈ 6K), and (d) the Seebeck coefficient Sx/T at
β = 100/t (T ≈ 30K) are all shown as a function of doping p. Labels
identify constant lifetime τ = 5h̄/t and isotropic mean-free path
� = 10a approximations, along with the doping pe where electron
pockets appear at the Fermi surface, the doping p∗ where the gap
vanishes. The thick lines are the sAF results and the thin lines are the
bare band results; they merge together above p∗ = 0.2.

V. CONCLUSION

We studied the transport signatures of the low-temperature
transition at p∗ in three models relevant to hole-doped
cuprates: the AF model, sAF model, and YRZ theory. We
found that, together with the rise of the Hall number nH studied
previously [2,3], all studied models predict a rise in specific
heat CV /T and a drop in the Seebeck coefficient Sx/T as
doping increases.

Our results are consistent with the known trends of experi-
ments [13–21]. Finite-temperature specific heat measurements
indicate that the low-temperature density of states increases
significantly with doping [13–15], and finite-temperature
Seebeck coefficients indicate that the low-temperature Sx/T

decreases significantly with doping [17–21]. However, the
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normal-state doping dependence of those probes is not well
documented. Low-temperature measurements with supercon-
ductivity suppressed and a well-resolved p∗ remain to be
published. The comparison of such experiments with our
prediction of a rapid rise in specific heat CV /T and a drop
in the Seebeck coefficient Sx/T will be a stringent test for the
assumptions underlying the AF, sAF, and YRZ models studied
here, all of which fully explain the rapid rise in Hall number
[1–3].

To a great extent, the positions in doping of the CV /T rise,
and Sx/T drop are controlled by pe, the doping at which
electron pockets appear at the Fermi surface before p∗ in
all considered models. With the AF model, we showed that
this doping pe depends on band structure. From our results,
we can infer that the closer pvHs is above p∗, the closer
pe is below p∗. This indicates that not all compounds may
provide equivalent evidence of this separation of pe and p∗. For
example, LSCO, known to have p∗ very close to pvHs, might
not be a good candidate, with single-layer Hg or Tl compounds
being preferable options. However, this remark holds given
the same gap amplitude �k(p) for all band structures. Recent
experiments on LSCO presented a rise of the Hall number
spanning a finite range of doping [39], consistent with an
appreciable separation of pe and p∗. A smaller gap amplitude
in LSCO, consistent with its lower T ∗, may be the explanation;
it would let the electron pockets survive on a larger doping
range [2,3].

The electron pockets at (π,0) and (0,π ) in the transition
regime pe < p < p∗ provide model-specific predictions. In
that range of doping, we studied carefully the distinctive
signatures of each model both in the isotropic mean-free path
� and the constant lifetime τ approximations, assuming that
the electron pockets have the same mean-free path or constant
lifetime as the hole pocket. Looking at the results, the only
systematic discriminating signature comes from the Seebeck
coefficient in the isotropic-� approximation. The prediction
consists of a dip of Sx/T to negative values between pe and
p∗, and with a characteristic shape in each model. In the AF
model, the dip is negative only within a narrow doping range; in
the sAF model, the dip is negative for a larger range of doping
and displays characteristic substructures; and in YRZ theory,
the dip is round and broad. Those signatures may change at
lower temperatures; the finite temperature β = 100/t used in
our computations of Sx , equivalent roughly to T = 30K, gives
a good indication of the T = 0 limit, except near the van
Hove singularity. The analysis of the temperature dependence
is beyond the scope of this work and can be found for YRZ
theory in Refs. [2,22,23].

In the end, what this work really shows is how the AF, sAF,
and YRZ models all predict two separate dopings marking the
p∗ transition in transport properties. The rise in specific heat
and drop in Seebeck coefficient should be found, not at p∗
like for the rise in the Hall number, but at a separate doping
pe. This separation is caused by the characteristic electron
pockets of these models. To this day, no such electron pocket
has been reported in photoemission or quantum oscillations
experiments near p∗. Electron pockets of a different nature
are present [40,41] in the charge-density wave regime [42],
which is not considered here. The separation predicted here
for pe and p∗ in transport properties offers a way to address

FIG. 8. Results for the bare band with band parameters (t ′,t ′′) =
(−0.17,0.05)t . (a) Fermi surfaces (ξk = 0) as a function of doping,
two on each side of the van Hove singularity (vHs) at p = 0.23.
[(b)–(d)] Comparison of (b) Hall numbers nH = 1/eRH in the limit
of zero temperature, (c) specific heats CV /T at β = 500/t , and
(d) Seebeck coefficients S(T )/T at β = 100/t , as a function of
doping. The isotropic mean-free path � approximation is in red, while
the constant lifetime τ approximation is in green and the legend
identify the values of τ and � used. τ → ∞ denotes the standard
Boltzmann transport theory results, and �x → ∞ is the constant
mean-free path approximation used in Refs. [18,23], for comparison.
In the latter case, it was possible to compute S/T at β = 500/t ,
revealing the divergence of the Seebeck coefficient at the van Hove
singularity in the constant-� approximation for lower temperatures.

this question experimentally. The absence of such a separation
would raise very serious doubts on any theory relying on (π,0)
and (0,π ) electron pockets to close the pseudogap at p∗.3

There exist theories of the pseudogap without the electron
pockets studied here. The SU(2) phenomenological theory

3FL∗ theory provide some interesting examples. The U(1) algebraic
charge liquid of Ref. [43] leads to an effective Hamiltonian very
similar to the AF and YRZ models treated here and so we believe
conclusions presented here for the AF model should hold in this FL∗

theory. However, the Z2 FL∗ theory of Ref. [5] leads to an effective
spectrum which does not rely on (π,0) and (0,π ) electron pockets,
but rather on large spinon pockets, so the results may differ from ours.
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[7,44] was recently shown to agree with the rise in Hall number,
but its pseudogap is particle-hole symmetric and without
electron pockets. Alternatively, strongly correlated electron
methods for hole-doped cuprates can obtain particle-hole
asymmetric pseudogaps [45,46] without electron pockets. For
example, very clear Fermi arcs without broken symmetry
[47–56] are obtained. In this case, the spectral weight gapped
at (0,π ) and (π,0) is strongly incoherent and does not form a
Fermi surface. In these methods, vertex corrections and the ef-
fect of elastic scattering off impurities will need to be included
to make reliable predictions in the regime of interest here.
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APPENDIX: ISOTROPIC � VS CONSTANT τ

Using the constant-τ approximation of Sec. III A 3 is not
the same as using usual Boltzmann transport theory. The two

are only equivalent for τ → ∞. In the usual Boltzmann theory
[29], τ cancels out of ratios like the Hall resistivity and the
Seebeck coefficient, so its actual value has no importance. In
the spectral weight formulation of Sec. III B, a finite value of
τ appears as a Lorentzian broadening of the spectral weight,
and it cannot cancel out of those ratios.

To make a similar point, the isotropic-� approximation of
Sec. III A 3 can be compared to the constant mean-free-path
approximation used in Refs. [18,23]. In these works, it is
vx,nkτ which is assumed constant and cancels out the Seebeck
ratio. We would therefore identify this approximation as
�x → ∞. However, this approximation is incompatible with
the Hall coefficient because both vx and vy enter the expression
of σxy .

To illustrate the differences between all the approximations
discussed, Fig. 8 shows the bare band results, i.e., �k(p) = 0,
for various values of isotropic � and constant τ , along with
the conventional Boltzmann theory result, denoted by τ → ∞
and the approximation of Refs. [18,23], denoted by �x →
∞. In the isotropic-� approximation, the Hall number and
Seebeck coefficient both change sign precisely at the van Hove
singularity at pvHs = 0.23. On the other hand, for the constant-
τ approximation, the Hall coefficient changes sign much
farther, beyond p = 0.30, and the Seebeck coefficient changes
sign a lot before, below p = 0.05. Changing the value of τ and
� only causes broadening, the clearest case being the specific
heat of Fig. 8(c) close to the van Hove singularity. All differ-
ences between the constant-τ and isotropic-� approximations
come from differences in the corresponding spectral weights
of Fig. 2 which shows how the isotropic-� approximation
enhances the weight of low velocity of states near (π,0)
and (0,π ).
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