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Manipulating light at subwavelength scale by exploiting defect-guided spoof plasmon modes
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We study the defect-guided modes supported by a set of metallic rods structured at the subwavelength scale.
Following the idea of photonic crystal waveguide, we show that spoof plasmon surface waves can be manipulated
at subwavelength scale. We demonstrate that these waves can propagate without leakage along a row of rods
having a different length than the surrounding medium and we provide the corresponding dispersion relation. The
principle of this subwavelength colored guide is validated experimentally. This allows us to propose the design
of a wavelength demultiplexer whose efficiency is illustrated in the microwave regime.
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I. INTRODUCTION

It is known that periodic structures can be designed in order
to forbid the wave propagation in a desired frequency range.
Based on this principle, waveguides in planar photonic crystals
have been realized. They are obtained by changing the local
properties of a periodic lattice along a channel, or waveguide,
for instance by omitting one row of holes in a lattice of holes
or by changing the hole size in one row [1–3]. In a surrounding
medium where the propagation is forbidden, these waveguides
support the propagation of so-called defect-guided modes. The
guiding effect is particularly efficient when the wave number
of the guided mode is below the light line since the mode
propagates without leakage, being evanescent in the air above
the guide. A similar guiding effect can be obtained in a material
being structured periodically at the subwavelength scale. This
has been done for electromagnetic waves using a set of metallic
rods and reducing the length of a row of them [4]; interestingly
in this case, the guided mode is a spoof plasmon (SP)
mode supported by a waveguide with subwavelength width.
Artificial structured materials have been notably proposed to
produce spoof plasmons which masquerade at tera-Hertz and
microwave frequencies as surface plasmons, these latter being
limited to the visible range [5,6]. Their range of applications
cover many wave guiding and focusing problems [7–11].
Theoretically, the condition for the spoof plasmon to take
place is often interpreted as cavity resonances for a hole
perforated massive media or as wire type resonances for
very sparse structure. This argument predicts spoof plasmon
working at frequencies correspondingly roughly to L = λ/2
or L = λ/4, with L the thickness of the structured material
(Fig. 1). A more accurate dispersion relation of the spoof
plasmons can be obtained by considering the propagation in an
equivalent anisotropic material [12]. Within this description,
spoof plasmons are waves being trapped within the artificial
material, allowing for resonances tuned by the properties of
the unit cell.

Wavelength-division multiplexing (WDM) allows us to
expand the capacity of telecommunication systems without
laying more channels [13]. Such systems use a demultiplexer
at the receiver to separate the multiwavelength signal back into
individual data signals and output them on separate channels.
In this paper we use the principle of defect-guided modes in

an artificial structured metamaterial supporting spoof plasmon
waves to propose a wavelength demultiplexer. The device is
able to drive an harmonic signal toward different channels
at subwavelength scale. We start by analyzing the dispersion
relation of a single waveguide. The guided modes is shown
to be well described by a dispersion relation close to the
dispersion of spoof plasmons but modified by the width of the
waveguide. We start with the two-dimensional homogenized
problem which yields the dispersion relation of classical spoof
plasmons [12], and we extend to a three-dimensional problem.
This principle is being validated experimentally, the design of
the multichannel demultiplexer is proposed in order to avoid
any overlapping in the dispersion relations of the different
channels and its efficiency is demonstrated experimentally.

II. DISPERSION RELATION OF THE DEFECT-GUIDED
MODES

Let us start with the classical spoof plasmon in a 1D array
of layers (Fig. 1). Using an approximate modal method [5,6],
the dispersion relation β(k) (with β the wave number of spoof
plasmons and k those of the free space) reads

β2 = k2[1 + ϕ2 tan2 kL], tan kL > 0, (1)

with ϕ the filling fraction of air and L the length of the layers.
In the framework of homogenization, this dispersion rela-

tion is recovered simply as the dispersion relation of a guided
wave at the interface between the air and a homogenized
medium described by the wave equation

∂2

∂z2
H + k2H = 0, (2)

and the associated conditions of continuity for H and ϕ∂nH

at the interface with the air [12]. Basically, the wave equation
(2) tells us that the wave inside the grooves can only propagate
along one direction (the z direction); it is worth noting that (2)
does not imply that H is independent on (x,y); specifically,
the solution is written

H = eiβx cos kz

cos kL
, 0 < z < L,

H = eiβxe−
√

β2−k2z, z > L,

(3)
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FIG. 1. 2D geometry of metallic layers between a ground plane
and the air, spoof plasmons can propagate according to (1) [Left side].
3D geometry of a structured waveguide of width w, guided modes
can propagate according to Eq. (6) [Right side].

and this form of the solution ensures that H is continuous
and that the Neumann boundary condition applies at the
ground plane ∂zH (z = 0) = 0. The last boundary condition
ϕ∂zH (L−) = ∂zH (L+) at the interface with the air yields
the dispersion relation (1), and the guided wave requires that
β > k, which implies the additional constraint tan kL > 0 in
the dispersion relation; this latter condition defines the band
gap. While in principle the upper frequency f +

c of the band
gap is obtained for kL = π/2, from (1), it is in practice limited
by the first Brillouin zone β = π/a, where

f +
c

√
1 + ϕ2 tan2 2πLf +

c

c
= c

2a
, f +

c <
c

4L
. (4)

To go toward our waveguide, we need to extend our model to
a structuration in the y direction (Fig. 1). Thus, the 2D grooves
are replaced by 3D rods with the same structuration along x and
y. Following Ref. [5], this is expected to produce an equivalent
transverse isotropic medium, with the axis of anisotropy along
z; thus, the wave equation (2) should remain valid and we
assume that ϕ can be simply replaced by the volume fraction
of air in the rods; with cylindrical rods of radius r , we use
ϕ = 1 − πr2/a2. Next, we extend the homogenization result
to this 3D configuration looking for a solution of the form

H = eiβx cos kz

cos kL
cos

(πy

w

)
, 0 < z < L,

H = eiβxe−
√

β2+(π/w)2−k2z cos
(πy

w

)
, z > L. (5)

In the simple form thought above, we added a dependence
in the y direction which accounts for Neumann boundary
conditions at y = 0,w, thus reducing the effect of the long
rods surrounding the waveguide to those of metallic plates
where the electric field vanishes. Otherwise, (5) accounts for
the continuity of H at the interface with the air and for the
Neumann boundary condition at the ground plane; as shown
previously, the additional condition ϕ∂zH (L−) = ∂zH (L+)
yields the new dispersion relation

β2 = k2[1 + ϕ2 tan2 kL] −
(π

w

)2
. (6)

In (6), the band gap above f +
c still exists, and it does not

significantly differ from (4) (it is sufficient to replace 1/a by√
a−2 + w−2); but now, a new band gap has appeared below the

cut-off frequency f −
c [given from (6) for k tan kL = π/(wϕ)].

FIG. 2. Theoretical dispersion relations of the guided modes,
Eq. (6), in plain blue lines for the W1 and W3 guides (see text),
respectively, in (a) and (b), defining the frequency range FR (blue
colored areas) where guided modes can propagate without leakage.
The gray and the dashed black curves show, respectively, the
dispersion relation of the surrounding medium and the light line.
For comparison, dotted blue lines report the behavior of the classical
spoof plasmons, Eq. (1).

The existence of the resulting finite pass band operating in the
frequency range [f −

c ,f +
c ] is the key to realize the desired filter;

in the following, we denote FR( waveguide ) = [f −
c ,f +

c ] this
frequency range:

f −
c tan

2πf −
c

c
= c

2wϕ
. (7)

Note that a third region with β2 < 0 has appeared for
frequencies below f +

c and above f such that β(f ) = 0 in
(6); this corresponds to waves propagating in the waveguide
but radiating in the air above the waveguide.

Figure 2 reports the dispersion relations (1) and (6) in two
configurations. In the first one, referred to as the W1 guide, we
use a surrounding medium, called gray medium Ls = 30 mm
and a = 7 mm; the guide is created by reducing the length of a
unique row of rods, where w = 2a = 14 mm, to L = 17 mm;
in the second configuration, the guide is created in a similar
gray medium by reducing the length of three rows, where w =
4a = 28 mm, to L = 17 mm. In the two configurations, the
propagation is forbidden in the gray region when operating at
a frequency in the finite pass bands of the waveguides, namely
FR( W1 ) = [3.65–4] GHz and FR( W3 ) = [3.15–4] GHz.

III. NUMERICAL AND EXPERIMENTAL VALIDATION

To begin with, we validate numerically and experimentally
the existence of the pass band rf, and check the validity of our
predictions of the bounds f +

c and f −
c in (4) and (7) and of the

associated wave number (6). Experimental prototypes of the
W1 and W3 waveguides have been realized. Measurements
in the range [2.1–4] GHz have been performed in a semi-
anechoic chamber using an Agilent 8722ES network analyzer.
An S-band coaxial-to-waveguide transition has been used as
an excitation source. An electric near-field probe mounted
on a motorized two-dimensional scanning system is used to
measure the field distribution at a distance of about 1 mm
above the structure. A transmission coefficient has been also
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FIG. 3. (a) Photography of the experimental setup designed for
the microwave range. A zoom on a W1 waveguide is presented on
the right side. Simulated (b) and measured (c) transmission spectra
of the W1 and W3 channels as a function of the frequency.

evaluated by placing a second coaxial-to-waveguide transition
at the end of the artificial waveguide and by implementing a
normalization to the free air transmission between the emitter
and the receptor. Additional information on the experimental
setup is given in the Supplemental Material [14].

First, we report in Fig. 3 the transmission in the channel
as a function of the frequency. In both cases, the existence
of a finite pass band is confirmed. These transmission bands
correspond to the defect modes predicted in the theoretical
dispersion relation (blue curves in Fig. 2). The obtained
waveguides are called colored. The numerical calculations
show good agreement with the corresponding experimental

FIG. 4. Typical fields measured just above the rods in the colored
guide W1.

results. Besides, the observed bounds of the FR are in good
agreement with the theoretical predictions presented previ-
ously. One can notice here the importance of the attenuation for
the spoof plasmon modes providing the smallest wavelengths.
These wavelengths correspond to the highest frequencies in the
transmission bands. This phenomenon, known in plasmonics,
happen due to intrinsic losses in the considered materials
for the high-wave-vector components. Additional results and
discussions are provided in the Supplemental Material [14].

Figure 4 reports typical fields measured just above the
rods in the colored waveguide W1 (same measurements,
not reported, have been done for the W3 waveguide). This
result shows the subwavelength propagation obtained in the
proposed waveguides. The higher the frequency, the smaller
is the wavelength λGM of the guided modes. From such
measurements, the wavelength λGM can be estimated.

Below, quantitative results are collected for the W1 guide
and compared to the prediction given by the dispersion relation
(6) (see also Fig. 2).

W1 guide (w = 2a, L = 17 mm):

f (GHz) 3.7 3.8 3.9
measured λGM (mm) 42 30 21
λGM = 2π/β from (6) 43 28 20

(8)

Again, the agreement between the measurements and the
prediction of (6) is very good.
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FIG. 5. (a) Schematic view of the multichannel demultiplexing
device operating at subwavelength scale. (b) Dispersion relations
of the four colored waveguides. The dispersion relation of the
surrounded medium and the light line are also plotted for comparison
in gray and dashed black, respectively. (c) Transmission spectra
calculated at the exits of the three colored W1 waveguides.

IV. DEMULTIPLEXING BY EXPLOITING EFECT GUIDED
SPOOF-PLASMON MODES

Since this validation is being performed, we move to the
multichannel demultiplexer. The principle of the demultiplex-
ing is shown in Fig. 5. A main waveguide, called white guide, is
built in order that the FR( white ) covers the working frequency
range; this is done by choosing (i) w large enough to produce a
small enough f −

c [see (7)] and (ii) L small enough to produce
a large enough f +

c [see (4)]. By setting w = 10a = 70 mm
and L = 15 mm, we expect FR( white ) = [2.5; 4.5] GHz.

Next, three colored waveguides (red, green, blue) are
designed in order to support guided mode propagation in three
different frequency ranges with no overlapping. Again from
(4) and (7), thin FR are obtained for small w and we set
w = a = 7 mm. By choosing L = 17, 19, and 21 mm, we
expect this condition to be fulfilled with

FR( red ) = [3; 3.3], FR( green ) = [3.3; 3.6],
FR( blue ) = [3.6; 4.0]. (9)

Full wave numerical simulations have been performed for
the proposed multichannel demultiplexer. Figure 5(c) shows
the transmission spectra calculated at the exits of the three
W1 waveguides. Three transmission bands are obtained at the
specific frequency bands predicted by the dispersion relations.

FIG. 6. Electric fields scanned above the structure at three fre-
quencies chosen, respectively, in the red (f = 3 : 1 GHz), green (f =
3 : 4 GHz), and blue (f = 3 : 8 GHz) frequency range [f c−; f c+].

The efficiency of the demultiplexer has been tested exper-
imentally and it is illustrated in Fig. 6. The white guide is
able to support the wave propagation in the whole range of our
working frequency; next, the demultiplexing efficiently directs
the signal into single colored waveguides, accordingly to the
predicted FR.

V. CONCLUSIONS

We have presented the principle of manipulating light
at subwavelength scale by exploiting defect-guided spoof
plasmon modes. We have shown that such modes are supported
by a set of metallic rod structures at subwavelength scale.
We have proposed a multichannel demultiplexer based on the
existence of spoof plasmon guided modes being supported
within a finite pass band, with upper and lower bounds. The
multichannel demultiplexer is based on the behavior of a single
waveguide supporting spoof plasmon modes for which the
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dispersion relation has been obtained. Each waveguide consists
of a structured material able to produce plasmonic propagation
at subwavelength scale that can be tuned with high flexibility.
Such devices can be exploited in rf telecommunications for
demultiplexing a number of carrier signals. This approach
could be extended to infrared and optics to be used in WDM
fiber communications.

In terms of theoretical extension, a more accurate model
could be proposed. As presented in this paper, the model starts
from a homogenization approach valid for a two-dimensional
structuration and that we extended to a three-dimensional

structuration within several approximations. Although our ap-
proach allows for a simple expression, a more accurate model
should consider the 3D homogenization of the waveguide in
the surrounding medium.
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