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Singlet exciton condensation and bond-order-wave phase in the extended Hubbard model

Mohsen Hafez-Torbati* and Götz S. Uhrig†

Lehrstuhl für Theoretische Physik I, Technische Universität Dortmund, Otto-Hahn-Straße 4, 44221 Dortmund, Germany
(Received 4 July 2017; revised manuscript received 29 August 2017; published 18 September 2017)

The competition of interactions implies the compensation of standard mechanisms, which leads to the
emergence of exotic phases between conventional phases. The extended Hubbard model (EHM) is a fundamental
example for the competition of the local Hubbard interaction and the nearest-neighbor density-density interaction,
which at half-filling and in one dimension leads to a bond-order wave (BOW) between a charge-density wave
(CDW) and a quasi-long-range order Mott insulator. We study the full momentum-resolved excitation spectrum
of the one-dimensional EHM in the CDW phase, and we clarify the relation between different elementary energy
gaps. We show that the CDW-to-BOW transition is driven by the softening of a singlet exciton at momentum π .
The BOW is realized as the condensate of this singlet exciton.
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I. INTRODUCTION

Strong interactions among electrons can lead to the
emergence of collective phenomena such as the stabilization
of new phases of matter that host nontrivial elementary
excitations [1,2]. The role of on-site Hubbard interaction
and its competition with different kinetic terms is widely
investigated [3–9]. However, relatively less attention is paid
to the effect of nonlocal short-range interactions such as first-
or second-neighbor density-density interaction terms. The
possible spontaneous emergence of the quantum anomalous
Hall state (for spinless case) and the quantum spin Hall
state (for the spinful case) on the honeycomb lattice due to
first- and second-neighbor interactions serves as an interesting
controversial example in the field of a topological Mott
insulator [10–12].

To study quantum phase transitions and to search for
nontrivial quantum states, it is well-established to analyze
effective models with competing interaction terms. Their
competition compensates for the driving mechanisms of rather
trivial phases so that the noncompensated higher-order terms
dominate the physics [13–15]. An example is the extended
Hubbard model (EHM) at half-filling where two interactions
compete, namely the on-site Hubbard repulsion U and the
nearest-neighbor (NN) repulsion V .

We study the half-filled EHM in one dimension at zero
temperature; its Hamiltonian reads

H = t
∑
iσ

(c†i,σ ci+1,σ + H.c.) + V
∑

i

(ni − 1)(ni+1 − 1)

+U
∑

i

(
ni,↑ − 1

2

)(
ni,↓ − 1

2

)
, (1)

where ci,σ and c
†
i,σ are electron annihilation and creation

operators at site i with spin σ , respectively. The density
operator ni,σ := c

†
i,σ ci,σ counts the number of electrons with
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spin σ at site i and ni := ni,↑ + ni,↓. In the twofold-degenerate
charge-density-wave (CDW) regime (V � U ), the gaps to
both singlet and triplet excitations are finite. In the Mott
insulator (MI) (U � V ), the charge degrees of freedom
are frozen, and the low-energy physics is captured by the
Heisenberg model with quasi-long-range magnetic order and
gapless spin excitations.

The phase diagram of the EHM (1) (see Fig. 1) has been
studied extensively using bosonization [16,17], the
renormalization-group method [18–20], the quantum Monte
Carlo (QMC) method [21–23], and the density-matrix
renormalization-group (DMRG) method [24–26]. The CDW
and the MI are separated by the intermediate bond-order-wave
(BOW) phase for small to intermediate values of U and V .
For large U and V values beyond a critical end point, the
BOW disappears and a direct first-order transition from the
CDW to the MI is observed. The CDW-to-BOW transition
changes from second order to first order beyond a tricritical
point while the BOW-to-MI transition remains second order.
Modified models with similar tricritical points have also been
studied [27,28].

The phase transitions in the EHM (1) are determined by
computing various correlation functions as well as charge and
spin gaps. It is reported that at the second-order CDW-to-BOW
transition, the charge gap vanishes while the spin gap remains
finite [26]. In the MI, the spin gap is zero and the holon-
antiholon form bound states [29]. In previous investigations,
however, the possible formation of an electron-hole bound
state with S = 0, i.e., of a singlet exciton, has not been
considered.

In this paper, we present the full momentum-resolved
low-energy spectrum of the EHM (1) in the CDW phase
close to the transition using continuous unitary transformations
(CUTs) [30–32]. A rich excitation spectrum comprising two
singlet and two triplet bound states is identified. In contrast
to the DMRG analysis [26], we find that the second-order
transition from the CDW to the BOW is induced by the
vanishing of the optical gap, i.e., the energy of a singlet exciton
at total momentum k = π vanishes. The bond order reflects
the condensate of these singlet excitons and can be understood
by a BCS-like mean-field theory. The spin gap remains
finite and is smaller than the charge gap at the transition
point.
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FIG. 1. Schematic phase diagram of the extended Hubbard model
(1) found by bosonization [16–20], the quantum Monte Carlo method
[21–23], and the density-matrix renormalization-group method
[24–26].

II. CHARGE-DENSITY WAVE

The ground state has total spin S = 0. To track phase
transitions, we consider four excitation gaps: the one-particle
gap �1, the charge gap �c, the singlet exciton gap (or optical
gap) �e, and the spin gap �s , defined by [33]

�1 := EL+1
0 + EL−1

0 − 2EL
0 = 2

(
EL+1

0 − EL
0

)
, (2a)

�c := 1
2

(
EL+2

0 + EL−2
0 − 2EL

0

) = EL+2
0 − EL

0 , (2b)

�e := EL
1,S=0 − EL

0 , (2c)

�s := EL
1,S=1 − EL

0 , (2d)

where EN
0 is the ground-state energy at N electrons; at half-

filling, N = L holds, where L is the number of lattice sites.
The energy EN

1,S corresponds to the first excited state with
total spin S and N electrons. The one-particle gap measures
the minimum energy required for adding a single electron and
a single hole to the system. The charge gap �c lies below the
one-particle �1 gap only in the case of Cooper-pair formation,
otherwise they are equal. The second equalities in (2a) and
(2b) hold due to particle-hole symmetry. An electron-hole pair
can form a bound state (exciton) in the singlet and/or in the
triplet channel. Its energy defines the singlet and the spin gap,
respectively. We stress that this consideration implies that the
singlet and the spin gap must be equal to or smaller than
the one-particle gap. If the gaps are smaller, the difference in
energy is the excitonic binding energy. We notice that a charge
gap smaller than the spin gap as suggested in DMRG analysis
[26] can only be understood based on electron-electron (hole-
hole) bound states.

Different definitions are used for the charge gap in different
contexts, and we have to clarify this point before proceeding.
The singlet exciton gap (2c) and the spin gap (2d) can be
extracted from the Fourier transform of the charge-charge
〈nini+d〉 and the spin-spin 〈Sz

i S
z
i+d〉 correlation functions,

respectively, as calculated for the one-dimensional (1D) EHM
by the QMC method in Refs. [22,23]. What is called the
“charge gap” in these references is equivalent to our singlet
exciton gap Eq. (2c). The singlet exciton gap and the spin gap
are also the gaps addressed in bosonization [16–19], as the
bosonized field always creates a pair of an electron and a hole.
We notice that for the proper treatment of the one-particle

gap (2a) and the charge gap (2b) in the bosonization approach,
the explicit consideration of Klein factors would be necessary
[34].

In the atomic limit (t = 0) and for 2V > U , the ground state
is a twofold-degenerate CDW where empty and fully occupied
sites alternate; see Figs. 2(a.1) and 2(a.2). The system becomes
excited if an electron hops from an occupied site to an empty
one creating an electron-hole pair in Figs. 2(a.3) and 2(a.4).
The one-particle gap is given by �1 = 4V − U , as can be
read off from Fig. 2(a.3), where the electron and hole are
separated. To minimize its energy, the electron-hole pair can
form a bound state on NN sites so that the singlet (and the
spin gap) is given by �s = �e = 3V − U ; see Fig. 2(a.4).
A single domain wall separating the two degenerate ground
states is depicted in Fig. 2(a.5), requiring the excitation energy
2V − U/2, i.e., �1/2.

From this simple argument, one can deduce that the NN
interaction strongly favors the formation of a neutral exciton.
The degeneracy of the singlet and the triplet gap in the atomic
limit is lifted due to NN hopping. We show that these bound
states survive even close to the CDW-to-BOW transition. A
similar scenario of exciton formation due to NN interaction
has been found in related models [35,36].

We take the CDW in Fig. 2(a.1) as a reference state.
The electron-hole transformation T (e-h) : c

†
i,σ → hi,σ on the

odd sublattice expresses the EHM (1) in terms of quasi-
particles (QPs). This means that any creation operator after
the transformation stands for the creation of an excitation:
adding an electron to an empty site or adding a hole to a
fully occupied site. Then, the electron and hole operators are
uniformly denoted by the fermion operator f

(†)
i,σ . After the local

transformation T (l) : f
†
j,σ → ei π

2 j e−i π
4 f

†
j,σ , the EHM can be

written as

H = U − 4V

4

∑
i

1 + 4V − U

2

∑
i,σ

f
†
i,σ fi,σ

+U
∑

i

f
†
i,↑fi,↑f

†
i,↓fi,↓−V

∑
iσβ

f
†
i,σ fi,σ f

†
i+1,βfi+1,β

+ t
∑
i,σ

(f †
i,σ f

†
i+1,σ + H.c.). (3)

The local transformation T (l) has restored the full translational
symmetry facilitating the subsequent analysis. In the QP
representation, the original hopping term has become a
Bogoliubov term creating a singlet pair of fermions on NN
sites. We stress that the NN electron-electron interaction in (3)
has acquired a minus sign, indicating an attraction between the
original electron and hole.

To eliminate the Bogoliubov terms that change the num-
ber of QPs, we employ the directly evaluated enhanced
perturbative CUT (deepCUT) [37]. The resulting effective
model allows us to analyze the complete momentum-resolved
excitation spectrum of the Hamiltonian (3). The CUT is
performed in the thermodynamic limit and is known as a
powerful approach to compute excitation spectra and spectral
densities [38–41]. We treat the Bogoliubov term as the
perturbation in the deepCUT formalism [37] so that the flow
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FIG. 2. (a) Schematic representation of the two degenerate CDWs [(a.1) and (a.2)], of an excited electron-hole pair [(a.3) and (a.4)], and of
a single domain wall (a.5) on a piece of chain of six sites. The bonds low in energy due to V in (1) are shown in green, the ones high in energy
are shown in red. Clearly, configurations where the electron and the hole are close together are favored, suggesting binding. The excitation
spectrum of the EHM (1) in the CDW for U = 1.4V (b) and U = 1.7V (c). (d) The one-particle gap �1, the singlet gap �e, and the spin gap
�s , defined in (2), vs the on-site interaction U . The hopping t is set to 0.5V and the order of the deepCUT is 10.

equations are truncated in powers of the hopping t . The same
symmetries and simplification rules can be used as in Ref. [40].

In the CUT method, the Hamiltonian is mapped to an
effective one by a unitary transformation that depends on an
auxiliary parameter �. The transformed Hamiltonian satisfies
the flow equation [30–32]

∂�H (�) = [η(�),H (�)], (4)

where the anti-Hermitian operator η(�) is the generator of the
flow and determines the essence of the transformation. We
decompose the Hamiltonian into different parts, which create
and annihilate specific numbers of QPs [31,37]:

H (�) =
∑
n,m

Hn:m(�), (5)

where Hn:m creates n and annihilates m QPs. The reduced
generator [42]

ηp:x =
x∑

m=0

∑
n>m

(Hn:m − H.c.) (6)

allows us to decouple the first x QP sectors from higher sectors.
Using the reduced generator ηp:2 to decouple up to two

QP sectors in the EHM leads to a diverging flow because the
decoupling of the subspaces with two QPs is difficult if binding
phenomena prevail. Hence we used the ηp:1 generator instead
and implemented the diagonalization in the 2-QP subspace
[40]. This means that the off-diagonal terms linking the 2-QP
sector to 4 and higher QP sectors are neglected. This procedure
can be understood as a variational approximation for the
effective Hamiltonian derived from deepCUT. The neglected
terms would only increase the binding energies, thereby
enhancing the effects discussed in this work. Moreover, we
know from data in order 6 close to the transition where the
ηp:2 generator still converges that the obtained results are
quantitatively close to those obtained using the ηp:1 generator,
so that we conclude that the neglected off-diagonal elements
are of minor importance.

In Figs. 2(b) (U = 1.4V ) and 2(c) (U = 1.7V ), the ex-
citation spectrum of the EHM (1) is depicted in the CDW
phase. The neutral singlet (triplet) excitons are specified by
solid (dashed) lines. The solid areas indicate the electron-hole
continua constructed from the single fermion dispersion. A
rich excitation spectrum comprising two singlet and two
triplet neutral excitons is identified. We have not found any
electron-electron (hole-hole) bound state in the entire Brillouin
zone. The exciton 1 exists almost in the whole Brillouin zone,
while the exciton 2 is present only close to k = π/2 (the lattice
constant is set to unity). We ascribe the small wiggles close
to k = π/2 to the truncation in finite order. For U = 1.4V ,
the singlet exciton 1 takes its minimum energy at k = π .
This minimum is higher in energy than the minimum of the
triplet exciton 1 at k = 0. Increasing, however, the Hubbard
interaction to U = 1.7V , one discerns in Fig. 2(c) that the
lowest excited state is the singlet exciton 1 at k = π . It is this
singlet exciton that becomes soft at the transition to the BOW
upon increasing U further. Beyond the transition it forms a
macroscopic condensate, i.e., the BOW. The same behavior is
found in order 6 and 8. This is consistent with bosonization
[16–19] and QMC analysis [22,23], which suggest vanishing
of a neutral spinless gap at the CDW-to-BOW transition, but
it disagrees with DMRG [26], which proposes the vanishing
of the charge gap (2b).

According to the definitions in (2), the one-particle gap is
given by the lowest energy of the electron-hole continuum,
which occurs at k = 0 and k = π . The charge gap equals the
one-particle gap as no electron-electron bound state is found.
The singlet exciton 1 at k = π and the triplet exciton 1 at k = 0
define the singlet and the spin gap, respectively. This clarifies
the difference between the one-particle gap �1 and the singlet
gap �e. The dependences of the gaps on U are presented in
Fig. 2(d). For U � 1.57V the lowest excitation has S = 1,
while for U � 1.57V it has S = 0. The singlet gap vanishes at
the transition Uc1 � 1.91V while the one-particle gap remains
finite and larger than the spin gap. This modifies the currently
used scenario in which the charge gap is zero at a finite spin
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gap at the CDW-to-BOW transition [26]. Note that the results
in Fig. 2(d) are valid only up to the transition.

III. SINGLET EXCITON CONDENSATION
AND BOND-ORDER WAVE

Once the energy of an exciton falls below zero, its creation
lowers the total energy of the system. Hence, more and more
of them will be created, leading to a macroscopic occupation:
a condensate is formed. This continued exciton creation comes
to an end due to residual repulsive interactions between them.
Such interactions exist because only the composite object, the
exciton, behaves like a boson. The internal fermionic structure
prevents two excitons from coming too close to each other.

This physics is captured by a BCS-type mean-field theory
applied to the effective Hamiltonian systematically derived by
deepCUT beyond the CDW-to-BOW transition at U = Uc1.
Here, we show in this way that the condensation of the singlet
exciton at k = π leads to the BOW. Of course, the critical
fluctuations of the transition and thus its critical exponents are
not accounted for by the BCS theory, but our focus is here
on the driving mechanisms resulting from the fundamental
energies in the system. Critical behavior may be captured by
bosonization [16,17], analytical [18,20] or numerical [24–26]
renormalization approaches, or the quantum Monte Carlo
method [22,23].

To describe the BOW, we consider the effective Hamilto-
nian from the deepCUT up to the quartic level,

Heff = E0 +
∑
ij

	j ;if
†
j fi +

∑
klij

	kl;ij f
†
l f

†
k fifj , (7)

where the range of hopping and interaction processes in (7) is
limited by the order of the truncation. The quartic Hamiltonian
(7) captures the condensation of 2-QP bound states. In the BCS
analysis, we allow for finite expectation values 〈f †

i,σ f
†
i+m,σ 〉

and 〈f †
i,σ fi+n,σ 〉, where m and n are restricted to odd and

even numbers, respectively, due to the conservation of the
total charge. We also allow for broken translational symmetry
〈f †

i,σ f
†
i+m,σ 〉 	= 〈f †

i+1,σ f
†
i+m+1,σ 〉 to account for the possibility

of a BOW [40].
The bilinear Hamiltonian resulting from the application of

Wick’s theorem on (7) reads [40]

H = Ẽ0 +
∑
rσ

∑
m

�r
m(: f †

r,σ f
†
r+m,σ : +H.c.)

+
∑
rσ

(
t0 :f †

r,σ fr,σ : +
∑

n

tn(: f †
r,σ fr+n,σ : +H.c.)

)
,

(8)

where the Bogoliubov prefactor �r
m changes from an odd to

an even sublattice. We consider �r
m = �A

m for r even and
�r

m = �B
m for r odd. The prefactors Ẽ0, tn, �A

m, and �B
m

depend on the coefficients of the effective Hamiltonian (7) and
the bilinear expectation values, which are to be determined
self-consistently. The BCS Hamiltonian (8) is diagonalized in
momentum space by a Bogoliubov transformation. After some

standard calculations, one obtains the self-consistent equations

〈f †
r,σ fr+n,σ 〉 = 1

π

∫ π
2

0
dk

λ(k) − t(k)

λ(k)
cos(nk), (9a)

〈f †
r,σ f

†
r+m,σ 〉 = 1

π

∫ π
2

0

dk

λ(k)
(Im[�(k)] sin(mk)

− (−1)rRe[�(k)] cos(mk)). (9b)

We have defined the functions t(k), �(k), and λ(k) as

t(k) = t0 + 2
∑

n

tn cos(nk), (10a)

�(k)=
∑
m

((
�A

m − �B
m

)
cos(mk) − i

(
�A

m + �B
m

)
sin(mk)

)
,

(10b)

λ(k) =
√

t2(k) + |�(k)|2, (10c)

where n and m take positive even and positive odd values,
respectively.

The BCS analysis is exact in the entire CDW phase
where the quantum fluctuations are already captured by the
deepCUT. In the condensate phase, i.e., beyond Uc1, it is an
approximation as mentioned above. The energy differences are
rendered quite reliably as long as the system is not shifted too
far beyond the transition.

For U < Uc1, all expectation values are trivially zero
because the deepCUT has mapped the ground state of
the EHM (1) to the vacuum of QPs. Beyond Uc1, the
expectation values become finite. Two degenerate solu-
tions I and II are found corresponding to the two ways
to break the translational symmetry by bond order. We
obtain 〈f †

i,σ f
†
i+m,σ 〉 = −〈f †

i+1,σ f
†
i+m+1,σ 〉. The two solutions

are related via 〈f †
i,σ f

†
i+m,σ 〉I = −〈f †

i,σ f
†
i+m,σ 〉II. The natural

order parameter of the BOW is the difference between the
expectation values on adjacent NN bonds.

In Fig. 3(a), we depict the important expectation values of
the BCS mean-field solution as a function of U . We stress
that the value of U where the expectation values become finite
matches precisely the value where �e hits zero in Fig. 2(d).
The NN Bogoliubov expectation value displays a square-root
behavior as usual in mean field.

In Fig. 3(b), the NN Bogoliubov term is plotted for various
hopping parameters versus the Hubbard interaction U . From
this figure, one can read off the transition line CDW-to-BOW
phases, Uc1(t). We expect the CDW-to-BOW transition to
change from second order to first order below t � 0.32V

based on previous results [23,26]. From Fig. 3(b), we find
a second-order transition at least down to t = 0.24V . Below
t = 0.24V , even the reduced generator n : 1 diverges. The fact
that we cannot identify the tricritical point where the character
of the transition changes may result either from the truncation
of the effective Hamiltonian (7) to quartic terms or from
the approximate treatment on a mean-field level. Recall that
finding first-order transitions in Landau theory generically
requires the inclusion of hexatic terms.

Furthermore, it has been proposed by Hirsch that the
formation of MI “droplets” beyond a critical size in the CDW
phase is responsible for the first-order transition in the EHM
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FIG. 3. (a) The on-site occupation 〈f †
i,σ fi,σ 〉, the NN Bogoliubov

term 〈f †
i,σ f

†
i+1,σ 〉, and the next-nearest-neighbor (NNN) hopping

〈f †
i,σ fi+2,σ 〉 vs U for t = 0.5V . (b) The NN Bogoliubov term shifted

by (t − 0.24) × 0.05 along the y axis for clarity at various values
of the hopping t as a function of U . The order of the underlying
deepCUT is 10.

[21]. If this is the mechanism of the first-order transition, one
has to address multiparticle bound states, which is beyond
the scope of the present article. The proper description of
multiparticle bound states requires us to go beyond the quartic
level in (7) because the irreducible interactions of more than
two QPs matter.

IV. CONCLUSIONS AND OUTLOOK

Understanding unusual phases occurring between two more
standard phases is currently a very active topic. A nice example
are the phases occurring in fermionic lattice models such as
the ionic Hubbard model or the extended Hubbard model. In
the latter, the two interactions, namely the on-site interaction
and the nearest-neighbor interaction, are competing. Where
they compensate in one dimension, neither the Mott insulator
(MI) not the alternating charge-density wave (CDW) occurs,
but there is an alternating bond-order wave (BOW).

In the present work, we have shown that the occurrence of
the BOW can be understood from the CDW as the softening
of a singlet exciton at momentum k = π . Thus, the bound
state of an electron-hole pair represents an essential collective
mode. Upon passing from the CDW to the BOW, for instance
by increasing U , this mode condenses. Since the mode lives at
π , its condensate naturally displays an alternating order. It is
not accompanied by magnetic order because the condensing
mode does not carry any spin. The same scenario occurred in
the ionic Hubbard model [40].

Our finding naturally implies that the singlet exciton gap
�e is smaller than the one-particle gap �1, which reflects
the energy needed to create an electron and a hole excitation
independently, i.e., at large distance. For the spin gap �s the
relation �s � �1 holds as well because the spin excitation
also represents an exciton, but with S = 1. The differences
�1 − �e and �1 − �s are the binding energies of the S = 0
and the S = 1 exciton, respectively.

So far, we could not find the first-order transition for larger
interactions U,V corresponding to smaller hopping t . But we
presume that multiparticle terms need to be included to capture
this feature.

A particularly intriguing challenge is to extend the pre-
sented analysis to the two-dimensional extended Hubbard
model as the deepCUT method has no conceptual problem
with dimension and the BCS-mean-field theory is expected to
work better in higher dimension [9]. There, very little is known
about intermediate phases because many theoretical tools do
not work in higher dimensions or only at considerably larger
efforts. But the analogy to the ionic Hubbard model suggests
that a rich scenario of intermediate phases occurs, breaking first
discrete and then continuous symmetries upon increasing the
Hubbard interaction [9]. The possible spontaneous emergence
of the quantum anomalous Hall state and the quantum spin
Hall state on the honeycomb lattice due to competing first- and
second-neighbor interactions is another currently controversial
issue that calls for future studies [10–12,43,44].
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