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Manifestation of many-body interactions in the integer quantum Hall effect regime
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We use the self-consistent Hartree-Fock approximation for numerically addressing the integer quantum Hall
(IQH) regime in terms of many-body physics at higher Landau levels (LL). The results exhibit a strong tendency to
avoid the simultaneous existence of partly filled spin-up and spin-down LLs. Partly filled LLs appear as a mixture
of coexisting regions of full and empty LLs. We obtain edge stripes with approximately constant filling factor ν

close to half-odd filling at the boundaries between the regions of full and empty LLs, which we explain in terms of
the g-factor enhancement as a function of a locally varying ν across the compressible stripes. The many-particle
interactions follow a behavior as it would result from applying Hund’s rule for the occupation of the spin split LLs.
The screening of the disorder and edge potential appears significantly reduced as compared to screening based
on a Thomas-Fermi approximation. For addressing carrier transport, we use a nonequilibrium network model
(NNM) that handles the lateral distribution of the experimentally injected nonequilibrium chemical potentials μ.
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I. INTRODUCTION

The quantum Hall (QH) effect is a well-characterized
example of complex quantum behavior emerging, in a two-
dimensional (2D) solid-state system such as (mostly) doped
semiconductors, due to the interplay of magnetic confinement,
disorder, and many-body interactions [1]. A perpendicular
magnetic field B restricts the electronic charges to motion
along circular orbits in the 2D plane, eventually leading to
a Landau quantization when the cyclotron orbit 2πl2

c , with
magnetic length lc = √

h̄/eB, enters a fully phase-coherent
low-temperature regime, usually on microscopic length scales
of lc � 100 nm. Resistances and conductances are quantized
as Rxy = p

q
h
e2 and G = q

p
e2

h
with p = 1 and q integer for

the integer QH (IQH) and additionally p an integer for the
fractional QH (FHQ) effect [2]. The composite fermion picture
aims to explain the FQH effect via the many-body concept of
quasiparticles while in the IQH effect such interactions seem to
play less of a central role [3]. Longitudinal transport takes place
along quasi one-dimensional (1D) directed channels, mainly
along the edges of the sample, created at the intersections of the
local Landau levels (LLs) and the Fermi energy [4]. Disorder
stabilizes the plateaus in Rxy via electronic localization, while
Rxx �= 0 only between plateaus. Noninteracting models, such
as the Chalker-Coddington network model [5], can explain
much of this IQH phenomenology and are excellent in
characterizing the universal properties of plateau-to-plateau
transitions.

However, interactions cannot be completely ignored even
for IQH physics. The exchange interaction is known to lead to
an enhanced g factor for spin splitting [6–11]. Recent scanning
gate experiments, investigating edge stripes passing quantum
point contacts at high B [12], indicate modified screening
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behavior within the compressible stripes. Furthermore, a very
recent investigation of the local nature of compressibility in
the bulk of a IQH sample strongly challenges existing single-
particle theories [13].

A major step towards modeling electron-electron interac-
tions in the QH is due to Chklovskii, Shklovskii, and Glazman
(CSG) who considered screening via the electrostatics of the
edge channel region [14]. The key feature of their model is the
different screening capabilities of partly and fully filled LLs
that appear in alternating order towards the edge depletion
zone of the electronic system. CSG predict wide stripelike
regions of partly filled LLs that can get up to hundreds of
nanometers wide. These compressible stripes are separated
by usually much narrower in-compressible stripes consisting
of completely filled LLs. The essence of the CSG picture
is that the CSs screen out almost the entire slope of the
bare electrostatic potential near the sample boundaries and
thus generate terraces in the uprising edge potential while
the electron density n and the local filling factor ν change
continuously across the CS. Charge propagation is governed
by the CSs, although the CSG approach does not detail the
mechanism of the 1D quantized transport.

Additional many-body effects such as, e.g., exchange inter-
actions, are not included in the CSG approach. Nevertheless the
observed exchange-induced spin splitting of LLs [7,10,11,15]
can be modelled phenomenologically by introducing an
effective g-factor enhancement [10]. Theoretical descriptions
[7,16] of the enhancement predict a characteristic ν factor
dependence of almost vanishing enhanced g at even integer
ν and maximal enhancement at odd integer ν. Here we show,
based on a (converged) self-consistent Hartree-Fock approach
coupled with a nonequilibrium network to model transport in
a QH bar setup, how locally resolved terraces of completely
filled LLs are being populated when n and B change across QH
plateaus. While transport is in good qualitative and quantitative
agreement with IQH physics, our locally resolved ν(r) data
show clear distinctions to the CSG picture. We find intriguing
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features in the locally resolved ν with enhanced half-odd ν

values and coinciding with regions of charge transport. A
behavior reminiscent of Hund’s rule leads to the avoidance
of partially filled spin-up and spin-down LLs in the same
spatial region. Reinterpreting our Hartree-Fock results using
the language of enhanced g factors allows us to recover the
aforementioned phenomenology [17]. Here, we compare the
Hartree-Fock results to Hartree and noninteracting calcula-
tions and also present higher temperature effects.

II. METHODS

A. Self-consistent Hartree-Fock in Landau basis

In order to model a high-mobility heterostructure in the
QH regime, we consider a 2DES in the (x,y) plane subject
to a perpendicular magnetic field �B = B�ez described by the
Hamiltonian

Hσ
2DES = hσ + VC = ( �p − e �A)2

2m∗ + σg∗μBB

2

+VI(�r) + VC(�r,�r ′), (1)

where σ = ±1 is a spin degree of freedom, VI is a smooth
random potential modeling the effect of the electron-impurity
interaction, VC represents the electron-electron interaction
term, and m∗, g∗, and μB are the effective electron mass,
g factor, and Bohr magneton, respectively. In order to
avoid edge effects we impose a torus geometry of size
L × L onto the system [18]. The electron-impurity interaction
is modeled by an electrostatic potential due to a remote
impurity density separated from the plane of the 2DES
by a spacer layer of thickness d, as found for instance
in modulation-doped GaAs-GaAlAs heterojunctions. Within
the plane of the 2DES, this creates a random, spatially
correlated potential with a typical length scale d. We use NI

Gaussian-type “impurities,” randomly distributed at �rs , with
random strengths ws ∈ [−W,W ], and a fixed width d [19].
The areal density of impurities is given by nI = NI/L

2. The
Coulomb interaction potential will be parametrized by γ to
allow us to continually adjust the interaction strength; γ = 1
corresponds to the bare Coulomb interaction. For the system’s
many-body state, |�〉, we use the usual ansatz [20,21] of an
antisymmetrized product of single particle wave functions,
which we choose as a linear combination of Landau states
[19] ψσ

α (�r) = ∑NLL−1
n=0

∑Nφ−1
k=0

�Cα,σ
n,k χn,k(�r), with NLL being the

number of LLs and the periodic Landau functions χn,k(�r).
The number of flux quanta piercing the 2DES is given by
Nφ = L2/2πl2

c , yielding a total number of M = NLLNφ states
per spin direction. The filling of the system is characterized by
the filling factor ν = Ne/Nφ , with Ne the number of electrons
in the system and areal density ne = Ne/L

2. In terms of Ne,↑
spin-up and Ne,↑ spin-down electrons, we can hence write
ν = ν↑ + ν↓ and Ne = Ne,↑ + Ne,↓. The total LL density is
given by n0 = eB/h and lc = √

h̄/eB the magnetic length.
A variational minimization of 〈�|H2DES|�〉 with respect
to the coefficients �Cα,σ

n,k [20–23] yields the self-consistent
Hartree-Fock-Roothaan equation [24], Hσ Cσ = Cσ Eσ , with
Cσ = ( �Cσ

1 , . . . , �Cσ
M ) the matrix of eigenvectors and Eσ =

diag(εσ
1 ,...,εσ

M ) the diagonal matrix of the eigenvalues εσ
1 �

εσ
2 � · · · � εσ

M . Following the Aufbau principle [25], the

density matrix is constructed starting from the energetically
lowest lying state up to the Fermi level εF. In our calculations,
we keep Ne fixed and compute εF as the energy of the
highest occupied state afterwards. We start the self-consistency
process using the solution of the noninteracting Hamiltonian
hσ = 〈nk|hσ |n′k′〉 as initial guess for the coefficients Cσ .
From this solution, C(0), we construct the density and Fock
matrices and finally the full Hamiltonian [19]. Diagonalization
yields an improved solution, C(1). The process continues until
convergence of the density matrix has been achieved [19].
In all results present here, convergence of the HF scheme is
computed by a modified Broyden mixing [26–28] and achieved
when the accuracy ε � 10−6.

B. The nonequilibrium network model (NNM)

The NNM describes the spatial distribution of the experi-
mentally injected nonequilibrium chemical potentials, μ(x,y),
of 2D electron systems in the high magnetic field regime [29].
Differences to the equilibrium CCN [5] and similarities with
the models proposed in Refs. [30,31] have been discussed
previously [29,32]. In the NNM, the local backscattering
function P is given as

P (ELL; EF,�,U ) = exp

[
−�2(EF − ELL)

eU
n0

]
, (2)

where ELL is the saddle energy that corresponds to the LL
center, EF represents the Fermi energy, and � and U are
connected to the Taylor expansion of the involved SP: � is the
period and U the amplitude of a 2D cosine potential, which
has the same second order Taylor expansion like the actual
saddle potentials. This version of a QH network has been
demonstrated to be quite successful for a variety of transport
simulations of realistic sample structures and experimental
setups [28,33,34]. The backscattering function can be rewritten
using the filling factor formulation

P (ν; �,�,U ) = exp

[
−�

�2√π
(
ν − �ν − 1

2

)
eU

n0

]
, (3)

which allows seamless integration to the self-consistent
Hartree-Fock approach of Sec. II A (here �ν denotes the
integer value of ν). We note that Eq. (3) can be derived from
Eq. (2) by assuming a Gaussian shaped DOS of width �.
Due to the randomness of the potential fluctuations � will
be significantly larger than eU , which represents a typical
single saddle. If estimating � as ≈3eU and � ≈ 100 nm
as the order of magnitude for the mean fluctuation period,
for moderate B ≈ 3 T, the argument of the exponential will
become ≈−(ν − �ν − 0.5)/0.025 [35]. When taking into
account Thomas-Fermi screening on the basis of a simple
Hartree interaction, Eq. (3) is equivalent to Eq. (2). However,
if aiming at many body interactions the Eqs. (2) and (3) are no
longer equivalent, because exchange effects are not captured
by the Hartree potential in Eq. (2), while they are well included
in the local carrier density profile and local ν that is used in
Eq. (3).

For the application of the NNM to transport in a many
particle quantum system it is important that no local quantities
such as a local conductivity or local Ohm’s law are used by the
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FIG. 1. Bare potential for a Hall bar of size 600 × 400 nm2. An
edge confinement potential is created by repulsive Gaussian peaks of
1 V amplitude at the corners and in the middle of the longitudinal
sides, leaving openings for current contacts at the ends (long gray
bars) and voltage probes (blue, green, yellow, and red cuboids
labeled UL, UR, DL, DR, resp.) along the sample. An additional
potential disorder of maximally ±10 mV is generated by randomly
distributed Gaussians (with NI = 200, d = 40 nm, and ws = 4 mV).
This disorder is coded onto the surface of the total potential as small
height fluctuations. The bottom plane indicates the depletion regions
in light color while the electron-rich area is dark.

NNM, because that would imply the (forbidden) possibility to
establish the path of the carriers while moving from one current
contact to the next. Currents are calculated at the designated
current contacts only as a post-processing step, that is, after
obtaining the self consistent solution. Potential differences
are taken from the voltage probes, which can be defined in
principle at arbitrarily chosen locations of the network. Then
resistances, such as Hall resistance and longitudinal resistance,
are computed depending on the arrangement of the chosen
contact pairs as in real experiments.

III. RESULTS

Figure 1 shows the model potential of a Hall bar structure of
total size of 600 × 400 nm2 that gets filled with 480 electrons,
corresponding to a nominal average carrier density of n =
2 × 1011 cm−2. We note that this density corresponds to an
effective density of ≈2.5 × 1011 cm−2 in the “bulk” region
of the structured Hall sample of Fig. 1. Correspondingly, the
transport data presented in the following appears shifted from
n according to the effective density.

The self-consistent solution of the Hartree-Fock calculation
of ν(x,y) for different B and n is sampled at 186 × 126 spatial
positions, i.e., with 3.226 nm resolution in longitudinal (x) and
3.175 nm in transversal (y) direction. For the range of B values
considered, this allows good resolution of structures below lc,
which ranges from lc ≈ 14 nm at B = 3.3 T to lc ≈ 17 nm at
B = 2.25 T. The ν(x,y) values are then transferred to the NNM
which calculates the self-consistent lateral distribution of the
experimentally injected nonequilibrium electrochemical po-
tentials μ(x,y). We emphasize that the resulting μ is assumed
not to act back on ν, which otherwise would introduce an
additional nested self-consistence loop. Physically, this means
that our transport calculations represent the linear response
at vanishing small excitation close to thermal equilibrium, as
is the case also in most of the transport experiments in the
quantum Hall regime far from the QH breakdown regime.

A. Transport

In Ref. [17], we have shown that the B dependences of
the longitudinal resistance, Rxx , and the Hall resistance, Rxy ,
exhibit the expected Rxx peaks in the transition regime between
QH plateaus and Hall plateaus at zero Rxx . In the transition
regime between plateaus (cp. Fig. 2 of Ref. [17]) we observe
strong resistance fluctuations in both, as also expected for
QH structures of mesoscopic size [36]. These fluctuations are
specific to the chosen quenched disorder realization. In Fig. 2,
we show additionally the n dependence of the transport data,
obtained quite similar to the B-field dependence described
above. The two-point conductance, Gxx , is shown in Fig. 2(a)
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FIG. 2. (a) Two-point conductance G versus carrier density n at fixed magnetic field of B = 3 T. The horizontal dotted lines indicate integer
multiples of e2/h. (b) Rxx and Rxy versus n at fixed B = 3 T. The open and filled symbols represent the data of different UL/UR/DL/DR
contact pairs according to Fig. 1. Horizontal dotted lines indicate h/e2m for m = 1,2,3,4. The vertical dashed lines indicate the three density
values of n = 1.9,2.0,2.15 (×1011 cm−2).
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FIG. 3. Spatial filling factor distribution of ν↑ for the highest partly filled LL close to the ν = 3 → 4 plateau transition at T = 1K (a) with
B = 3 T and n = 2 × 1011 cm−2 of the carrier density sweep in Fig. 2 and also the magnetic field sweep in Fig. 2 of Ref. [17]; (b) corresponds
to the beginning of the ν = 4 → 3 transition at B = 2.91 T while (c) is at the end of the transition at B = 3.11 T for the magnetic field sweep
[17]. Panel (d) corresponds to the carrier density sweep in Fig. 2 with n = 1.9 × 1011 cm−2 while (e) is at n = 2.15 × 1011 cm−2. Last, (f) has
B = 3 T and n = 2 × 1011 cm−2 as in (a) but at temperature T ≈ 20 K (2 meV). The colors represent the filling factor, where blue means the
first LL for ν↑ = 0 → 1, green the second LL for ν↑ = 1 → 2, and red the third. The filling factor range close to ν↑ = 1.5 is highlighted in
light gray in order to identify the stripes appearing close to the half filled top LL. Corresponding results for ν↓ are shown in Fig. S2 [37].

while Fig. 2(b) indicates Rxx and Rxy for two different contact
pairs. The plateau transitions are again accompanied by strong
fluctuations, which are clearly visible in the resistance data.
The over- and undershoots in the Gxx data can be understood
to result from inhomogeneities due to the long-range disorder
at mesoscopic size of the electron system. These become
most influential in the vicinity of the plateau transitions. We
emphasize that, overall, the quantization of the transport data
is very well resolved and follows the expected e2/h multiples
(and inverses thereof). For comparison, in Fig. S1 of the
supplemental [37], we show how this picture is modified when
instead of the full Hartree-Fock calculation, we use either
just the Hartree or, indeed, the single-particle approach while
keeping all other parameters unchanged. It is interesting to note
that the full Hartree-Fock calculation seems to lead to more
stable plateaus. Upon averaging over disorder realizations and
increasing the system size, the mesoscopic fluctuations in the
vicinity of the plateau transitions will smoothen. However, we
note that the scaling properties of the transitions are influenced
by the choice of the local backscattering function P ; this

is turn might mask the true universal critical behavior [38],
particularly for small system sizes.

B. Spatial distribution of ν

Figure 3 shows the lateral ν↑ distribution of the top
spin-up LL during the ν = 4 → 3 plateau transition. The
spin-up level is higher in energy than the spin-down level
and therefore depletion from ν = 4 → 3 happens within the
second spin-up LL only, while for spin-down we have filling
factor ν↓ = 2 during the whole ν = 4 → 3 plateau transition
(cp. supplemental Fig. S2 [37]). Figure 3(a) is taken at B = 3
T and shows the situation in right at the transition. The figure
sequence (b) → (a) → (c) in Fig. 3 corresponds to a change
in B from 2.91 T to 3.11 T. We see that at B = 2.91 T the
initially completely filled second spin-up LL starts to break up
into subregions of filling factor ν↑ = 2, while there appear also
subregions of filling factor ν↑ = 1. This gives an average total
filling factor between ν = 4 and ν = 3 [Fig. 3(b)]. At B = 3 T
the clusters for ν↑ = 2 have shrunk further [see Fig. 3(a)] and
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FIG. 4. Spatial distribution of nonequilibrium chemical potential μ (colors) shown on top of the corresponding ν↑ distribution (gray heights)
as in Fig. 3. The colors represent μ in arbitrary units with overall clockwise propagating potential reducing from the high potential supplied
to the current contact on the left from red to orange and yellow while the low potential is supplied to the current contact on the right and
is indicated as increasing from blue to cyan to green. Panels (a), (b), . . . , (f) have the same parameters as in Fig. 3, such that (b), (a), and
(c) show a change of B field from 2.91 T to 3 T and 3.11 T, resp., at constant carrier density n = 2 × 1011 cm−2 while in (d), (a), and (e) n

changes from 1.9 × 1011 cm−2 to 2 × 1011 cm−2 and on to 2.15 × 1011 cm−2, resp., at constant B = 3 T. Panel (f) corresponds to B = 3 T and
n = 2 × 1011 cm−2 as in (a) but at temperature T ≈ 20 K (2 meV). Corresponding results for ν↓ are shown in Fig. S3 [37].

finally at B = 3.11 T they just represent isolated droplets,
while the region of filling factor ν↑ = 1 already dominates
[see Fig. 3(c)].

The behavior is quite similar for the change of density
shown in the sequence (d) → (a) → (e) in Fig. 3 but of
course in the opposite direction. At low density [Fig. 3(d)] the
region for ν↑ = 1 dominates and the clusters of ν↑ = 2 are just
isolated droplets. In the middle of the plateau transition, where
the regimes of the B field sweep and the density sweep cross
each other at ν↑ ≈ 1.5 for the spin-up electrons (spin-down
electrons remain at ν↓ = 2, which gives in total ν = 3.5), we
find that about half of the area is covered by the ν↑ = 1 and
half by the ν↑ = 2 clusters. At larger carrier density the ν =
3 → 4 plateau transition is almost completed, exhibiting a
domination of the area covered by the ν↑ = 2 region that starts
to build a completely filled ν↑ = 2 spin-up LL [Fig. 3(e)].
This looks quite similar to the ν distribution at the beginning
of the magnetic field sweep in Fig. 3(b). In addition, at the

boundaries between clusters of ν↑ = 2 and ν↑ = 1 there appear
terraces of almost constant filling factor close to ν↑ = 1.5 [see
Figs. 3(a)–3(e)].

C. Spatial distribution of μ

In Fig. 4 we show the lateral distribution of μ for B

and n values identical to the ones used in Fig. 3. The color
coded values of μ are drawn onto the surfaces of the lateral ν

distribution. It is clearly visible that in the bulk region, the
nonequilibrium potential μ lies mainly along the half-odd
integer features, i.e., ν↑ = 3/2. The transmitting channels of
the lower LLs appear directly at or close to the edge at the
boundaries of the electron system. If the potentials mix at
some locations this generates dissipation as is the case in
the transition regime of the IQHE. While this happens only
weakly in Figs. 4(b), 4(c) and Figs. 4(d), 4(e) this mixing
appears to be quite strong in Fig. 4(a), which represents a case
close to the maximum of the Rxx peak in Fig. 2(b). We also
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FIG. 5. Local ν↑ distribution (a) based on the interaction-free single particle approximation (b) the Hartree approximation for n =
2 × 1011 cm−2 and B = 3.0 T, which corresponds to the ν = 3 → 4 plateau transition of Fig. 2. Panel (c) shows the same Hartree approximation
as (b) but without color highlighting of the half-odd integer filling. The colors represent ν↑ as in Fig. 3 with light blue and yellow denoting
LLs 4 and 5. The filling factor range close to ν↑ = half-odd integer is highlighted in light gray from LL2 onwards in order to identify possible
stripes appearing close to the half filled top LL. Panel (c) shows the the same Hartree approximation as (b) but without color highlighting the
half-off integer filling.

observe dissipation at the voltage contacts. This is most clearly
pronounced in Fig. 4(a). We note that the channels appear to
merge into the metallic contact region of the voltage probes
and reappear with changed magnitude.

D. Local ν and μ at T ≈ 20 K

The ν and μ distributions as well as the transport data
shown thus far have been computed at temperature T = 1 K. In
Figs. 3(f) and 4(f), we have repeated the calculations, but now
for T = 2 meV (≈20 K). As can be seen, for ν↑, the previously
well-defined regions of constant filling factors dissolve into
a much smoother density profile. The features at half-odd
integer ν seem to be missing entirely. Correspondingly, the
μ distribution appears smoother as well and has lost some
structure details.

E. Hartree and single-particle calculation

Thus far we have implied that the results shown in Figs. 3
and 4 (as well as the supplemental Figs. S2 and S3 [37]) are
characteristic of the exchange-physics inherent in the Hartree-
Fock interaction. In order to validate that hypothesis, we show
in Fig. 5 for B = 3 and n = 2 × 10−11 cm2 the ν↑ distribution
for (a) a noninteracting and (b) a purely Hartree-interacting
system (cp. also Fig. S5 for ν↓ and μ in the Supplemental
Material [37]). For the interaction-free case, we find that the
carriers are much confined in the center of the bulk region.
With Hartree interaction, the carriers spread out laterally much
more while the local ν↑ at fixed Ne in the center reduces
as compared to the interaction-free model. This is easily
understood from effective screening of the edge potential in
the Hartree calculation. We note that neither the noninteracting
nor the Hartree calculation produces any of the half-odd ν↑
features in Fig. 3. The Hartree results for ν↑ retain some of
the overall features of the Hartree-Fock behavior for ν↑, but at
half-odd ν↑, they show only a smooth rise in agreement with
the Thomas-Fermi screening arguments of CSG. This lack of
half-odd integer features is particularly visible when replotting
Fig. 5(b) without any half-odd highlighting as in Fig. 5(c). It
is also worthwhile to note that Fig. 5(b), although different in
local quantitative detail, appears qualitatively similarly smooth

as Fig. 3(f). The local details on length scales of lc disappear
when exchange is ignored or T raised. We recall that a similar
comparison for the transport data was already presented in
Ref. [29].

IV. DISCUSSION

A. Differences to CSG

From the n and B sequences in Fig. 3 one can see how the
population/depopulation of the spin-up LL works. Instead of
getting an overall increase or decrease of the carrier density,
we get shrinking or growing clusters of fully filled spin-up LL
at ν↑ = 2 and growing or shrinking areas of depleted spin-up
LL at ν↑ = 1. On average this results in a continuous change
of the spatially averaged ν↑. Therefore a combined ν↑ = 1.5
is made up by half of the area taken up by clusters of ν↑ = 1
and the other half taken up by ν↑ = 2. The same happens
subsequently if the spin-down LL gets depopulated at the
transition ν = 3 → 2 (not shown), which stays at ν↓ = 2 while
populating/depopulating the top spin-up LL. This behavior
is different from the CSG model and suggests also that
even a half-filled LL may provide only poor screening when
compared to CSG’s Thomas-Fermi-like continuous n variation
across the sample area. In addition, in our Hartree-Fock
approach, we observe in Fig. 4 terraces of almost constant
filling factor close to ν↑ = 1.5 at the boundaries between
clusters of ν↑ = 2 and ν↑ = 1 which create transmitting
channels in the NNM. The width of the half-odd integer
stripes appears to be of the order of lc. We furthermore find
two parallel stripes of width lc at the boundaries between
clusters ν↑ = 3 and ν↑ = 2 (cp. supplemental Fig. S4 [37]).
This suggests that the origin of the stripes lies in the spatial
dependence of Landau states similar, perhaps, to what is
observed for the local density of states [39]. The cluster
boundaries and the boundaries of the fully filled LLs at the
sample edge are the only regions where the many-particle
electron system can exchange carriers close to equilibrium
as in low excitation magnetotransport experiments. As a
consequence, these boundaries are experimentally observed
as transport channels [29]. While CSG suggest narrow, so-
called incompressible, stripes of fully filled LLs between the
compressible stripes, in our case almost the whole space is
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FIG. 6. Energy spectrum (�, �) and filling (shaded lines) for (a) Hartree-Fock and (b) Hartree interaction at filling factor ν = 0.35 and
B = 2.36 T. Spin up and down associations are as indicated in the legends. Only every fifth symbol is shown for the energy spectrum.

divided into clusters of empty or full spin-up or spin-down
LLs. If these clusters finally merge they add or remove an edge
stripe to the sample boundary, which completes the plateau
transition from G = 3e2/h ↔ 4e2/h.

B. Features at half-odd ν and an effective Hund’s rule

An intriguing result is the appearance of half-odd integer
terraces in the density profiles of the Hartree-Fock calculation.
This is clearly different to the CSG model because they
replace the terraces in the electrostatic edge potential. The
other observation is that the electrons condense to droplets
of either fully filled or empty spin-up or spin-down LLs
which in higher LLs are separated by the half-odd integer
terraces. This suggests that the electron system tries to avoid
as much as possible the existence of partly filled spin-up and
spin-down LLs in the same spatial region. This is similar to
a Hund’s rule behavior. Simply speaking, the higher spin-up
states get pushed up in energy in order to keep on adding,
as long as possible, further electrons with parallel spin to
the lower spin-down state. In this way the occupation of
the upper spin-up level gets delayed as compared to an
occupation that follows just the energy of the pure Zeeman
splitting, even if the cluster size already extends into regions
of classically forbidden elevated potentials. This is effectively
an enhancement of the spin-splitting energy and thus an
effective g-factor enhancement. The exchange-enhanced g

factor appears as a built-in effect without any need to introduce
it by hand or even needing to think about its existence at all.
However, in order to compare with single particle models and
discuss the results in terms of single electrons like done in
context with the CSG approach, we also have to introduce
a g factor, which appears to be considerably enhanced as
compared to the bare electronic g factor in order to meet the
obtained results.

C. Exchange-enhanced g factor

Let us now discuss our findings using the language of an
enhanced g factor. In this way, we can make contact with
the single-particle picture by including the majority of the
many-body physics in the renormalized g. We have studied

the energy splitting �E = g gspinμBB where μB denotes
the Bohr magneton, gspin ≈ 2 is the bare electron g factor,
and g its enhancement factor, respectively. This numerical
study has been done for a 500 × 500 nm2 test structure with a
weak disorder potential of about ±1.5 meV at B = 2.36 T at
different filling factors ranging from ν = 0 to 4.3. Averaging
over �E between the occupied spin-down and the unoccupied
spin-up states of Fig. 6(a), we can compute g as shown in
Fig. 7. We can clearly see that the occupied spin-down states
and the empty spin-up states get pushed apart in energy. We
find that there is indeed a considerable enhancement with
g � 1 at odd ν while the enhancement drops for even ν.
The oscillatory behavior of the enhanced g factor is already
well known from the literature [8,9] and had been recently
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FIG. 7. Plot of the g-enhancement factor (alternatively �E) as
a function of n (and ν). The open (blue ◦) circles correspond to the
Hartree-Fock calculation and denote the mean and error bars indicate
the standard error averaging about at most 100 energy differences
close to the Fermi energy. Crosses (green ×) show corresponding
results for the Hartree calculation. The (blue) dashed and (green)
solid lines are a guide to the eye only. In both cases, B = 2.36 T as
in Fig. 6.
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FIG. 8. (a) Schematic sketch of exchange initiated modifications for the CSG model: The screened edge potential according to CSG for
spin-up is shown in dashed blue and for spin-down in dashed red; the bold lines indicate the exchange driven level shift for spin-up in blue
and spin-down in red. The blue shaded bar indicates the CS of the partly filled spin-up level and the red shaded bar indicates the CS of the
partly filled spin-down level, while the light shaded area indicates the original width due to CSG, while the narrow dark shaded area indicates
the width after carrier redistribution due to exchange effects. The dotted lines schematically indicate the final spin splitting after self consistent
carrier redistribution. (b) Schematic spin splitting at even filling factor, the arrows indicate the tendency of exchange driven increase of Zeeman
energy while the filling factor changes from even towards odd ν = 4 → 3 or ν = 2 → 1 that manifests also in the opening up of the spin
splitting indicated by the bold lines in (a) while crossing a blue shaded CS; (c) schematic spin splitting at odd filling factor, the arrows indicate
the tendency of decreasing the exchange driven Zeeman energy if the filling factor changes from odd towards even ν = 3 → 2 or ν = 1 → 0
that manifests also in the closing of the spin splitting indicated by the bold lines in (a) while crossing a red shaded CS.

investigated experimentally as well as theoretically [10]. In the
paper of Nomura et al. they find the same oscillatory behavior.
However, their investigation was done at B < 1 T and hence
they observe a lower g enhancement. In our simulations it
seems that the mechanism driving the creation of the half-odd
integer stripes gets weaker at B � 2 T. Figure 6(b) details the
situation for a purely Hartree-interacting system and, as shown
in Fig. 7, the “enhancement” for this situation is g ≈ 1.

D. Dynamic screening in the IQH regime

In Fig. 8 we attempt to explain our results by considering
a locally varying exchange-enhanced g factor. In Fig. 8(a) the
dashed lines schematically represent the edge potentials due
to CSG. These resemble terraces at the position of the CS as
indicated by the lightly shaded vertical bars. The inner stripe
is of spin-up and the outer stripe of spin-down type in the
chosen B field direction. The red and blue solid lines indicate
how level energies should be modified if adding the effect of
g-factor enhancement due to the changing local ν. Starting
at the inner (right) boundary of the inner spin-up stripe, the
local ν value is an even integer, resulting in g enhancement
as indicated in Fig. 8(b). When crossing the CS towards its
left edge, we approach an odd integer local ν, which leads
to maximal g enhancement. Without carrier rearrangement
within the CS, the spin-up LL would get pushed up relative to
the spin-down LL as indicated by the blue bold line in Fig. 8(a).
Of course this cannot happen without loosing immediately all
carriers in the stripe and subsequent carrier rearrangement.

Consequently we have an effective edge potential as the sum
of the electrostatic edge potential according to CSG and the
varying exchange-enhanced spin splitting. Taken together,
this determines the carrier distribution: The locally varying
spin splitting strongly counteracts the pure electrostatic CSG
screening and therefore the screening of the electrostatic
part of the potential is suppressed to some extent. The
uprising effective edge potential (blue bold line) creates
an almost steplike change of the carrier distribution to the
next lower odd-integer filling factor, leaving only a narrow
feature of the order of the magnetic length. The jump in
ν causes a self-consistently induced jump of the effective
potential as indicated schematically by the blue dotted line.
This in turn strongly reduces the degree of freedom for the
carrier distribution, restricting the effective screening of the
electrostatic potential.

When we next cross the spin-down stripe, the cycle starts
over again, but at odd ν with large spin splitting on the right
of the red-shaded CS. Large spin splitting implies a low spin-
down level relative to the spin-up level as indicated in Fig. 8(c).
The levels get pushed towards each other while approaching
the next even ν at the left side of the spin-down stripe. In this
way the blue and red bold lines come close together again at
the left boundary while crossing the spin-down stripe as shown
in Fig. 8(a). The up-rising spin-down level (red solid line)
abruptly looses all carriers and ν jumps to the next lower, even
integer filling. Again a steplike change in the effective potential
is initiated and the narrow half-odd integer feature remains at
this step as before. This interpretation is consistent with the
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observed half-odd integer terraces in ν at the boundaries for
spin-up and spin-down clusters.

We note that an experimental indication of such a sup-
pression of screening was recently reported by Pascher et al.
[12]. They investigated the screening of edge stripes passing
a quantum point contact by scanning gate microscopy and
found that their experimental results are not well described by
Thomas-Fermi screening.

V. SUMMARY AND OUTLOOK

We employ a self-consistent Hartree-Fock approximation
in higher LLs, studying screening and the lateral carrier distri-
bution. Transport has been modeled by using a nonequilibrium
network model [35]. We find that, in contradistinction to
CSG’s Thomas-Fermi approach [14], partly filled LLs appear
as a mixture of clusters of locally full and locally empty
LLs. Stripes of nearly constant half-odd filling emerge at
the boundaries of these clusters at higher LLs. We identify
this behavior as a consequence of a ν-dependent exchange-
enhanced g factor. The existence of an exchange-enhanced
g factor seems incompatible with a lateral smoothly varying
carrier density across CSs of a width that is clearly larger
than the width of the incompressible stripes as obtained by
models based on Thomas-Fermi screening alone. These results
demonstrate that the IQH regime is dominated by many-
particle physics that seems to acts towards re-establishing
the behavior expected for noninteracting single electrons—as
often assumed in early percolation-type models of the IQH
effect [4,5].

We note that an extension of the CSG model for spin-split
LLs was considered in Ref. [15] in which also possible effects
of the exchange interaction were discussed. A local filling fac-
tor dependence for the case of high-mobility heterostructures
at moderate densities was assumed to lead to “narrow strips

of the compressible liquid, where ν(r) is half-integer, remain
metallic” [15]. This is very reminiscent of the half-odd integer
features discussed, e.g., in Sec. IV B. However, the “0”-“2” to
“0”-“1”-“2” transition described for the edge states in Ref. [15]
(cp. Figs. 4 and 5 of Ref. [15]) appears at variation with the
local Hund’s rule behavior found in our work. Rather, the
schematic picture advocated in Ref. [15] is compatible with
our results for the self-consistent Hartree calculations [cp.
Fig. 5(c) and Fig. S5(d)]. Nevertheless, this does not imply
a nonresolvable contradiction with the CSG model and its
extension. Our results are valid in relatively small systems of
about half a micron width. The CSG approach applies on larger
length scales for stripes of hundreds of nanometer width, and it
appears likely that the mesoscopic regime we are investigating
here is already beyond the validity of the CSG approach.
Perhaps the varying cluster numbers and sizes within our
model average to a quasicontinuously varying carrier density
for laterally much larger structures than the typical cluster
size. Taken literally, this would imply that the smooth CSs
according to CSG, may have an internal clusterlike structure,
which divides the whole smoothly looking CS into a dense
network of transmitting half-odd integer stripes, separating
clusters of full and empty LLs. Our model could therefore
be interpreted as the internal (fine) structure of the almost
macroscopically wide CSs of CSG.
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