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We classify all possible gap-closing procedures which can be achieved in two-dimensional time-reversal
invariant noncentrosymmetric systems. For exhaustive classification, we examine the space-group symmetries
of all 49 layer groups lacking inversion, taking into account spin-orbit coupling. Although a direct transition
between two insulators is generally predicted to occur when a band crossing happens at a general point in the
Brillouin zone, we find that a variety of stable semimetal phases with point or line nodes can also arise due to the
band crossing in the presence of additional crystalline symmetries. Through our theoretical study, we provide
the complete list of nodal semimetals created by a band inversion in two-dimensional noncentrosymmetric
systems with time-reversal invariance. The transition from an insulator to a nodal semimetal can be grouped into
three classes depending on the crystalline symmetry. First, in systems with a twofold rotation about the z axis
(normal to the system), a band inversion at a generic point generates a two-dimensional Weyl semimetal with
point nodes. Second, when the band crossing happens on the line invariant under a twofold rotation (mirror)
symmetry with the rotation (normal) axis lying in the two-dimensional plane, a Weyl semimetal with point nodes
can also be obtained. Finally, when the system has a mirror symmetry about the plane embracing the whole
system, a semimetal with nodal lines can be created. Applying our theoretical framework, we identify various
two-dimensional materials as candidate systems in which stable nodal semimetal phases can be induced via
doping, applying electric field, or strain engineering, etc.
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I. INTRODUCTION

Recent discovery of three-dimensional (3D) Dirac [1–12]
and Weyl [13–21] fermions in condensed matter has triggered
intensive research in semimetals with point or line nodes,
dubbed nodal semimetals (NSM). Broadly, NSMs can be
grouped into two classes. In the first class, the degeneracy at
the band crossing point/line is enforced by the nonsymmorphic
space-group symmetry of the system. In this class of NSMs,
a certain minimal number of bands are required to stick
together. Thus the presence of nodal points/lines at the Fermi
level can be guaranteed by the electron filling [22]. On the
other hand, in the second class of NSMs, the gap-closing
points/lines are created via a band inversion, that is, through
a transition from an insulator to a semimetal via an accidental
band crossing (ABC). In this class of NSMs, the location of
nodal points/lines in the momentum space varies depending
on external parameters such as pressure, chemical doping,
etc. Here each nodal point/line carries a quantized topological
charge, which guarantees the stability of NSMs [6,8,23–25].
In the case of semimetals with point nodes belonging to this
class, a pair-creation/pair-annihilation of nodal points can even
mediate topological quantum phase transitions between two
insulators [5,24,25].

In contrast to 3D, it is generally more difficult to have
stable NSMs in two dimensions (2D) due to the lower
dimensionality. For instance, even the well-known Dirac
fermions in graphene become unstable, and thus gapped,
once spin-orbit coupling (SOC) is included [26,27]. Recently,
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several interesting ideas have been proposed to stabilize 2D
NSMs by using nonsymmorphic crystalline symmetries, thus
leading to symmetry-enforced NSMs [28,29]. However, there
has been no systematic study yet on the other class of 2D
NSMs created via a band inversion. Considering that the band
gap of 2D systems is easier to control than that of 3D systems
via gating or strain engineering, it is essential to understand the
outcome of a band inversion and the nature of resulting NSMs
for future device application as well as for its fundamental
physical aspect.

In this paper, we classify all possible ABC events in
time-reversal invariant 2D noncentrosymmetric systems. For
exhaustive investigation of ABCs and the resultant semimetals,
we use a group theoretical approach by considering all possible
layer groups (LGs) with broken inversion symmetry including
SOC. We have found that there are three different types of
ABC events as summarized in Fig. 1. In the first type, there is
a direct transition between two insulators. In the second type, a
band inversion creates a 2D Weyl semimetal with point nodes.
We will call such twofold degenerate point nodes with linear
dispersion “Weyl” points (WPs) instead of two-dimensional
“Dirac” points, which we reserve for fourfold degenerate point
nodes with linear dispersion. Finally, in the third type, a nodal
line semimetal is created by a band inversion. At the critical
point between an insulator and its neighboring phase, one can
find characteristic fermionic excitations which lead to novel
quantum critical behaviors. We propose various 2D materials
in which our theory can be tested by engineering the electronic
band structure.

The rest of this paper is organized as follows. In Sec. II we
give a complete classification of a gap-closing pattern, which is
summarized in Table I, and the k·p Hamiltonian at the quantum
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FIG. 1. (a) Possible phase diagrams achieved by an ABC in time-
reversal invariant 2D noncentrosymmetric systems. (b) An insulator-
to-insulator transition when there is no additional symmetry at the
gap-closing point. (c) Transition from an insulator to a semimetal
with point nodes occurring when the system has either a twofold
rotation C2x,2y,2z or a mirror Mx,y . (d) Transition from an insulator to
a semimetal with line nodes occurring when the system has a mirror
Mz.

critical point. In Sec. III, we briefly discuss the topological
charges that protect the nodal semimetallic phases in Sec. II. In
Sec. IV, we explain how our classification scheme can be used,
which is followed by discussion in Sec. V. In Appendix A, we
give a detailed derivation of the k·p Hamiltonian presented
in Sec. II. In Appendix B, we discuss how consideration of
time-reversal symmetry affects degeneracy of bands, which
must be known for the derivation of the classification scheme
in Sec. II. In Appendix C, we discuss the topological phase
transition that may be expected in black phosphorous in the
perspective of our theory. Finally, in Appendix D, we explain
the labels used for the high-symmetry points and lines in the
two-dimensional Brillouin zones.

II. CLASSIFICATION OF ABC EVENTS IN
LAYER GROUPS

Our strategy for classifying ABC events is as follows. In
the absence of inversion symmetry, energy bands are generally
nondegenerate at a generic momentum k. Thus, the relevant
symmetry group at k, the k group hereafter, would have a
one-dimensional irreducible representation (1D irrep). In such
cases, the ABC at k0 between two nondegenerate bands can
be described by a 2 × 2 Hamiltonian,

H (q,m) = f0(q,m) +
∑

i=1,2,3

fi(q,m)σi, (1)

where σi are the Pauli matrices describing the two bands and
f0,1,2,3 are real functions of the momentum q = k − k0 and an
external parameter m representing pressure, doping, etc. Here
one can ignore f0 as it does not contribute to the band gap. On
the other hand, as discussed more fully in Appendix B, one may
expect a band degeneracy associated with a higher dimensional
irrep at some high-symmetry lines or points, such as a time-
reversal invariant momentum (TRIM) [30]. However, since the
bands degenerate at k0 generally disperse linearly away from
k0, the band minimum or maximum is located away from k0,
which means that an ABC always happens away from k0.
Thus, we can limit ourselves to the case where the irrep of the
conduction and the valence bands, Rc and Rv , respectively, are
one dimensional with the effective Hamiltonian in Eq. (1) [31].

TABLE I. Classification table of all possible gap-closing patterns
for 49 inversion asymmetric layer groups (LGs). The first column
indicates the LG numbers used in Ref. [37]. The second column
denotes the corresponding space group. When there are multiple
groups sharing the same gap-closing pattern, the LG and the
corresponding space group are listed in the same order. The third
column describes gap-closing patterns.

Layer group Space group Gap-closing pattern

1, 65 1, 143 f
3, 49, 50, 73 3, 75, 81, 168 1p
4, 5, 27, 28, 29, 6, 7, 25, 26, 26, ij:loop
30, 35, 36, 74, 27, 35, 39, 174,
78, 79 187, 189

31, 32, 33, 34 28, 31, 29, 30 ij:loop; 〈4〉:loop,1l
DA, D

8, 9 3, 4 ij:1l �, TA, D, DA

10 5 ij:1l DA, �, FA, F

11, 12,13 6, 7, 8 ij:1l SN,�,CA,C

19, 23 16, 25 1p; ii,ij:1s,1l �, D,
�, C

20 17 1p; ii,ij:1s,1l �, D,
�

24 28 1p; ii,ij:1s,1l �, �,
C

21, 25, 54, 56, 18, 32, 90, 100, 1p; ii,ij:1s,1l �,�

58 113

60 117 1p; ii,ij:1s,1l �, �

22, 26 21, 35 1p; ii,ij:1s,1l �,�,
F, C

53, 55 57, 59 89, 99, 111, 115 1p; ii,ij:1s,1l �, �,
Y

67, 69 149, 156 ij:1l �, SN
68, 70 150, 157 ij:1l �, T, TA, LE;

ij:3l K , KA

76, 77 177, 183 1p; ii,ij:1s,1l �,�,
T; ij:3l K

Since the symmetry of a 2D crystal embedded in a 3D space
is described by a layer group, one can exhaustively classify
all possible ABC events in 2D by analyzing the 49 inversion
asymmetric LGs in the presence of SOC.

Suppose that the band gap of a system which can be
tuned by varying m stays finite for m < mc but closes at
m = mc. We are interested in the nature of this system when
m > mc. To describe an ABC at a generic momentum k0,
three equations f1,2,3 = 0 must be satisfied. Since we have
three parameters (kx,ky,m), we expect a unique solution
near the critical point. Such a solution describes the critical
point between two insulators, as illustrated in Fig. 1(b).
However, when the k group at the gap-closing point k0

has certain crystalline symmetries that impose constraints on
f1,2,3, the gap-closing condition can be modified, leading to
NSM when m > mc. Below, we list all symmetries in a k
group that give nontrivial solutions to the problem at hand.
We work out the nonsymmorphic symmetry explicitly only in
case [b] below, since a similar idea can be applied to the other
cases.
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[a] No symmetry: There is no constraint on f1,2,3, thus one
can find a unique gap-closing solution (k0,mc). In this case,
an ABC occurs only through fine tuning. We label this process
by f, representing fine tuning.

[b] Twofold rotation C2x (similarly for C2y or mirror
Mx,My): (i) If Rc = Rv , we may take C2x = cσ0 where σ0

is the 2 × 2 identity matrix and |c| = 1. Here c may be a
function of k if we consider a nonsymmorphic counterpart
of this symmetry. On a symmetry line, the Hamiltonian is
as in Eq. (1), since C2x does not give any further constraint.
Thus, the gap-closing condition gives three equations whereas
there are only two variables, that is, m and the momentum
on the symmetry line. Thus, in general, the band gap cannot
be closed on the symmetry line. (ii) If Rc = −Rv , we can write
C2x = cσ3 so H = f3σ3 on the symmetry line. In this case, the
gap-closing problem has two variables and one equation so the
solution is one dimensional in the parameter space. We label
this as 1l, where 1 denotes the number of WP pairs created and
l indicates the WPs are on the symmetry line [see Fig. 2(d)].

[c] C2z�: C2z� is a local symmetry in the 2D momentum
space. Since C2z� is antiunitary, its general form is C2z� =
UK , where K denotes complex conjugation and U indicates
a unitary matrix. After a suitable unitary transformation, one
can always have C2z� = K as shown in Appendix B. Since
C2z� requires the Hamiltonian H (k) to be real, f2 = 0. Then
the gap-closing condition gives two equations whereas there
are three parameters. This means that the solution is one-
dimensional, and this describes a creation of a WP pair and
their evolution in the momentum space. We label this by 1p,
where p stands for the plane where WPs are located and 1
indicates the number of WP pairs. Let us note that we count
the number of WP pairs locally. In fact, C2z implies that there
is another WP pair created at −k0 [see Fig. 2(b)]. Let us also
note that in systems with C2z�, the Weyl semimetal is stable
irrespective of the eigenvalues of the bands, since each WP
carries a quantized π Berry phase [32,33].

[d] Mz: Mz is also a local symmetry in the 2D momentum
space. (i) If Rc = Rv , only fine tuning gives 2D WPs since there
are three equations and three variables. (ii) If Rc = −Rv , one
can choose Mz = σ3, which gives H = f3σ3. The gap-closing

k0

1p(b)

k0

1s(c)

k0

1l(d)

(a) loop 3l(e)

k0

FIG. 2. Schematic figures describing the structure of gap-closing
points created by a band inversion in 2D momentum space. (a) loop:
A line node moves in the plane. (b) 1p: A WP pair moves in the plane.
(c) 1s: A WP pair moves symmetrically with respect to a symmetry
line. (d) 1l: A WP pair moves along a symmetry line. (e) 3l: Three
pairs of WPs move along symmetry lines.

condition gives one equation while we have three parameters,
so ABC occurs in a 2D manifold in the parameter space, which
translates to the creation of a line node and its evolution.
Since the gap-closing points, in general, form a loop in the
momentum space, we label it by loop [see Fig. 2(a)].

[e] C2x and C2y� (similarly for C2y and C2x�, or Mx(y)

and My(x)�): Since C2xC2y� ∝ C2z� (MxMy� ∝ C2z�), a
WP is stable even when it is away from high-symmetry axes.
(i) Considering C2x eigenvalues, if Rc = Rv , C2x = iσ0 and
the Hamiltonian is not constrained by C2x on its invariant axis.
However, due to C2z�, the Hamiltonian should be real. Then
on the C2x invariant axis, the gap-closing condition gives two
equations with two parameters, including the momentum along
the invariant axis and m, which leads to case f on the invariant
axis. However, a more detailed analysis shows that the gap
closing on the C2x invariant axis creates a pair of WP that
move symmetrically away from the invariant axis. We label
this case as 1s where s means symmetrical [see Fig. 2(c)]. (ii) If
Rc = −Rv , one can choose C2x = iσ3. Then the Hamiltonian
on the invariant axis depends only on f3, and the gap-closing
condition gives one equation with two parameters, which
describes the creation of a WP pair following the pattern 1l.

[f] C2x and My : Since C2xMy ∝ Mz, a nodal line can
appear after a band inversion. Let us note that C2x and My

share the same invariant line. (i) If {C2x,My} = 0 on the
invariant line (recall that these can be nonsymmorphic), two
bands with different C2x (or My) eigenvalues are doubly
degenerate. In this case, a band inversion does not happen
on the invariant line. (ii) If [C2x,My] = 0 on the invariant
line, each band on the invariant line carries C2x and My

eigenvalues simultaneously. When a band inversion happens
between two bands with different C2x (My) eigenvalues while
sharing the same My (C2x) eigenvalues, a nodal line is created
after the band inversion corresponding to a loop. If both C2x

and My eigenvalues are different between two bands, the band
inversion creates a WP pair on the invariant line corresponding
to 1l.

[g] C3 plus C2x or My : This happens at the K or KA

point of the hexagonal Brillouin zone. Since two bands with
C3 eigenvalues eiπ/3 and e−iπ/3, respectively, are degenerate
at K or KA, a band inversion can happen only between two
bands with C3 eigenvalue −1. When these two bands carry
different C2x or My eigenvalues, a band inversion can happen
and create three pairs of WPs, which are located on the lines
invariant under C2x or My . We label it 3l, as shown in Fig. 2(e).

A. Classification table

We summarize all possible gap-closing patterns in Table I
for 49 LGs lacking inversion symmetry. We list LG numbers in
the first column and the corresponding space-group numbers
in the second column. Note that for each LG L, there is a space
group G such that if T(1) is a one-dimensional translation
subgroup, L ≈ G/T (1) [34,35]. In the third column, we list
the possible gap-closing patterns. Here we use the notation ii
to mean Rc = Rv , and ij to mean Rc �= Rv . We also use the
notation ii:ij:1s,1l to mean ii leads to 1s and ij leads to 1l.
〈4〉:loop,1l is used for case [f] above, where there are four
possible 1D irreps. In this case, different Mz eigenvalues lead
to loop while different C2x or My eigenvalues lead to 1l. In
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FIG. 3. Evolution of the band structure across an ABC. (a) Bands before the gap closing with m < mc. (b–f) Bands at the critical point
with m = mc. (g–k) Bands after the gap closing with m > mc. (b, g) For an insulator-to-insulator transition. (c, h) For a transition to a Weyl
semimetal protected by C2x,2y or Mx,y . (d, i) For a transition to a Weyl semimetal protected by C2z�. (e, j) For a transition to a Weyl semimetal
protected by C3 together with C2x,2y or Mx,y . (f, k) For a transition to a nodal line semimetal protected by Mz.

the case of 1p, we do not specify Rc and Rv since WPs are
stable independent of eigenvalue spectra. Here the labels on
the Brillouin zone follow the conventions used in Ref. [35],
which is illustrated in Appendix D [36].

B. Effective Hamiltonian at the quantum critical point

To describe the effective Hamiltonian at the quantum
critical point with m = mc, we redefine the coordinates so that
the gap closes at k = k0 = 0 and m = mc = 0. As described
below, the effective Hamiltonian at the critical point falls into
three categories.

First, when there is an insulator-to-insulator transition, the
bands disperse linearly in two directions at the critical point, as
shown in Fig. 3(b). The relevant effective Hamiltonian is H =
a1k1σ1 + a2k2σ2, where we use k1, k2 since they are not along
kx and ky in general. Second, at the critical point where a pair
of WPs is created, the bands disperse linearly in one direction
but quadratically in the other direction. In particular, if the
WPs are protected by C2x,2y or Mx,y , the relevant Hamiltonian
is H = a1kyσ1 + a3k

2
xσ3 [Fig. 3(c)], whereas in the case with

C2z�, it is H = a1k
2
1σ1 + (a2k

2
1 + a3k2)σ3 [Fig. 3(d)]. Note

that the presence of k2
1 in the coefficient of σ3 breaks k2 → −k2

symmetry of the energy dispersion. Finally, there are two cases
in which the bands disperse quadratically in two directions.
One is at the critical point where three pairs of WPs are created
[Fig. 3(e)]. The other is at the critical point between an insulator
and a nodal line semimetal with the Hamiltonian H = (a1k

2
1 +

a2k
2
2)σ3, where we require a1a2 > 0 [Fig. 3(f)]. The relevant

Hamiltonian is H = u1k
3 sin 3θσ1 + u3rk

2σ3, where u1,u3r

are constants and kx + iky = keiθ . (See Appendix A for the
detailed form of the effective Hamiltonian covering m < mc

and m > mc cases as well.)

III. TOPOLOGICAL CHARGE

In this section, we show that the emergence of stable
band degeneracy is always accompanied by a (quantized)
topological charge. We define topological charge for each of
the three classes of symmetry.

(i) C2zθ : Under time-reversal symmetry, the Berry curvature
satisfies 	(−k) = 	(k) while under the rotation symmetry,
	(−k) = 	(k). Thus, 	(k) = −	(k) under C2zθ , and the
Berry curvature vanishes everywhere except for singularities
realized by Weyl points [32]. This quantizes the Berry phase
in units of π .

(ii) {Mz|t}: First, note that eigenvalues are ±c, |c| = 1.
Following Ref. [8], pick a point k1 “inside” the loop and
another point k2 “outside” the loop. Define N±(k) = Nc

±(k) −
Nv

±(k). Here, N
c(v)
± (k) is the number of conduction (valence)

bands with eigenvalues ±c at k. The charge is defined to be
(see Fig. 4)

Q = π

4
[N+(k1) − N−(k1) − N+(k2) + N−(k2)]. (2)

(iii) {C2x |t} (or {My |t}): The charge is defined exactly as
in (2) but with k1 and k2 along the symmetry axis with k1 to
the left and k2 to the right of the gap-closing point. We note
that the topological charge can also be defined by integrating
along a curve symmetric with respect to the symmetry line. In
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FIG. 4. Schematic diagram of band crossing for cases (ii) and
(iii). In case (ii), the k axis is along the line connecting k1 and
k2, while in case (iii) it is along the symmetry line. The blue
(red) band has eigenvalue +c (−c). For the setup in the figure, the
charge is π

this case, C2x (or My) implies that 	(kx,ky) = −	(kx, − ky)
so the integral vanishes unless there is a singularity.

IV. APPLICATION TO 2D MATERIALS

Our theory can be applied to various 2D materials whose
band gap is widely tunable by gating, doping, or strain
engineering. Let us first focus on the variants of the 2D planar
honeycomb lattice, since many 2D materials fall into this
category. Because we have organized our results according
to LG, it suffices to identify the LG of the lattice structure.
The planar honeycomb lattice has the structure of the LG 80.
By distorting the lattice, it is possible to obtain a puckered
structure belonging to the LG 42 and a buckled structure
with the LG 69 [33,38–42]. Although the planar and the
puckered structures contain inversion symmetry, 2D materials
are usually fabricated on a substrate, and this breaks inversion
symmetry. (One could instead apply electric field normal to
the plane of the material.) Then, the symmetry of the planar
and the puckered structure is lowered to LG 77 and LG
24, respectively. Another variant of the honeycomb lattice
structure is the dumbbell structure, whose symmetry group,
like the planar structure, is also LG 80 [39,40]. Of course,
there are also 2D materials whose structure is not based on
the honeycomb lattice. For instance, Bi4Br4 has the structure
belonging to LG 18, which lowers to LG 13 upon breaking
inversion symmetry [43]. HgTe in a HgTe/CdTe quantum well
belongs to LG 57 [33]. We summarize the candidate systems
and their LGs in Table II. Once the LG for the given material
is determined, all possible gap-closing patterns can be read off
from Table I.

V. DISCUSSION

One important application of our classification table is to
use it for engineering topological band structure. For instance,
recent theoretical and experimental studies on few-layer black
phosphorus have shown that it is possible to achieve a
transition from an insulator to a Weyl semimetal by doping
potassium [33,44,45]. Due to its puckered structure, few-layer
black phosphorus under a vertical electric field belongs to

TABLE II. List of candidate 2D materials. The first column
lists the lattice structure. The second column lists the layer group
(LG) number for the structure, considering the inversion symmetry
breaking effect. The third column lists specific materials that fall
under the category.

Structure LG Material examples

Planar honeycomb 77 Graphene
Puckered honeycomb 24 Arsenene [38], antimony [39],

bismuth [40], black phosphorus [33]
Buckled honeycomb 69 Arsenene [38], blue phosphorous [41],

silicon, germanium [42], antimony [39],
bismuth [40]

Dumbbell 77 Stanene [47], Sn6Ge4, Sn6Ge4H4 [48]
Bi4Br4 13 Bi4Br4 [43]
HgTe 57 HgTe/CdTe heterostructure [33]

LG 24. Since the gap closing happens on the kx axis invariant
under My,C2z�, and the My eigenvalues of the conduction and
valence bands are identical (see Appendix C), the gap-closing
pattern should be 1s, which is confirmed by theoretical
studies. Interestingly, a recent theory has shown that such
an emergent 2D Weyl semimetal phase can even mediate a
transition between a normal insulator and a quantum spin Hall
insulator [33].

Moreover, at the critical point for an ABC, unusual fermion
dispersion develops, which can generate unconventional quan-
tum critical phenomena. As presented in Sec. II and derived
in Appendix A, at the critical point for an insulator-insulator
transition, the bands disperse linearly in two directions so
that the density of states D(E) ∝ E. On the other hand, at
the critical point where a pair of WP is created, bands disperse
linearly in one direction but quadratically in the other direction
so that D(E) ∝ √

E. Finally, at the critical point where either
a line node or three pairs of WPs are created, bands disperse
quadratically in two directions, and therefore, the density of
states at the Fermi energy becomes finite. In fact, previous
theoretical studies on 2D semimetals with quadratic band
crossing have shown the short-range Coulomb interaction is
marginally relevant due to the enhanced low energy density
of states. Thus, it can induce various insulating phases with
broken symmetries [46]. Since such a quadratic dispersion
is expected at the critical point in our problem, it is natural
to expect novel quantum critical behavior associated with an
ABC, which we leave for future study.
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APPENDIX A: GENERAL k·p HAMILTONIAN

As explained in the main text, we may write

H =
3∑

i=1

aiσi, (A1)

which we will use throughout this section. (We have ignored a
term proportional to the 2 × 2 identity matrix because it does
not contribute to the band gap.) Hermiticity of the Hamiltonian
requires that and a = (a1,a2,a3) be real functions of k1,k2,m.
Let us redefine the coordinates so that the gap closes at m =
0, k = (k1,k2) = 0. Also define q = (q1,q2,q3) = (k1,k2,m).
With this notation, the gap closes at q = 0. We will sometimes
also use kx, ky instead of k1, k2 when it is more convenient to
fix the direction of the coordinates. We will also frequently
make use the following property of Pauli matrices.

Suppose that σ ′
i = ∑3

j=1 Oijσj is a set of matrices ob-
tained from the Pauli matrices by an orthogonal transfor-
mation O. Then, if H ′ = ∑3

i=1 b′
iσ

′
i , the eigenvalues are

E′
± = ±

√
b′2

1 + b′2
2 + b′2

3 . To show this, note first that the
eigenvalues of a Hamiltonian of the form (A1) are E± =
±

√
a2

1 + a2
2 + a2

3 . To see this, use the fact that Pauli ma-
trices transform like a vector under SU(2). Thus, there is
always an SU(2) transformation that takes the Hamiltonian
to H = ±

√
a2

1 + a2
2 + a2

3σ3, from which the statement fol-
lows. Now, using the fact that O is an orthogonal matrix,
H ′ = ∑3

i=1 b′
iσ

′
i = ∑3

i,j,k=1 b′
kOikOijσ

′
j = ∑3

i=1 biσi , where

bi = ∑3
k=1 Oikb

′
k and σ ′

i = ∑3
j=1 Oijσj . Then, it follows that

E′
± = ±

√
b2

1 + b2
2 + b2

3=±
√
b′2

1 + b′2
2 + b′2

3 . Thus, σ ′
i obtained

from orthogonal transformation of the Pauli matrices are just
as good for expanding the Hamiltonian.

1. No symmetry

In this section, we explore in more detail how the gap closes
for the case labeled by f in the main text. Expanding a to first
order in q around the gap-closing point, we have a = Mq.
Here, the matrix M has components Mij = ∂ai

∂qj
, i,j = 1,2,3.

We first examine what happens when M is not invertible. If
the matrix has rank 2, the solution is one dimensional in the
parameter space, while if the matrix has rank 1, it is two
dimensional [49]. Thus, for these cases, a gap-closing solution
exists for arbitrary value of m. Since we are assuming that
the gap is open when m < 0, these cases can be excluded
from our consideration. Note that the case M = 0 is unlikely.
To see this, carry out the singular value decomposition of
M = AT DB, where A and B are orthogonal matrices while D
is diagonal. If M is not invertible, one or more of the entries
of D is zero, which should not happen without special reason.
The conditions we impose on the Hamiltonian, that the gap
closes at m = 0 but that the gap does not close for m < 0,
do not give such a constraint. Therefore, we expect M to be
invertible, and in particular, M �= 0.

Thus, M is in general invertible, and there is only one
solution to the gap-closing condition in the neighborhood of
q = 0. This gives a Hamiltonian with linearly dispersing bands
which are degenerate at k = 0 when m = 0 but quadratically
dispersing with a gap when m �= 0. To see this, first write the

Hamiltonian as

H =
3∑

i,j=1

Mijqjσi . (A2)

Carry out the QR decomposition on the matrix M = QR.
Here, Q is a orthogonal matrix and R is an upper trian-
gular matrix. Redefine σ ′

i = σjQji and q ′
i = Rijqj so that∑

ij Mijqjσi = ∑
i q

′
iσ

′
i . Notice that we may carry out the

decomposition such that the diagonal components of R are
positive. This follows because det(R) = R11R22R33 �= 0, and
whenever any one of Rii (i = 1,2,3) is negative, the sign
may be absorbed into the matrix Q. For example, if R11

is negative, define D = diag(−1,1,1). Then, QR = QDDR.
The QR decomposition can be carried out with Q′ = QD
and R′ = DQ instead, in which case R′

11 is positive. The
σ ′

i are orthogonal transformations of the Pauli matrices and
q′ = (k′

1,k
′
2,m

′), where k′
1 and k′

2 are linear transformations
of k1 and k2, while m′ = cm for a positive constant c. The
Hamiltonian is then

H = k′
1σ

′
1 + k′

2σ
′
2 + m′σ ′

3. (A3)

Now, it is easier to see that the dispersion is linear when
m = cm′ = 0 while the dispersion is quadratic when m′ �= 0.
Note, however, that this transformation comes with a price that
k′

1 and k′
2 no longer form an orthogonal coordinate system. The

gap-closing process is illustrated in Figs. 3(a), 3(b) and 3(g).
When m = 0, we can write a = Lk, where L is the 3 × 2

matrix with components Lij = ∂ai

∂kj
(i = 1,2,3 and j = 1,2).

Use the singular value decomposition on L to write a =
UT �Vk, where U and V are orthogonal matrices and � is
a 3 × 2 rectangular diagonal matrix with the only nonzero
entries �11 = v1, �22 = v2. Defining a′ = Ua and k′ = Vk,
the Hamiltonian can be written as

H = v1k
′
1σ

′
1 + v2k

′
2σ

′
2, (A4)

where σ ′
i is orthogonal transformation of the Pauli matrices.

2. C2x or My symmetry

In this section, we carry out a similar analysis for the case
labeled 1l in the main text. As explained in the main text,
the requirement for stable band crossing is that Rc �= Rv ,
where Rc and Rv are the 1D irreducible representations of
the symmetry for the conduction and the valence band along
the high-symmetry line. This restricts the Hamiltonian to
H = a3σ3 on the symmetry lines ky = 0,π . Furthermore, off
the symmetry axis, a1,2 = kyb1,2(kx,k

2
y) and a3 = a3(kx,k

2
y)

due to the constraint that H (kx, − ky) = C2xH (kx,ky)C−1
2x .

We can approximate a3 = a3xkx + a3yyk
2
y + a3xxk

2
x + a3mm.

We must now implement the condition that there should be
no solution for m < 0 but that a solution exists for m = 0
(along the symmetry line). Setting ky = 0 in a3, a3 = a3xkx +
a3xxk

2
x + a3mm. The number of solutions is determined by

the discriminant, D = a2
3x − 4a3xxa3mm. Thus, we must have

a3x = 0 while a3xxa3m < 0. Now, make the following expan-
sions: a1,2 = kya1,2y, a3 = a3xxk

2
x + a3mm. (We do not include

kxky because there is a term linear in ky that will overwhelm
kxky when ky �= 0, while when ky = 0, it is zero. mky was
ignored for similar reasons.) Thus, the effective Hamiltonian
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is

H = a1ykyσ1 + a2ykyσ2 + (a3xxk
2
x + a3mm)σ3. (A5)

This describes closing of the gap and the subsequent evolution
of Weyl points as shown in Figs. 3(a), 3(c) and 3(h). When m =
0, we have H = kya1yσ1 + kya2yσ2 + a3xxk

2
xσ3. Carrying out

a rotation in the σ1, σ2 space, we find

H = a′
1kyσ

′
1 + a3xxk

2
xσ3. (A6)

Here, the set (σ ′
1,σ

′
2,σ3) is an orthogonal transformation of the

Pauli matrices and a′
1 =

√
a2

1y + a2
2y . Note that the dispersion

is linear in ky direction but quadratic in k2
x direction [see

Fig. 3(c)]. Note also that Weyl points move in the quadratically
dispersing direction, which is equivalent to the direction of the
high-symmetry line.

3. Space-time inversion

In this section, we carry out a similar analysis for the case 1p
discussed in the main text. As explained in Appendix B 1, we
can choose the basis so that the space-time inversion symmetry
(STI) IST = C2zθ is represented as K , where K is a complex
conjugation operator. In such a basis, a2 will vanish. Ex-
panding about the gap-closing point, a1 = M1xkx + M1yky +
N1m, a3 = M3xkx + M3yky + N3m. The gap-closing condi-
tion is that a = Mk + mN = 0 [here and in the next section,
a = (a1,a3)], with Mij = ∂ai

∂kj
and Ni = ∂ai

∂m
where i = 1,3 and

j = x,y. If M is invertible, there would be a solution for
arbitrary m, in contradiction with the assumption that there
is no solution for m < 0. Thus, det M = 0 and there exist n1

such that Mn1 = 0. Choose n3 orthogonal to n1 and expand
k using this basis: k = k1n1 + k2n3. Defining u3 = Mn3,
we have a = k2u3 + mN. There is no k1 term so we must
expand to higher orders. The lowest allowed k1 term is k2

1. We
include only this term since other higher-order terms will be
overwhelmed away from k2 = 0 by terms linear in k2. Then
the lowest order approximation is a = u11k

2
1 + u3k2 + Nm.

Now, choose û1 so that û1 and û3 = u3/|u3| form an
orthonormal basis. Then, we may expand a in terms of this
basis:

a = u11k
2
1 + u3k2 + mN

= [(u11)1û1 + (u11)3û3]k2
1 + u3k2û3 + m(N ′

1û1 + N ′
3û3).

(A7)

The gap-closing condition a = 0 can be written

0 =
(

(u11)1 0
(u11)3 u3

)(
k2

1
k2

)
+ m

(
N ′

1
N ′

3

)
= Uk̃ + mN. (A8)

This can be solved for k̃ = (k2
1,k2) by inverting the

matrix U = (u11,u3): k̃ = −mU−1N = mQ. We require Q1 =
−N ′

1/(u11)1 > 0 to get a solution for m � 0. To get an
expression for the Hamiltonian, notice that choosing û1 and û3

as the basis for expanding a constitutes a change of basis by
an orthogonal matrix PT = (û1,û3). If we carry out a similar
change of basis for the Pauli matrices to get σ ′

i , the Hamiltonian
can be written as H = ∑

i=1,3 σiai = ∑
i,j,k=1,3 σjPijPikak =∑

i=1,3 σ ′
i a

′
i . Here, a′

i are components of ai in the new basis

because Pa = a′. Explicitly,

H = [
(u11)1k

2
1 + N1m

]
σ ′

1 + [
(u11)3k

2
1 + u3k2 + N2m

]
σ ′

3.

(A9)

This describes gap closing and evolution of Weyl points as
shown in Figs. 3(a), 3(d) and 3(i). For m = 0, the Hamiltonian
can be written as

H = (u11)1k
2
1σ

′
1 + [

(u11)3k
2
1 + u3k2

]
σ ′

3. (A10)

As in the previous case, the energy is linear in k2 direction but
quadratic in k1 direction. However, this case is slightly different
in that there is no k2 → −k2 symmetry. The Weyl points move
in the quadratically dispersing direction in this case as well.
This can be seen from the gap-closing conditions, which are
(u11)1k

2
1 + N1m = 0 and (u11)3k

2
1 + u3k2 + N2m = 0. The

former shows that for m slightly greater than 0, k1 ≈ √
m and

the latter shows that k2 ≈ m. Thus, for small m, the Weyl points
move predominantly in the quadratically dispersing direction.

4. C2x, C2zθ

We expand on the discussion in the main text in a similar
manner with the symmetries C2x and C2zθ , which give rise
to either pattern 1l or pattern 1s. Since the case for 1l was
discussed in Appendix A 2, we discuss only the case 1s. For this
case, we may take C2x = iσ0 and C2zθ = K . (We assumed that
the conduction and the valence bands both have eigenvalues
+i since the case for eigenvalues −i is similar.) These
symmetries restrict the Hamiltonian to H = a1σ1 + a3σ3,
where C2x requires that a1,3 be even in ky . Then, to lowest
order, a1,3 = M1,3xkx + M1,3yk

2
y + N1,3m. Explicitly,

(
a1

a3

)
=

(
M1x M1y

M3x M3y

)(
kx

k2
y

)
+ m

(
N1

N3

)

=Mk̃ + mN. (A11)

Note that we have defined k̃ = (kx,k
2
y). Using the QR decom-

position, we can write M = QR, where Q is orthogonal and
R is upper triangular. Rewrite the Hamiltonian as

H =
∑
i=1,2

σiai =
∑

i,j,k=1,2

σjQji(Q
T )ikak

=
∑
i=1,2

σ ′
i a

′
i , (A12)

where we have defined
∑

j=1,2 σjQji = σ ′
i and∑

k=1,2 (QT )ikak = a′
i . Noting that a′ = QT a =

Rk̃ + mQT N = Rk̃ + mN′, the Hamiltonian takes the
form

H = (
R11kx + R12k

2
y + mN ′

1

)
σ ′

1 + (
R22k

2
y + mN ′

2

)
σ ′

3.

(A13)

If we make the correspondence k1 ≈ kx, k2 ≈ ky , this has the
form of Eq. (A9). Setting m = 0 takes us to (A10). Then,
we see that this describes the evolution of a pair of Weyl
points symmetrically with respect to the high-symmetry lines
ky = 0,π .
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5. C3 and C2x or M1

In this section, we similarly discuss the case labeled 3l in
the main text. The groups 68, 70, 76, and 78 contain threefold
rotation about the z axis and twofold rotation or mirror about
the in-plane axis as symmetries at the K point. As shown
in Appendix B 3, it is possible to create three pairs of Weyl
points that evolve from K (KA) point. When this occurs, the
representation for C3 is −σ0 and the representation for C2x

(M1) is ±iσ3.
To describe this gap-closing process, it is convenient to use

polar coordinates (r,θ ) with the K point at r = 0. We may
also orient our axis so that θ = 0 corresponds to one of the
high-symmetry lines. As before, we demand that the gap closes
at m = 0 while it stays open for m < 0. The symmetries of the
system imply that H (r,θ ) = H (r,θ + 2π/3) and H (r, − θ ) =
−a1(r,θ )σ1 − a2(r,θ )σ2 + a3(r,θ )σ3. The former shows that
we can Fourier expand in θ while the latter shows that a1,a2

are odd and a3 is even in θ . Expanding the Hamiltonian to
lowest order, H = u′

1r
3 sin 3θσ1 + u′

2r
3 sin 3θσ2 + (u3mm +

u3r r
2)σ3. Note that the analyticity of the Hamiltonian demands

that sin 3θ should appear with r3. After performing a rotation in
the σ1, σ2 space, we may simplify the Hamiltonian as follows:

H = u1r
3 sin 3θσ1 + (u3mm + u3r r

2)σ3. (A14)

Finally, imposing the constraint that there is no gap closing
for m < 0, we get the constraint u3mu3r < 0. This describes
closing of the gap and formation of three pairs of Weyl
points as shown in Figs. 3(a), 3(e) and 3(j). When m = 0,
the Hamiltonian is

H = u1r
3 sin 3θσ1 + u3r r

2σ3. (A15)

The dispersion is quadratic in all directions, as can be seen in
Fig. 3(j).

6. Mz

Finally, we discuss the case labeled by loop in the main
text. This corresponds to the case when the eigenvalues of
Mz for the conduction and the valence bands are different,
which restricts the Hamiltonian to H = a3σ3. Expanding to
first order, a3 = b1k1 + b2k2 + amm. The solution space of the
gap-closing condition is a plane in the parameter space, which
is incompatible with the constraint that there is no solution
for m < 0. Thus, we include second-order terms, a3 = b1k1 +
b2k2 + a11k

2
1 + 2a12k1k2 + a22k

2
2 + amm. The extremum for

a3 when m = 0 must be 0 at kx = ky = 0. This condition for
extremum gives b1 = b2 = 0. If we now vary m, there should
be a solution for m > 0, and it must be a closed loop as we
is shown below. Assuming this for now, the solution must be
an ellipse for small m. The condition for an ellipse is that
det(A) > 0, where A is the matrix with components aij , i,j =
1,2. Notice that we may diagonalize this matrix through an
orthogonal matrix P . Defining k′ = P k, a3 = λ1k

′2
1 + λ2k

′2
2 +

amm. The condition for ellipse now reads λ1λ2 > 0, while
the condition for solution coming into existence for m � 0
becomes λ1am < 0

Now, we explain why the solution should be an ellipse.
This is because a parabola requires λ1 or λ2 to be zero, which
is not likely. On the other hand, a hyperbola would be in
contradiction with our assumption because there would exist a

solution to the gap-closing equation for arbitrary m. Thus, the
Hamiltonian is

H = (
λ1k

′2
1 + λ2k

′2
2 + amm

)
σ3. (A16)

This describes the gap closing and the formation of a line node
as illustrated in Figs. 3(a), 3(f) and 3(k). When m = 0, the
Hamiltonian becomes

H = (
λ1k

′2
1 + λ2k

′2
2

)
σ3. (A17)

Thus, the dispersion is quadratic in both directions.

APPENDIX B: CONSIDERATION OF TIME-REVERSAL
SYMMETRY

Although time-reversal symmetry fixes only points in the
Brillouin zone by itself, it may combine with other crystal
symmetries to fix lines or planes. The former occurs when it
combines with twofold rotation or mirror symmetry with an
in-plane axis, while the latter occurs when it combines with
twofold rotation with the axis normal to the plane. We analyze
the latter case first, then the former case, and finally, analyze
high-symmetry points that are not TRIM. Our goal will be to
determine whether consideration of time-reversal symmetry
will induce extra double degeneracy, and if not, to determine
whether there is any other possible emergent semimetallic
phases which were not discussed in detail in the main text. In
particular, we discuss the case 3l in the main text.

1. High-symmetry plane with time-reversal symmetry

In this section, we prove that C2zθ = IST can be represented
by K , where K is the complex conjugation operator. Because
C2z is unitary and θ is antiunitary, IST must be antiunitary.
Thus, IST = UK , where U is an N × N unitary matrix:

UU † = 1. (B1)

Also, the condition I 2
ST = 1 implies that

UU ∗ = 1. (B2)

These two conditions imply that U−1 = U † = U ∗. Thus, U

is symmetric and unitary and we may write U = eiM , where
M is symmetric and Hermitian. In other words, M is a real
symmetric matrix, and such matrices can be diagonalized
by a real orthogonal matrix. Since U transforms under real
orthogonal change of basis by matrix O as U → OUOT , we
see that M can be diagonalized to a matrix φ with diagonal
entries φn, n = 1,...,N . Then, U is transformed to a diagonal
matrix eiφ with diagonal entries eiφn , n = 1,...,N . Another
transformation with matrix D = diag(e−iφ1/2,...,e−iφn/2) gets
rid of the phase factors: eiφK → DeiφKD† = K . Thus, for
any set of bands, IST can be diagonalized, and we may discuss
IST acting on a single energy band (i.e., it does not introduce
degeneracy). This means that we may talk about IST acting on
an arbitrary pair of bands as complex conjugation.

2. High-symmetry line with time-reversal symmetry

The analysis for IST can be applied whenever time reversal
is combined with a unitary operator that commutes with it
and squares to −1. It is then clear that C2xθ and Myθ also
do not enforce double degeneracy. The same comment applies
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when C2z is replaced by {C2z|ab}, because {C2z|ab}2 = −1.
The analysis becomes more complicated for {C2x |ab}θ and
{My |ab}θ , where a,b = 0 or 1/2. If we denote either of
the operators by R,R2 = −ei2akx and (Rθ )2 = ei2akx . Writing
{C2x |ab}θ = UK , we have, in addition to (B1),

UU ∗ = ei2akx . (B3)

If a = 0, the previous analysis applies and there is no
degeneracy along the symmetry lines for {C2x |ab}θ , namely,
the lines kx = 0,π . In addition, because the basis can be
chosen so that Rθ = K , a gap-closing event is not protected
along the symmetry line. (H = a1σ1 + a3σ3, so two equations
need to be satisfied for the gap to close while there are two
parameters, m and the momentum along the symmetry line.)
Since gap closing is not protected off the symmetry line, this
does not lead to stable semimetallic phase. On the other hand,
if a = 1/2, (Rθ )2 = −1, so there is a double degeneracy along
the line kx = π , but not along the line kx = 0 [50].

Next, consider the possibility of multiple antiunitary sym-
metry along a line. This happens when there is a simultaneous
presence of C = {C2x |ab}θ and M = {My |a′b′}θ along the
lines kx = 0 or π . If a or a′ is 1/2, there will be a double
degeneracy along the lines as we have shown above. If we
exclude these cases, they can be diagonalized individually
but it is not clear if they can be simultaneously diago-
nalized. If we set a = a′ = 0, CM : (x,y,z,t) → (x,y + b −
b′, − z,t) ⊗ (−iσ3) and MC : (x,y,z,t) → (x,y − b + b′, −
z,t) ⊗ (iσ3), CM = −e2iky (b−b′)MC. Thus, along the sym-
metry lines, they either commute or anticommute. Writing
C = U1K and M = U2K , with symmetric and unitary U1 and
U2, this condition becomes

U1U
∗
2 = ±U2U

∗
1 . (B4)

Now, we showed above that U1 = 1 with a suitable choice
of basis, so (B4) implies that in this basis, U2 is either real
or purely imaginary. Because U2 is symmetric and either
U2 or iU2 is real, it can be diagonalized by real orthogonal
transformation, under which U1 will remain invariant. Thus,
C and M can be simultaneously diagonalized. This analysis
could have been carried out by considering the eigenvalues of
Mz since MC ≈ Mz, but this clarifies how the two antiunitary
operators can be simultaneously diagonalized. Note that a
stable semimetallic phase arises only when Rc �= Rv for the
Mz eigenvalues, which leads to a nodal line, as we already
have seen.

We next consider the case when IST = C2zθ is present
with a nonsymmorphic rotation or mirror with in-plane axis
where the translational part is nonzero for the direction
normal to the line preserved by the rotation or mirror. In
other words, the nonsymmorphic symmetries are of the form
{C2x |ab} and {My |ab}, where a = 0 or 1/2 and b = 1/2.
We first note the action of IST and {C2x |ab} on real space
and spin space: IST : (x,y,z,t) ⊗ σ0 → (−x, − y,z, − t) ⊗
iσ1K and {C2x |ab} : (x,y,z,t) ⊗ σ0 → (x + a, − y + b, −
z,t) ⊗ iσ1. Thus, {C2x |ab}IST : (x,y,z,t) ⊗ σ0 → (−x +
a,y + b, − z, − t) ⊗ (−K) and IST {C2x |ab} : (x,y,z,t) ⊗
σ0 → (−x − a,y − b, − z, − t) ⊗ K . Thus,

{C2x |ab}IST = −T2a,2bIST {C2x |ab}
= −ei(2akx−2bky )IST {C2x |ab}. (B5)

Here, T2a,2b is the translation operator with translation in x and
y direction by 2a and 2b, respectively.

Now, we examine if IST doubles the dimension of the
representation by examining the eigenvalue of the nonsymmor-
phic operator. Since ({C2x |ab})2 = −e2iakx , the eigenvectors
are |±〉 with eigenvalues ±ieiakx . The question is whether
IST |±〉 has the same {C2x |ab} eigenvalues. Using (B5),
{C2x |ab}IST |±〉 = ±iei(akx−2bky )IST |±〉. Now, it is easy to see
that the eigenvalues switch if and only if b = 1/2 and ky = π

mod 2π . The analysis for mirror symmetry is similar. See,
for example, groups 20, 21, 24, 25. In hindsight, we see
that this double degeneracy is actually due to {C2x |ab}θ and
{My |ab}θ , where a,b = 1/2 along kx = π , but the proof of
the double degeneracy is simpler here due to the presence of
unitary symmetry whose eigenvalues switch under the action
of an antiunitary symmetry. Finally, note that when there is
no double degeneracy, the stable semimetallic phase that may
arise corresponds to the pattern ii:ij;1s,1l discussed in the main
text. This concludes the analysis of all subtleties that may arise
along symmetry lines due to time-reversal symmetry.

3. High-symmetry points that are not TRIM

It is well known that time reversal forces double degeneracy
at TRIM and we may exclude these points from our analysis.
This leaves us with only K and KA points in the hexagonal
Brillouin zone in Fig. 5. There are two questions that need to be
addressed. Are there cases when there is no 1D representation
at K or KA? If not, can there be the creation of a stable band
degeneracy starting from the K or KA point by tuning an
external parameter? The answer to the first question is no, as
analysis of the inversion asymmetric groups show. The answer
to the second question is yes.

We tackle the second question first because this will answer
much of the first question. To determine whether stable band
degeneracy can evolve from the K point, it helps to notice that
protection of Weyl points is due to either IST or C2x (My) type
of symmetries when the Weyl points move off the symmetry
point.

a. K point in the presence of IST

This requires the presence of sixfold rotational symmetry
in the crystal because there is both C2z and C3 symmetry. We
present the analysis for group 73, which contains only sixfold
rotation in addition to translations. The expectation that the gap
closes at K and that IST will protect the subsequent creation
of three pairs of Weyl points is not met.

We showed previously that IST may be represented by
the complex conjugation operator K . On the other hand, the
presence of additional symmetry such as C3 can complicate
matters because in the representation where IST = K,C3 is
not in general a diagonal matrix despite the fact that C3 and
C2zθ commute (because IST is antiunitary). In fact, operation
of C3 may mix states between different bands, so it may not
even be possible to talk about C3 with an arbitrary pair of
bands (because the action of C3 will take states in one of these
two bands into a state from a different band).

To make this clear, begin by finding the eigenvalues
of the operator C3. Since (C3)3 = −1, the eigenvalues are
ei(π/3+2πn/3) where n is an integer. If it were to be possible to
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FIG. 5. The schematic figure describing the first Brillouin zone and the relevant high symmetry points and lines for the layer groups. (a)
Primitive oblique, (b) primitive rectangular, (c) centered rectangular, (d) primitive square, and (e) primitive hexagonal.

talk about an arbitrary pair of bands so that the pair of bands
have C3 and IST symmetries, it must be possible to choose
representations for these operators so that IST = K and C3

has two arbitrary eigenvalues that cubes to −1. We will show
below that this is impossible. This implies that an arbitrary
pair of energy bands will not simultaneously host IST and
C3 because both of these are symmetries at K point in the
Brillouin zone.

As shown before, we may take IST = σ0K for any pair
of bands. We find the possible representation for C3 for an
arbitrary pair of bands under the constraint that the action of
C3 does not take us to states outside those in the two bands.
The most general form of C3 is

C3 =
3∑

i=0

ciσi . (B6)

Next, we impose the following constraints:

[C3,IST ] = 0, (C3)3 = −1,C3C
†
3 = 1. (B7)

We tackle one constraint at a time:
(i) [C3,IST ] = 0: It is easy to see that this condition implies

that c0,c1,c3 are real while c2 is purely imaginary.
(ii) (C3)3 = −1: Denoting by �c = (c1,c2,c3), short calcula-

tion shows that this gives c3
0 + 3c0�c2 = −1 and 3a2

0 + �c2 = 0.
(iii) C3C

†
3: This gives three constraints, c2

0 + c2
1 + c2

3 −
c2

2 = 1, c0c1 + ic2c3 = 0, and c0c3 − ic1c2 = 0.
It follows from c0c1 + ic2c3 = 0 and c0c3 − ic1c2 = 0 that

c1 = 0 or c2
0 = c2

2. If c1 = 0, the same two conditions show that
either c3 = 0 or c0 = c2 = 0. The latter is impossible because
c2

0 + c2
1 + c2

3 − c2
2 = 1 shows that c2

3 = 1 while 3a2
0 + �c2 = 0

shows that c2
3 = 0. On the other hand, c2

0 = c2
2 shows that c0 =

c2 = 0 because c0 is real while c2 is purely imaginary. The
remaining conditions 3a2

0 + �c2 = 0 and c2
0 + c2

1 + c2
3 − c2

2 = 1
cannot be simultaneously true. Thus, the only possibility is that
c1 = c3 = 0.

If c1 = c3 = 0, the remaining two conditions are c3
0 +

3c0c
2
2 = −1 and 3c2

0 + c2
2 = 0. If c2 = 0, c0 = −1 while if

c2 �= 0, c0 = 1
2 and c2 = ±i

√
3

2 .
In conclusion, if IST = K , there are only three possibilities:

C3 = −σ0,
1
2σ0 ± i

√
3

2 σ2. Thus, the only allowed pairing of C3

eigenvalues is {−1, − 1} and {eiπ/3,e−iπ/3}. In the former case,
C3 does not constrain the form of the Hamiltonian at K point
while in the latter case, the two bands are doubly degenerate.

To summarize, suppose that we choose two arbitrary bands.
We have shown that it is possible to choose IST = K . However,
whether we can speak of C3 symmetry acting on these two
bands depends on the eigenvalues of C3 at the K point. If it is
possible to speak of C3, the eigenvalues of the two bands must
be paired as {−1, − 1} or {eiπ/3,e−iπ/3}. Otherwise, we must
add two additional energy bands to get a four-band model to
speak of the C3 operator.

We note that this can be seen in a different way by examining
how the C3 eigenvalue of a state changes under the operation
of IST . Denote a state having C3 eigenvalue ei(π/3+2πn/3) by
|n〉. Then IST |n〉 has eigenvalue e−i(π/3+2πn/3). This means that
unless the eigenvalue is −1, IST imposes double degeneracy.
Also, if we want to talk about C3 and IST simultaneously
on a two-band model, the eigenvalues must be paired as
{−1, − 1} or {eiπ/3,e−iπ/3}, in agreement with the previous
analysis.

b. K point in the presence of C2x or M1 type of symmetry

The simplest case is when there is only the threefold rotation
and C2x or M1 (twofold rotation or mirror whose symmetry
axis passes through the K point), as in groups 68 and 70,
respectively. The 1D representation for C3 is −1, while those
for twofold rotation or mirror is ±i. This is due to the relation
C3P = PC−1

3 , where P is either C2x or My , which implies
that unless a state has eigenvalue −1 for C3, the representation
cannot be one dimensional.

For two pairs of energy bands whose C3 eigenvalue is −1 at
the K point, it is the eigenvalues of P that determine whether
bands may close at the high-symmetry point. If Rc = Rv

for P , the gap does not close at the K point in general
because P ∝ σ0, but it may close if Rc �= Rv because P ∝ σ3.
After the gap closes, there will be evolution of three pairs of
Weyl points along the three high-symmetry lines that cross
at the K point because Rc �= Rv along these lines and the
problem reduces to 1l discussed in the main text. This pattern
of gap closing is labeled 3l. Note that the mechanism for
protection of Weyl points in this case is the same as that
for C2x or My .
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TABLE III. Layer groups organized according to their Bravais lattice.

Brillouin zone Layer group

Oblique p 1, 3, 4, 5
Rectangular p 8, 9, 11, 12, 19, 20, 21, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34
Rectangular c 10, 13, 22, 26, 35, 36,
Square p 49, 50, 53, 54, 55, 56, 57, 58, 59, 60
Hexagonal p 65, 67, 68, 69, 70, 73, 74, 76, 77, 78, 79

Next, we discuss the case with C3 replaced by C6 symmetry,
which is equivalent to considering an additional IST symmetry
at the K point. This occurs for 76 and 77, which contain C2x

or M1, respectively, in addition to C3 and IST at the K point.
From the above analysis, the only 1D representation possible
is C3 = −1 and P = ±i, where P = C2x or M1. The claim is
that IST does not force degeneracy. This is easy to see because
we have already shown in Appendix B 2 that the group relation
between IST and P is consistent with the representation, and
we have shown in the previous section that the group relation
between IST and C3 is consistent with the representation, and
finally, we have shown in this section that the group relation
between C3 and P is consistent with the representation. The
conclusion follows by observing that C3, P , and IST generate
the group.

Now, 76 contains 68 as a subgroup, and 77 contains 70 as a
subgroup. Restricting the representation for 76 and 77 to these
subgroups, we obtain the representation for 68 and 70 that was
found previously. Thus we see then that if Rc = Rv for P , the
gap does not close at K , while if Rc �= Rv , it is possible to
obtain 3l.

c. Possibility of additional double degeneracy at the K point

Now, we come back to the question of whether considera-
tion of time-reversal symmetry can forbid a one-dimensional
representation at the K point. We begin by listing all of the
possible symmetries:

C3,M2,C2x,Mz,Mxθ,C22θ,IST . (B8)

Here, M2 and C2x is a mirror symmetry or twofold rotation
symmetry that leaves invariant one of the high-symmetry lines
passing through the K point. [They fix the line LE passing
through the KA point in Fig. 5(e).] Note that we have not
listed symmetries that can be formed by combining one of
the symmetries we have listed with C3, which will always be
present for the hexagonal Brillouin zone. For example, M1 and
M3, which are also mirror symmetries that leave invariant one
of the high-symmetry lines passing through the K point, are not
listed because they can be obtained by a suitable combination
of M2 and C3. Note also that C22 is a twofold rotation symmetry
and Mx is a mirror symmetry fixing the line SN in Fig. 5(e). It
can be shown by going through all of the combinations that it
suffices to consider only the following symmetries in addition
to C3 at the K point:

(Mxθ ),(C22θ ),(IST ),(M1,IST ),(C2x,IST ),(C22θ,Mxθ ). (B9)

Note that the combination is such that there is no inversion
symmetry, and time-reversal symmetry appears in combination
with some spatial symmetry. Before moving on, we note that

there does exist one case where there is no 1D irrep because
of the simultaneous presence of M2 and C2x , which has been
discussed in the main text (see group 79).

We have actually carried out most of the calculations needed
to determine that addition of time-reversal symmetry to the
system does not prohibit 1D representation at the K point.
The presence of C22θ or Mxθ in addition to C3 appears as a
subgroup of 76 and 77, respectively. This leaves us with the
case with C22θ,Mxθ . However, we have already shown that
it is possible to simultaneously diagonalize these symmetries,
which means it is possible to talk about these symmetries
acting on one band. In general, we may take C22θ = K,Mxθ =
±iK to satisfy (B4). A candidate representation for C3 is
−1. We have shown that this representation is consistent with
the group relation between C22θ and C3. If Mxθ = K , our
previous calculation would show that this is also consistent
with C3 = −1. However, the phase factor in front of K is
irrelevant for the group relation between Mxθ and C3. This
concludes the proof.

APPENDIX C: BLACK PHOSPHOROUS

In this section, we present a simple application to the k·p
model of black phosphorous. As shown in Ref. [33], the k·p
Hamiltonian near the 
 point takes the form

H (kx,ky) = Akxσy + (
M − B1k

2
x − B2k

2
y

)
σz

+λ1syσy + λ2kyszσx. (C1)

Here, si and σi are the Pauli matrices for spin and orbital
degrees of freedom, respectively, M is a tunable parameter,
and A,B1,B2,λ1,λ2 are constants. Black phosphorous has
a puckered structure, and when the symmetry is lowered
by breaking the inversion symmetry, it belongs to layer
group 24, which contains Mx and My symmetries (note that
MxMy ≈ C2z). Although the mirror symmetries are nonsym-
morphic, this is irrelevant for k·p theory near the 
 point.
Taking this into account, the symmetries take the following
representations:

Mx = isxσz,My = isy,θ = isyK. (C2)

Here, θ is the usual time-reversal symmetry. As we tune the
parameter M , the gap may close or open along kx = 0 or
ky = 0. Our claim is that this gap closing follows the pattern 1s.
As an example, we verify this along ky = 0, along which My

is a symmetry. In particular, we show that the My eigenvalues
for the gap-closing bands are equal. To do this, set ky = 0 in
the Hamiltonian to get

H (kx,ky) = Akxσy + (
M − B1k

2
x

)
σz + λ1szσy. (C3)
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Notice that we have changed the basis in the spin sector so that
sy → sz. In this basis, My = isz. Now, it is easy to see that
the gap closes between bands in the sector with the same sz

eigenvalues, which means that the My eigenvalues are equal
for the bands that cross.

APPENDIX D: BRILLOUIN ZONE

For the reader’s convenience, we have organized the layer
groups according to their Brillouin zone in Table III and
illustrated the Brillouin zone in Fig. 5 with the convention
used by Litvin and Wike [35].
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