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Many-body effects in doped graphene on a piezoelectric substrate
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We investigate the many-body properties of graphene on top of a piezoelectric substrate, focusing on the
interaction between graphene electrons and piezoelectric acoustic phonons. We calculate the electron and phonon
self-energies as well as the electron mobility limited by the substrate phonons. We emphasize the importance
of proper screening of the electron-phonon vertex, and we discuss the various limiting behaviors as a function
of electron energy, temperature, and doping level. The effect of piezoelectric acoustic phonons on graphene
electrons is compared with that of intrinsic deformation acoustic phonons. Substrate phonons tend to dominate
over intrinsic ones for low doping levels at high and low temperatures.
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I. INTRODUCTION

Elastic waves supported by the boundaries of solids and, in
particular, surface acoustic waves (SAWs) underlie numerous
applications of microwave devices for signal processing [1].
SAWs with amplitudes of a few nanometers can be electrically
excited on the surface of piezoelectric materials, and the
resulting periodic deformation in adjacent thin film materials
or quantum-well structures can be employed to modulate
optical resonances in polaritonic or plasmonic devices [2–4].
Apart from the mechanical deformation, the vibration of the
ionic lattice in a piezoelectric material produces an electric
field traveling along with the SAW, which can transport charge
carriers in monolayer graphene deposited on top of the piezo-
material [5–7] and, for instance, probe graphene’s Landau level
structure when an external magnetic field is applied [8].

Because the carbon allotrope graphene is an atomically
thin all-surface material [9], its charge-carrier dynamics is
very sensitive to the surrounding electromagnetic fields, and
the possibility of changing graphene’s carrier concentration
in situ by applying an external gate voltage is a key feature
in many graphene-based devices [10]. Ballistic charge trans-
port in suspended graphene over micrometer distances and
unprecedented carrier mobilities [11] are enabled by the high
frequencies of the optical phonons in the stiff honeycomb
lattice. Thus, the effects of electron-phonon scattering on
transport are small in comparison with conventional metals [9].
However, in most device architectures, graphene is deposited
on a substrate, and all lattice modes of the substrate material
that induce an electric field will influence the carriers in the
graphene sheet, making the choice of substrate material crucial
for the resulting transport characteristics of the device [12].
This mechanism of remote phonon scattering in graphene has
been mainly studied for substrates supporting optical phonon
modes [13–21].

In the present work, we aim to clarify the role of acoustic
piezoelectric surface phonons, which form the microscopic
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quanta of SAWs [22], in graphene-on-piezomaterial structures.
After analyzing within a diagrammatic framework the effective
carrier interaction due to an exchange of surface phonons
in Sec. II, we study the self-energies acquired by both
phonons and charge carriers in Secs. III and IV. While the
renormalization of the Fermi velocity due to piezoelectric
substrate phonons turns out to be small, we show that there are
regimes where the substrate effects dominate the momentum
relaxation mechanism in graphene. We compare both lifetimes
and mobilities with the results obtained when only intrinsic
acoustic deformation phonons are considered. The numerical
results for mean free paths and electron mobilities shown in
Sec. V are applicable to a variety of piezoelectric materials
with different lattice structures and piezoelectric strengths.

Our study can be relevant for graphene devices operating
in the ballistic transport regime, such as hot electron transistor
devices [23] or field-effect transistors based on graphene on
different piezoelectrics [24,25], and for scenarios in which
quantum interference induces localization phenomena [26].

II. EFFECTIVE ELECTRON-ELECTRON INTERACTION

A. Piezoelectric substrate

The sound velocities vs(θ ) of piezoelectric acoustic
phonons are anisotropic (depending on the direction angle θ )
and typically two or three orders of magnitude smaller than the
Fermi velocity vF in graphene, which yields a relatively low
value of the maximum acoustic frequency. Thus the dielectric
screening effects due to the substrate can be described by
its static (also anisotropic) dielectric constant ε0(θ ). This
constant combines both core excitons and optical phonons
as well as any high-frequency (instantaneous) polarization
forces that screen the fields created by the piezoelectric
acoustic phonons [27]. The Fourier transform of the repulsive
Coulomb interaction thus reads

v(0)
q = 2πe2

ε0(θ )q
, (1)
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where ε0(θ ) = ε0(θ)+1
2 is the effective dielectric constant at the

substrate-air interface [28], and q = |q| with q = (qx,qy) and
θ ≡ arg(qx + iqy).

The interaction between the graphene electrons and the
piezoelectric acoustic (PA) phonons is given by

H PA
e-ph = 1√

A

∑
k,q,σ

γ PA
q a

†
k+q,σ ak,σ bq + H.c. (2)

Here, A is the sample area, and ak,σ is the Fermi operator for
an electron of wave vector h̄k, spin-valley-cone index σ , and
energy

Ekσ = h̄svF k, (3)

where s = ±1 is the cone index; bq is the Bose operator
for a substrate PA phonon of wave vector q and (direction-
dependent) frequency

ωq = vs(θ )q. (4)

As in Ref. [29], where a general form of the piezoelec-
tric acoustic-phonon–electron interaction was derived (and
compared to the general Fröhlich interaction with optical
phonons), we assume that we only have to deal with phonons of
momentum much smaller than the piezoelectric inverse lattice
spacing (elastic limit). The electron-phonon coupling is then
characterized by the q-independent vertex

γ PA
q = KR(θ )

[
παfsh̄

2vF vs(θ )

ε0(θ )

] 1
2

, (5)

where αfs = e2/(h̄vF ) � 2.2. It should be understood that,
in the absence of the substrate, we are in the usual Fermi
liquid regime of (doped) graphene. Quite generally, the
electromechanical coupling coefficient satisfies KR(θ ) < 1.
The general derivation of Eq. (5) is discussed in Ref. [29].

The coupling Eq. (5) enables a phonon-mediated electron-
electron interaction

V PA
ph (q,ω) = ∣∣γ PA

q

∣∣2
GPA

0 (q,ω), (6)

where

GPA
0 (q,ω) = 2ωq/h̄

ω2 − ω2
q + i0+ (7)

denotes the bare propagator of the surface acoustic phonons.
By including screening effects due to the charge carriers
in graphene, as described by the polarization 	0(q,ω) (see
Refs. [30,31]), we can define the total effective electron-
electron interaction in terms of an anisotropic dielectric
function ε(q,ω):

Veff(q,ω) = 2πe2

ε(q,ω)q

= v
(0)
q + V PA

ph (q,ω)

1 − [
v

(0)
q + V PA

ph (q,ω)
]
	0(q,ω)

. (8)

Here and in the following, we adopt the convention of referring
to q as a subindex or argument when the dependence on q
has circular symmetry. For low enough frequencies, typically
h̄ω � kBTBG, where TBG is the Bloch-Grüneisen temperature
[defined in Eq. (40)], the phonon-induced electron-electron

interaction adopts a q dependence similar to that of the
Coulomb interaction:

V PA
ph (q,ω) � −2

∣∣γ PA
q

∣∣2

h̄vsq
. (9)

By defining

εRPA(q,ω) = 1 − v(0)
q 	0(q,ω), (10)

we obtain for ω → 0

εRPA(q,ω) � εRPA(q,0), (11)

where the static dielectric function satisfies

εRPA(q,0) = 1 + kTF(θ )

q
(12)

for q < 2kF , where

kTF = 4αfskF

ε̄0(θ )
(13)

is the (anisotropic) Thomas-Fermi wave vector and kF is the
Fermi wave vector, the factor of 4 accounting for spin-valley
degeneracy.

We may also define the renormalized phonon propagator

G̃PA(q,ω) = GPA
0 (q,ω)

1 − V PA
ph (q,ω)	0(q,ω)

εRPA(q,ω)

. (14)

Then, Eq. (8) can be decomposed into an electron-electron and
an electron-phonon part [27,32]. We obtain [29]

Veff(q,ω) = v
(0)
q

εRPA(q,ω)
+

∣∣∣∣∣ γ PA
q

εRPA(q,ω)

∣∣∣∣∣
2

G̃PA(q,ω), (15)

FIG. 1. Equivalent RPA scheme for the effective electron-
electron interaction separated into an electron-electron Coulombic
part and an electron-phonon part with a screened vertex and
renormalized phonon propagator. In the second line, V RPA(q,ω) is
the first term of Eq. (15)
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TABLE I. Angle-averaged values of the electromechanical coupling coefficient K2
R appearing in Eq. (5), the effective dielectric constant ε̄0,

the sound velocity vs , the vertex strength γ PA
q [see Eq. (5)], the dimensionless coupling strength λe-ph defined in Eq. (17), and the ratio kTF/kF

for several materials. Numerical values of the elastic, piezoelectric, and dielectric tensors have been taken from Refs. [33–35] and references
therein.

Material Cut K2
R ε0 vs

(
cm
s

) ∣∣γ PA
q

∣∣2
(eV cm)2 λe-ph 4rs

GaAs (cubic) X-Y -Z 0.0015 6.9 2.70 × 105 1.71 × 10−20 0.0019 1.3
ZnO (6 mm) Z cut 0.016 4.8 2.71 × 105 2.70 × 10−19 0.029 1.8
ZnO (6 mm) X cut 0.0064 4.8 2.63 × 105 6.60 × 10−20 0.0074 1.8
AlN (6 mm) Z cut 0.0026 5.0 5.85 × 105 9.18 × 10−20 0.0046 1.8
AlN (6 mm) X cut 0.0048 5.0 5.81 × 105 1.66 × 10−19 0.0084 1.8
LiNbO3 (3 m) Z cut 0.0068 19 3.85 × 105 4.25 × 10−20 0.0032 0.46
LiNbO3 (3 m) Y cut 0.017 20 3.59 × 105 9.35 × 10−20 0.0077 0.44
LiNbO3 (3 m) X cut 0.019 20 3.60 × 105 9.80 × 10−20 0.0080 0.44
PZT-4 (6 mm) Z cut 0.027 350 2.26 × 105 5.37 × 10−21 7.0 × 10−4 0.025
PZT-4 (6 mm) X cut 0.0021 350 1.80 × 105 3.17 × 10−22 5.2 × 10−5 0.025

as shown diagrammatically in Fig. 1. We wish to emphasize
the importance of electronic screening of the electron-phonon
vertex shown in Eq. (15). This will strongly influence the role
of scattering processes involving low values of q.

B. Input parameters and main approximations

The input parameters of our study are those that characterize
the piezoelectric substrate, namely KR(θ ), vs(θ ), and ε0(θ ),
from which the electron-phonon interaction γ PA

q (θ ) is com-
puted [see Eq. (5)]. On the other hand, the graphene electron
system is characterized by its doping level as given by kF . A
dimensionless parameter λe-ph(θ ) characterizing the strength
of the coupling of Eqs. (5) and (9) can be obtained from
multiplying the resulting effective interaction (6) at q = kF

by the density of states at the Fermi energy,

D(EF ) = −	0(kF ,0) = 2kF

πh̄vF

, (16)

which leads to

λe-ph(θ ) ≡ V PA
ph (kF q̂,0)	0(kF ,0)

= 4

πh̄2vsvF

∣∣γ PA
q

∣∣2 = 4K2
R(θ )rs(θ ), (17)

where q̂ = q/q and the parameter

rs(θ ) ≡ αfs

ε0(θ )
(18)

characterizes the ratio between the interaction and kinetic
energies. This yields for the ratio between the piezoelectric
interaction and the residual static Coulomb repulsion [29]

λe-ph

λe-e
= K2

R, (19)

where

λe-e(θ ) = v
(0)
kF q̂	(kF ,0) = 4αfs

ε0(θ )
= 4rs(θ ) (20)

is the dimensionless electron-electron coupling strength in
substrate-screened graphene.

The electromechanical coupling coefficient KR(θ ), char-
acteristic of each piezoelectric material, can be measured in

SAW experiments. It depends on the material’s piezoelectric,
elastic, and dielectric tensors, as well as on its mass density.
In Table I we summarize angle-averaged values for selected
representative materials as computed from the data given in
Refs. [33–35].

For example, the materials considered in Ref. [4], namely
ZnO and AlN, have associated piezoelectric tensors that
are much larger than those of GaAs [36], which increases
the electron-phonon coupling by more than one order of
magnitude. But there exist piezoelectric materials whose
coefficients are even larger, such as, e.g., LiNbO3, BaTiO3, or
the PZT (lead zirconate titanate) PbTixZr1−xO3, among many
oxides with the perovskite structure and formula ABO3, which
tend to show ferroelectric properties, and they are sometimes
reminiscent of the layers between CuO2 planes in cuprate
high-temperature superconductors. Despite being more piezo-
electric, the dielectric tensors in these ferroelectrics are so
high that the interaction decreases [but not the ratio to the also
highly screened Coulomb repulsion; see Eq. (19)]. We recall
in this regard that, roughly, K2

R ∼ ê2/(ĉε̄0), where ê is a value
for the piezoelectric tensor and ĉ for the elastic tensor [37].

The point group of ZnO and AlN gives isotropic couplings
with the Z cut and therefore isotropic sound velocities. On
the other hand, their X and Y cuts are equivalent. This does
not happen, for example, in LiNbO3, whose K2

R(θ ) and vertex
values in the X, Y , and Z cuts are shown in Fig. 2 as an
example. For some graphs of the velocities in different cuts,
see, for example, Ref. [38]. Here the cut refers to the lattice
axis perpendicular to the surface; for a detailed description of
the cut terminology, see, e.g., Refs. [39,40].

In the previous subsection, we have introduced the approxi-
mation of assuming a flat interface and taking the elastic (long
phonon wavelength) limit for the piezoelectric, as expressed in
Eq. (5) and used in Ref. [29]. We will also make the common
assumption that the interface is large enough to permit the
neglect of geometrical effects due to finite-size boundaries.
This is expected to be a good approximation for system sizes
much larger than the length scales of the problem, namely k−1

F

and k−1
TF . In the discussion of analytical limits, as well as in the

tractable computation of scattering rates, we will often take
angle-averaged substrate parameters.
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FIG. 2. Some representative magnitudes for SAW phonons and
for two different materials with different symmetries (LiNbO3 and
ZnO), as a function of the angle within the crystal plane parallel to
the cut plane, in the X-Y -Z cuts (denoted between parentheses).
For the Z cut (X cut/Y cut), the zero angle corresponds to the
x axis (y axis/z axis) with the angle growing toward the y axis
(z axis/x axis). See Refs. [39,40] for a further account of the cut
language convention. Upper: electromechanical coupling coefficient.
Lower: electron-phonon vertex. The plots are obtained by processing
data for the elastic, piezoelectric, and dielectric tensors taken from
Refs. [33–35] and references therein.

III. PHONON SELF-ENERGY

As the piezoelectric coupling Eq. (2) enables the transfer of
energy between carriers in graphene and the phonon modes of
the substrate material, the latter acquire an extra decay rate due
to Landau damping. To assess the magnitude of this effect, we
proceed to estimate the self-energy of the substrate phonons
due to their interactions with graphene carriers. Substituting
the bare propagator (7) into (14), we obtain

G̃PA(q,ω) = 2ωq/h̄

ω2 − ω2
q − 2h̄−1ωq

∣∣γ PA
q

∣∣2 	0(q,ω)
εRPA(q,ω)

. (21)

In the phonon frequency range ω ∼ vsq � vF q in which
we will be mostly interested, we can approximate (see, e.g.,
Ref. [26])

	0(q,ω) � −D(EF )

(
1 + i

ω

vF q

)
(22)

in the RPA electron-electron dielectric function Eq. (10), so
that, in terms of the parameter λe-ph(θ ), the poles of G̃PA are
shifted to

ω̃q = ±vsq

(
1 − λe-ph

kF

q + kTF

) 1
2

∓ iλe-ph
vs

vF

vskF

2

(
q

q + kTF

)2

. (23)

In the long-wavelength limit (q � kF ), the leading order of the
ratio of the imaginary and real parts of the dressed phononic
energy goes like∣∣∣∣ Im(ω̃q)

Re(ω̃q)

∣∣∣∣ � 1

2
K2

R

vs

vF

(
q

kTF

)±1

, (24)

where (q/kTF)±1 � 1, the case kTF � q � kF being mean-
ingful only in those materials where kTF is substantially smaller
than kF . Due to the fact that vF /vs ∼ 300 and to the K2

R(θ )
values shown in Table I for typical materials, the lifetime of
the phonons can be neglected in all analyzed regimes. It can
also be shown that, near the quasiparticle poles, the residue
Zq is close to unity (i.e., the wave-function renormalization is
weak):

G̃PA(q,ω) � Zq
2ω̃q/h̄

ω2 − ω̃2
q
, (25)

Zq � 1 + λe−ph
kF

q + kTF
. (26)

Thus in the following we can assume the substrate phonons
to be well-defined, stable quasiparticles, and we will approx-
imate the renormalized phonon propagator (25) by the bare
one, Eq. (7).

IV. ELECTRON SELF-ENERGY

A. General expressions

We focus on the case of n-doped graphene (EF > 0) so that
we will be interested in the electron self-energies at energies
h̄ω in the upper Dirac cone. With an effective electron-electron
interaction Veff given in (15), the self-energy acquired by the
charge carriers in graphene (within the G0W approximation,
as indicated in Fig. 3) has the general form

�+(k,iωn) = −kBT
∑
s=±

∑
q

∑
iνn

F+s(k,k + q)

×Gel
0,s(k + q,iωn + iνn)Veff(q,iνn), (27)

where the subscript + refers to the conduction band (the
calculation for �− being analogous), the index s = ± is
summed over both bands,

Gel
0,s(k,ω) = (ω − Eks − μ)−1 (28)

FIG. 3. Electron self-energy in the G0W approximation; see
Eq. (27).
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denotes the (bare) electron propagator, iνn and iωn are, re-
spectively, the bosonic and fermionic Matsubara frequencies,
and the spinor overlap factor

F+s(k,k + q) = 1
2 (1 + s cos α) (29)

arises due to the sublattice structure of graphene [9], α being
the angle formed by k and k + q.

Expression (15) for Veff allows us to separate the self-energy
�+ into contributions due to electron-electron and electron-
phonon interactions. While the former has been considered in
Refs. [26,41], the contributions of graphene-intrinsic optical
or acoustic phonons, as well as optical substrate phonons, to
the electron self-energy have been studied in Refs. [21,26].
Thus in the present work we focus entirely on the effect of
piezoelectric acoustic substrate phonons, as expressed in the
self-energy

�PA
+ (k,iωn) = −kBT

∑
s=±

∑
q

∑
iνn

F+s(k,k + q)

×Gel
0,+(k + q,iωn + iνn)Ṽ PA

ph (q,iνn), (30)

where

Ṽ PA
ph (q,ω) ≡

∣∣∣∣∣ γ PA
q

εRPA(q,ω)

∣∣∣∣∣
2

G̃PA(q,ω). (31)

To sum over over Matsubara frequencies, we follow
Ref. [27] and approximate the vertex renormalization by
its static limit [see Eq. (12)] while neglecting the phonon
self-energy, i.e., in Eq. (30) we replace Ṽ PA

ph (q,ω) by

V̄ PA
ph (q,ω) ≡

∣∣∣∣∣ γ PA
q

εRPA(q,0)

∣∣∣∣∣
2

GPA
0 (q,ω). (32)

We arrive at the following retarded self-energy:

�PA
+ (k,ω) =

∑
s=±

∫
dq

(2π )2

∣∣∣∣∣ γ PA
q

εRPA(q,0)

∣∣∣∣∣
2

F+s(k,k′)

×
[

nB(h̄ωq) + nF (εk′s)

h̄ω + h̄ωq − εk′s + i0+

+ nB(h̄ωq) + 1 − nF (εk′s)

h̄ω − h̄ωq − εk′s + i0+

]
, (33)

where k′ stands for k′ ≡ k + q,

nB(h̄ωq) =
[

exp

(
h̄ωq

kBT

)
− 1

]−1

, (34)

nF (εk′s) =
[

exp

(
εk′s

kBT

)
+ 1

]−1

(35)

denote the Bose and Fermi distributions, respectively, and
the energies εks = Eks − μ are taken relative to the chemical
potential. We proceed by evaluating the real and imaginary
parts of Eq. (33) separately. Hereafter, we assume T � TF so
that the zero-temperature RPA dielectric function can be used
[30]. Since μ � EF , we can write

εks = h̄vF (ks − kF ). (36)

B. Imaginary part

The imaginary part of Eq. (33) acquires the form

Im �PA
+ (k,ω) = −π

∑
s=±

∑
t=±

∫
dq

(2π )2

∣∣∣∣∣ γ PA
q

εRPA(q,0)

∣∣∣∣∣
2

1 + s cos α

2

× [nF (h̄ωq + t h̄ω) + nB(h̄ωq)]

× δ(h̄ω + t h̄ωq − εk′s), (37)

where t=±1 corresponds to the absorption or emission of a
phonon, respectively.

Setting ω = εk+ in Eq. (37), that is, considering the
on-shell self-energy, yields the value h̄/(2τ ) for the decay
width of charge carriers with wave vector k. Here we are
assuming that the renormalization of the Fermi energy �EF =
Re�PA(kF ,0), as given by the pole of the dressed electron
propagator, is tiny, as can be checked in the next section [see
Eq. (58) and related ones]. To obtain analytical expressions
for the asymptotic behaviors of the on-shell self-energy, we
introduce the quasielastic approximation

δ(εk+ + t h̄ωq − εk′s) � δ(εk+ − εk′s) (38)

in Eq. (37), which is well justified since vF /vs ∼ 300. As we
are working with kF > 0, the s = − term is null. Hereafter, εk

will be equivalent to εk+, so that

εk = h̄vF (k − kF ). (39)

For magnitude estimates, we will assume εk > 0.
The relevant scale for finite-temperature effects in

graphene, where carrier densities are much smaller than in
conventional metals, is the Bloch-Grüneisen temperature TBG,
defined as the scale of the acoustic phonons in the Fermi sea,

kBTBG ≡ 2h̄vskF . (40)

1. Zero temperature, small k

Then at zero temperature (by which we mean T �
εk/kB,TBG), nF in (37) becomes a step function that cuts off
the momentum integration, while nB vanishes. Then, in the
limit εk � h̄vskTF [for which the largest contributing q in (37)
is q ∼ εk/h̄vs so that we can assert q � kTF] the quasiparticle
lifetime decays as ε3

k near the Fermi surface while depending
on the direction of the k vector:

− Im �PA
+ (k,εk) � 1

6π

|γ PA
⊥ |2

h̄vF k2
TF⊥

ε3
k

(h̄vs⊥)3

= λ⊥
24

(
kF

kTF⊥

)2(
vF

vs⊥

)2(
εk

EF

)3

h̄vF kF ,

(41)

where all the substrate-related constants, like λ⊥ ≡ λe-ph(θ⊥k)
of Eq. (17), have to be taken in the direction θ⊥k perpendicular
to k. The fast ε3

k decrease (as εk → 0) is due to the vertex
renormalization, since εRPA in Eq. (37) diverges for q � kTF

[see Eq. (12)].
Hereafter we remove the subindex ⊥ from the anisotropic

parameters in those expressions where they are assumed to be
angle-independent or only their order of magnitude matters.
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2. Zero temperature, larger k

For εk � h̄vskTF we obtain the result

− Im �PA
+ (k,εk) � λ

4
h̄vsk

∫ 1

0

y2
√

1 − y2(
y + kTF

2k

)2 dy

= λh̄vsk

4
f

(
kTF

2k

)
, (42)

f (x) = 3x + π

4
(1 − 6x2) + (3x3 − 2x) acosh(x−1)√

1 − x2
. (43)

This admits two regimes: for h̄vskTF � εk � EF ,

−Im �PA
+ (k,εk) � λkBTBG

8
f

(
2αfs

ε0

)
, (44)

while for εk � EF we obtain

−Im �PA
+ (k,εk) � πλvs

16vF

εk. (45)

Returning to the low-energy (εk � h̄vskTF) regime [see
Eq. (41)], we note that, without the vertex screening effect [that
is, setting εRPA → 1 in Eq. (37)], instead of the ε3

k behavior
one would find the linear εk dependence characteristic of a
marginal Fermi liquid,

−Im �PA
+(no scr)(k,εk) � λ⊥

8
εk, (46)

which (for materials such that kTF � kF ) behaves similarly to
the true self-energy in the range h̄vskTF � εk � h̄vskF , since
εRPA tends to unity for the momenta q � kTF dominating the
integral (37). We will see, however, that a small offset remains
due to the contribution of the screened low-q values (q � kTF).

Table I shows representative angle-independent material
parameters, including those that will be used for the numerical
calculations discussed in Sec. V. From Eqs. (41), (46), and
the parameter values shown in Table I, it is safe to conclude
that, at zero temperature, the damping rate due to electron-
phonon coupling is always much smaller than εk . Thus the
single-electron quasiparticles near the Fermi surface are well
defined.

3. Small k, low nonzero temperature

So far we have assumed zero temperature, i.e., kBT �
εk . At nonzero temperatures, the vertex renormalization is
fundamental to avoid logarithmic divergences. These occur
for the unscreened self-energy at any nonzero temperature
due to the divergent contribution of small-q values. Focusing
on the correctly screened self-energy, we consider first the
nonzero, low-temperature limit εk � kBT � 2h̄vskTF,kBTBG.
Again, only the perpendicular-to-k substrate-related constants
appear. We obtain

− Im �PA
+ (k,εk) � λ⊥kBT

(
kF

kTF⊥

)2(
T

TBG⊥

)2 7ζ (3)

2
, (47)

with 7ζ (3)/2 � 4.21. The essential independence from k of
the lifetime (which allows for the replacement k � kF ) is a
general property of the case εk � T . In those materials where
ε0 is so high that kTF � kF and therefore a temperature regime
exists such that εk � h̄vskTF � kBT � kBTBG, the T 3 law is

replaced by a ∼T log T behavior. Specifically, the asymptotic
expression reads

−Im �PA
+ (k,εk) � λ⊥kBT

(
kF

kTF⊥

)2

log

(
h̄vskTF

kBT

)
. (48)

4. Small k, high temperature

The high-temperature limit (TBG � T , while only εk � EF

is required), where phonons are nondegenerate, yields

−Im �PA
+ (k,εk) � λ

4
kBT

∫ 1

0

y
√

1 − y2(
y + kTF

2k

)2 dy

= λkBT

4
g

(
kTF

2k

)
, (49)

g(x) = −2 + πx + (1 − 2x2) acosh(x−1)√
1 − x2

. (50)

The logarithmic divergence of the function g at x → 0
becomes relevant in the limit k � kTF, where

−Im �PA
+ (k,εk) � λkBT

4

[
log

(
4k

kTF

)
− 2

]
. (51)

5. Comparison with graphene intrinsic phonons

Comparing Eqs. (41), (47), and (49) with the corresponding
limiting expressions for the electron self-energy induced by
the graphene-intrinsic deformation-potential acoustic (DA)
phonons [26], we see below that, for an important range of
parameter values, the inverse lifetime is dominated by the
piezoelectric substrate phonons.

For our estimates we borrow �DA
+ (k,εk) from Ref. [26].

Specifically, with a deformation constant D � 25 eV, and tak-
ing kF = [kF ] 106 cm−1 (this momentum unit corresponds to
a density of k2

F /π � 3.2 × 1011 cm−2), one obtains from (41)

Im �PA
+ (k,εk)

Im �DA+ (k,εk)
� 20

[kF ]2
λε2

0
εk

1 meV
(52)

for kBT � εk � h̄vskTF.
Likewise, at nonzero temperatures (εk/kB � T � TBG),

we have from (47)

Im �PA
+ (k,εk)

Im �DA+ (k,εk)
� 100

[kF ]2
λε2

0
kBT

1 meV
. (53)

Finally, at high temperatures (εk/kB � TBG � T ), one
obtains from (49) the k-independent ratio

Im �PA
+ (k,εk)

Im �DA+ (k,εk)
�

35 g
( 2αfs

ε0

)
[kF ]

λ. (54)

From these ratios we conclude that piezoelectric acoustic
phonons can dominate over deformation acoustic phonons in
an appreciable range of realistic material parameters, espe-
cially for small carrier concentrations. The smaller value of
D � 6.8 eV also found in the literature [42,43] would further
increase the relative importance of piezoelectric phonons
against intrinsic ones.
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C. Real part: Anisotropic Fermi velocity

For the real part of the self-energy, we have, from Eq. (33),

Re �PA
+ (k,ω) =

∑
s=±

∫
dq

(2π )2

∣∣∣∣∣ γ PA
q

εRPA(q,0)

∣∣∣∣∣
2

F+s(k,k′)

×
[
nB(h̄ωq) + nF (εk′s)

h̄ω + h̄ωq − εk′s

+ nB(h̄ωq) + 1 − nF (εk′s)

h̄ω − h̄ωq − εk′s

]
, (55)

where the denominators are to be understood as principal
values. Unlike for many-body effects directly caused by the
electron-electron interaction, this phonon contribution to the
electron self-energy tends to be negligibly small compared
to the Fermi energy. However, its derivatives are large. As a
result, the phonon-induced contributions to the Fermi velocity
renormalization are larger than those stemming from the direct
electron-electron interactions.

Since ∂ Re �PA
+ (k,ω)/∂(vF k) is, by a factor of vs/vF ,

smaller than ∂ Re �PA
+ (k,ω)/∂ω (see Ref. [44]), it suffices to

focus on the frequency derivative, in contrast to the case of
electron-electron interactions, where both derivatives matter
[27,45]. We thus approximate

ṽF (k̂) = vF

[
1 − ∂ Re �PA

+ (k̂kF ,ω)

∂ω

∣∣∣∣
ω=0

]−1

(56)

for the (direction-dependent) renormalization of the Fermi ve-
locity in graphene induced by piezoelectric acoustic substrate
phonons.

For further analysis, it us useful to separate Eq. (33) into
three terms,

�PA
+ = �

(ph)
+ + �

(el)
+ + �

(vac)
+ , (57)

where �
(ph)
+ contains just the Bose factor nB(h̄ωq), �

(el)
+

contains the Fermi factor nF (εk′s), and �
(vac)
+ contains the

remaining vacuum term. As in the previous subsection, angle-
independent material parameters are assumed in the following.

The real part of �
(vac)
+ at ω = 0 is independent of the Fermi

energy:

Re �
(vac)
+ (k,0) � − λ

16

vs

vF

[
h̄vF kc + h̄vF k log

(
kc − k

k

)]
,

(58)

where kc is a cutoff momentum of the order of the inverse
lattice spacing. Because of the small prefactor, Re �

(vac)
+ (kF ,0)

represents a weak correction to the chemical potential for all
relevant carrier densities, even for kc � kF . We will see that its
derivative can also be neglected because ∂ωRe �

(vac)
+ (kF ,0) �

(λ/4)(vs/vF )(1 + log kF /kc) � ∂ωRe �
(el)
+ (kF ,0).

At temperatures T � TBG, the term containing the Bose
factors Re �

(ph)
+ is exponentially small, while at temperatures

T � TBG it does not grow larger than a factor T/TBG times the
expression in Eq. (58). Hence we can also neglect ∂ωRe �

(ph)
+ .

Thus the only term that can affect the electronic properties
is Re �

(el)
+ (k,ω), which is likewise small in magnitude, at most

twice the term shown in Eq. (58), but it has a large derivative.

Note that here the quasielastic approximation (h̄ωq � εk′) is
not informative, since Re �

(el)
+ (k,ω) vanishes when h̄ωq is set

to zero.
The integral

∂ Re �
(el)
+ (k̂kF ,ω)

∂ω

∣∣∣∣
ω=0

= −
∑
s=±

∫
dq

(2π )2

∣∣∣∣∣ γ PA
q

εRPA

∣∣∣∣∣
2

F+s(k,k′)

× nF (εk′s)

[
1

(εk′s − h̄ωq)2
− 1

(εk′s + h̄ωq)2

]
(59)

can be computed by changing variables (dq → dk′, with k′ =
k + q) and performing the radial integral first by parts, with

u = k′nF (εk′s), dv = dk′

(εk′s ± h̄vsq)2
.

We arrive at a direction-dependent expression that integrates
over the Fermi surface:

∂ Re �
(el)
+ (k̂kF ,ω)

∂ω

∣∣∣∣
ω=0

= −
∫ 2π

0

dα

h̄vF (2π )2

∣∣∣∣∣γ
PA
k+q

εRPA

∣∣∣∣∣
2

×F+s(k,k + q)
2

h̄ωq
, (60)

where, as in (29), α is the angle between k and k + q.
After further averaging over the Fermi surface (k̂ direc-

tions), the ratio (56) becomes similar to the temperature
prefactor of the high-temperature damping (49),

ṽF = vF

1 + λ
4π

f
(

kTF
2kF

) , (61)

where, we recall, all variables are angle-averaged. Inspection
of Eq. (61) shows that the renormalization of the Fermi
velocity cannot exceed 3% even for K2

R ∼ 1, and KR is
usually much smaller. The result shown in Eq. (61) permits
us to confirm the validity of neglecting the vacuum and
phonon self-energy parts. A more accurate estimate of the
ratios between derivatives yields ∂ωRe �

(vac)
+ /∂ωRe �

(el)
+ =

O(vs/vF ) � 1, while ∂ωRe �
(ph)
+ /∂ωRe �

(el)
+ is O(vs/vF ) for

T � TBG and O(T/TF ) for TBG � T � TF .

D. Electron mobility

1. Transport lifetime

Within Boltzmann transport theory, the momentum (or
transport) relaxation time τ+tr(k) (where the subscript denotes
“transport” and + denotes the band) is calculated analogously
to the inverse lifetime in Sec. IV B, but with an extra angular
factor (1 − cos α) = q2/2k2 in the integrand, which increases
the weight of large-angle scattering processes. Specifically,
Eq. (37) is replaced by

h̄

2 τ PA+tr(k)
= π

∑
s=±

∑
t=±

∫
dq

(2π )2

q2

2k2

∣∣∣∣∣ γ PA
q

εRPA(q,0)

∣∣∣∣∣
2

1 + s cos α

2

× [nF (h̄ωq + tεk) + nB(h̄ωq)]δ(εk+ − εk′s),

(62)

125119-7



GONZÁLEZ, ZAPATA, SCHIEFELE, SOLS, AND GUINEA PHYSICAL REVIEW B 96, 125119 (2017)

where the quasielastic approximation has been made. The
inclusion of this additional q2 factor in the integrand improves
the quasielastic approximation, changes the power-law scaling
at low temperatures (by generating an extra factor T 2), and
corrects the lifetime with a constant factor at temperatures
greater than TBG.

2. Low temperature

For quasiparticle energies such that (εk/kB � T ), we find
(after angle averaging) results that are essentially independent
of εk , i.e., τ PA

+tr(k) � τ PA
+tr(kF ). In the low, yet nonzero, temper-

ature regime εk/kB � T � 2rsTBG, we obtain

h̄

2 τ PA+tr(kF )
� λkBT

8

(
kBT

h̄vskTF

)4
k2

TF

k2
F

∫ ∞

0
dx x4csch(x)

= λkBT

8

(
ε0

αfs

)2(
T

TBG

)4 93ζ (5)

2
(63)

[93ζ (5)/2 � 48.2], which should be compared to Eq. (47). The
shift from T 3 to T 5 behavior is due to the transport-induced
reduced weight (by a factor q2/2k2

F ) of the low-q values
dominating the inverse transport lifetime at low temperatures.

If the vertex screening is neglected, we still obtain a
convergent result, despite the temperature being nonzero,
because the low-q divergence is already suppressed by the
transport-associated angular weighting factor. We obtain

h̄

2 τ PA+tr(kF )(no scr)
� λ7ζ (3)

4
kBT

(
T

TBG

)2

, (64)

and we recall that the nontransport equivalent of this equation
is divergent, as discussed in Sec. IV B [see discussion before
(47)]. The limit (64) is coincident with the T 3 dependence
found in Ref. [43], where vertex screening in the particular
case of GaAs is not taken into account. The neglect of vertex
screening is acceptable in the temperature regime 2rsTBG �
T � TBG in those materials with 4rs � 1, because in that case
the integral in Eq. (62) is dominated by exchanged momenta
q such that kTF � q � kF , which are a little bit sensitive to
vertex screening. This intermediate regime of temperatures
does not exist for substrate materials such that 2rs ∼ 1.

3. High temperature

For the high-temperature range T � TBG, we have

h̄

2 τ PA+tr(kF )
� λ

2
kBT

∫ 1

0
x
√

1 − x2 dx = λ

6
kBT , (65)

to be compared with Eq. (49). The absence of a qualitative
change in the temperature dependence as we shift from
nontransport to transport lifetime is due to the relatively small
weight, at high temperatures, of the transport-reduced, low-q
processes.

Thus we see that the transport scattering rates are com-
parable to the previous imaginary self-energies except for an
extra (T/TBG)2 factor appearing at low temperatures due to
extra angular suppression of the otherwise dominant low-q
events. A similar comparison holds for the intrinsic acoustic

deformation-potential phonons, where

h̄

2
τDA
+tr (kF )−1 � 10

(
T

TBG

)2

Im �DA
+ (kF ,0) (66)

at low temperatures, while

h̄

2
τDA
+tr (kF )−1 � 1

2
Im �DA

+ (kF ,0) (67)

for high temperatures. In the last two equations, we are
comparing the results of Refs. [43] and [26] for the transport
scattering rate and the inverse lifetime, respectively.

4. Comparison with graphene intrinsic phonons

In analogy with Sec. IV B, we may compare the transport
rates due to deformation and piezoelectric phononic modes.
In the low-temperature limit (as before, [kF ] is kF in units of
106 cm−1),

τ PA
+tr(kF )−1

τDA+tr (kF )−1
� 200

[kF ]2
λε2

0
kBT

1 meV
, (68)

while at temperatures above TBG,

τ PA
+tr(kF )−1

τDA+tr (kF )−1
� 45

[kF ]
λ, (69)

independent of temperature. Upon inserting the specific mate-
rial parameters, Eq. (69) is in agreement with the calculations
of Ref. [43], where PA and DA transport rates are compared for
GaAs. Equations (68) and (69) must be compared to Eqs. (53)
and (54) of Sec. IV B, respectively. As in the nontransport
lifetime estimates presented therein, we note that piezoelectric
phonons dominate over deformation phonons at nonsmall
couplings and low densities. We recall that Ref. [43] used
a deformation constant D = 6.8 eV, quite smaller than the
value D = 25 eV [26] we have used here. That replacement
reduces 1/τDA by about a factor of 10 and makes the substrate
PA phonons relatively more important.

5. Mobility

Finally, in order to compute the electron mobility, we
average the momentum relaxation time [see Eq. (62)],

τtr ≡
∫

dε D(ε)τ+tr(k(ε))[−dnF (ε)/dε], (70)

and because the energy derivative peaks at EF while τ+tr(k)
varies slowly with k, one can write the classical Drude formula
for the mobility,

μ = e τ+tr(kF )

m∗ , (71)

in terms of τ+tr(k) computed at the Fermi level and the “effec-
tive mass” m∗ = h̄kF /vF of the graphene Dirac fermions.

V. NUMERICAL RESULTS

In the following, we present and discuss numerical results
for the various rates and mean free paths derived in Secs. IV B
and IV D. Unless otherwise stated, the numerical values of
this section are computed for ZnO substrates (Z cut), which
are isotropic (see Fig. 2) and whose parameters are λ = 0.03

125119-8



MANY-BODY EFFECTS IN DOPED GRAPHENE ON A . . . PHYSICAL REVIEW B 96, 125119 (2017)

FIG. 4. Imaginary part of the self-energy and inelastic-scattering
length of charge carriers in graphene on ZnO (Z cut) as a function
of the energy, εk/EF = (k − kF )/kF . Upper: Im �PA

+ for different
temperatures. The curves are valid for all densities. Lower: inelastic
mean free path l for different carrier concentrations at room
temperature (T = 300 K = 26 meV/kB ). The inset shows l at T = 0
for the same densities. The Bloch-Grüneisen temperature TBG is given
in Eq. (40). For this material, kBTBG = 0.0054EF (for all carrier
densities) and kTF/kF � 2 (thus TBG � h̄vskTF/kB ). For these three
densities, kBTBG = 0.2, 0.63, and 2 meV, while EF = 37.4, 117, and
374 meV.

and ε0 = 4.8, which implies kTF/kF � 2 and kBTBG/EF �
0.0054. Estimates for other substrate material parameters can
be readily obtained from inspection of the various analytical
limiting expressions derived in the previous section.

A. Imaginary part

In the upper plot of Fig. 4, we show the imaginary part of the
on-shell self-energy as a function of the parameter εk/EF > 0
for different temperatures. The curves are universal in the sense
that they are density-independent. The zero-temperature curve
shows, for small εk , the limiting ε3

k behavior of Eq. (41), which
arises due to the combined effect of screening and the phase-
space restrictions faced by the electrons when losing energy
via phonon emission. This restriction disappears when εk is
greater than any phononic energy, i.e., εk � kBTBG. Above
this threshold, the imaginary part of the self-energy becomes
energy-independent, as predicted by Eq. (44). At still higher

FIG. 5. Low-energy behavior of the imaginary part of the self-
energy at zero temperature. The solid, dashed, and dotted lines
correspond, respectively, to the exact values, the values without vertex
screening, and the values obtained (in the unscreened case) from the
linear λ/8 approximation of Eq. (46). Upper: graphene on ZnO (Z
cut). Lower: graphene on PZT-4 (Z cut), for which kBTBG/EF =
0.0045, kTF/kF � 0.025, and h̄vskTF/EF � 5.7 × 10−5. See Table I
for λ values.

energies (εk � EF , not shown in the upper plot of Fig. 4),
it increases linearly with the length of the constant energy
circumference at the quasiparticle energy Ek+ ∝ k. Such a
linear increase with k would appear with a negligible slope
in the tiny scale of εk ∝ (k − kF ) of the upper plot of Fig. 4.
Specifically, the slope is, in the dimensionless units of the
upper plot of Fig. 4, (λπ/16)(vs/vF ).

The upper plot of Fig. 4 also shows that a further increase
in temperature (T > TBG) smears these features due to phonon
excitation and electron heating near the Fermi energy, as
exemplified in Eq. (49). The effect of vertex screening in
the regime of low εk and low T can be appreciated in
Fig. 5 for both ZnO and (angle-averaged) PZT substrates
with its higher dielectric constant (and thus smaller λ). For
the sake of comparison, the graphics include also the linear
approximation (46), which holds better for PZT because its
large dielectric constant reduces the size of the phase-space
region where the screening of the phonon interaction by the
electron cloud (vertex correction) is really important. Unlike
for ZnO, in this material kTF is considerably smaller than kF ,

125119-9



GONZÁLEZ, ZAPATA, SCHIEFELE, SOLS, AND GUINEA PHYSICAL REVIEW B 96, 125119 (2017)

FIG. 6. Imaginary part of the self-energy and inelastic-scattering
length. Upper: Im �PA

+ as a function of T/TBG for different values of
εk/EF . Lower: l as a function of T for εk = 0.1 eV � 1160 K and
different doping levels. The inset shows the corresponding curves
for εk = 0. Here, EF � 185kBTBG. The values of TBG for these three
densities are 2.35, 7.35, and 23.5 K.

which leaves room for an intermediate range of εk values
for which the approximation εRPA � 1 is acceptable while
the linear behavior still holds. As announced in Sec. IV B,
after Eq. (46), there is an offset between the true imaginary
self-energy and the linear approximation due to the reduced
contribution of the screened low-q processes.

The upper plot of Fig. 6 shows the temperature dependence
of Im �PA

+ for fixed values of εk . At low temperatures (T � εk ,
hot electron regime), these decay linewidths are independent
of T . Note that in this figure the nonzero values of εk are
well above h̄vskTF and thus the limit (41) does not apply. At
higher temperatures (T > TBG), the linear behavior of Eq. (49)
is recovered.

B. Inelastic mean free path

The lower plots of Figs. 4 and 6 are devoted to the inelastic-
scattering mean free path, which is the inverse of the imaginary
part of the on-shell self-energy:

l(k) = h̄vF

2 Im �PA+ (k,εk)
. (72)

The lower plot of Fig. 4 shows values for l(k) as a function of
εk for three cases of typical doping conditions. Note that they
tend to coincide at small εk , as suggested by Eq. (49) (case
T > TBG), which predicts a doping-independent low-εk (k →
kF ) limit at nonzero temperatures. Finally, the inset of the
lower plot of Fig. 4 clearly displays the three energy regimes
that hold at zero temperature and which can be inferred from
Eqs. (41)–(45).

The temperature dependence of l is shown in the lower plot
of Fig. 6. A crossover from (T -independent) low-temperature
to (T −1) high-temperature behavior can be appreciated for
T ∼ TBG, in agreement with Eqs. (41) and (49). One must
note, however, that Eq. (41) does not truly apply to the low-
temperature sector of this graph, because here εk > h̄vskTF,
unlike the assumption in (41). This explains the discrepancy in
the density dependence. For this material, h̄vskTF takes values
0.2, 0.63, and 2 meV for the three listed densities, all much
smaller than the value εk = 100 meV considered there.

The inset shows the corresponding curves for εk = 0. A
clear crossover for T −3 to T −1 behavior is observed at T ∼
TBG, in agreement with Eqs. (47) and (49).

C. Density dependence

For a fixed value of k and at room temperature, Fig. 7
shows the variation of Im �PA

+ and of the mean free path as a

FIG. 7. Imaginary part of the self-energy and inelastic-scattering
length as a function of doping, for different materials, at fixed (room)
temperature and electronic state k = √

π × 1013 cm−2 (recall kF =√
πn). Upper: Im �PA

+ as a function of carrier density n. Lower: l as
a function of n in the same units for the same materials.
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FIG. 8. Electron mobility due only to piezoelectric acoustic
phonons and its comparison with that due to intrinsic phonons. Upper:
the mobility μPA as a function of the temperature, for several carrier
concentrations. Lower: the ratio μDA/μPA, where μDA is the mobility
obtained when only the deformation potential of intrinsic phonons
(with D = 25 eV) is included. The ratio between mobilities must be
increased by a factor (25/6.8)2 � 13.5 when the value D = 6.8 eV
is used [43]. The values of TBG for these doping levels are given in
the caption of Fig. 6, while TF = 434, 1360, and 4340 K.

function of the carrier density. A logarithmic divergence in the
linewidth, accompanied by a vanishing mean free path, is seen
to appear in the undoped regime, where the description of the
system employed in the present paper is not valid anymore.
This spurious low-doping behavior can be expected from an
extrapolation of Eq. (49) to low doping.

D. Mobility: Comparison with intrinsic phonons

In the upper plot of Fig. 8, we show the electron mobility
μ [see Eq. (71)] due only to piezoelectric phonons. The
T −5 and T −1 behaviors can be appreciated at low and high
temperatures, respectively, as expected from Eqs. (63) and
(65), taking into account Eq. (71) for the density dependence.

Finally, in the lower plot of Fig. 8 we compare the substrate-
induced mobility to that stemming only from graphene intrin-
sic phonons, with D = 25 eV. The total combined mobility due
to (piezoelectric and intrinsic deformation) acoustic phonons

is μ = (μ−1
PA + μ−1

DA)
−1

. Specifically, we plot the ratio between
the two inverse mobilities. The smaller value of D = 6.8 eV
reduces the intrinsic inverse mobility by an order of magnitude
and correspondingly increases the relative importance of

piezoelectric phonons. This ratio between transport scattering
rates shows two clear low- and high-T regimes with linear-in-T
and T -independent behaviors, respectively, in agreement with
Eqs. (68) and (69). At low and high temperatures, the relative
importance of the PA phonons increases with decreasing
density. There is an intermediate temperature regime in
which the density dependence is inverted. Thus we see that
the piezoelectric phonons dominate over a wide range of
temperatures and densities. If D = 6.8 eV is chosen for the
intrinsic phonons, then the momentum relaxation due to PA
phonons computed here prevails essentially always except
at very high temperature and density or for extremely low
temperatures.

VI. CONCLUSIONS

We have studied the effective interaction of charge carriers
in graphene on a piezoelectric substrate, as modified by the
acoustic phonons of the piezoelectric substrate. Our diagram-
matic approach takes into account the renormalization of both
phonon modes and carrier states due to the mutual interaction,
and it emphasizes the importance of all the involved screening
processes for a correct evaluation of the mean free path and
carrier mobility. We have obtained numerous analytical limits
as a function of carrier energy, density, and temperature,
which have allowed us to understand the trends shown by
the numerical results.

We may emphasize that the inverse mobility due to
piezoelectric acoustic phonons increases with carrier density
at high temperatures while it is a decreasing function of density
at low temperatures (see the upper plot in Fig. 8), the latter
trend being understandable in terms of increased electron
screening at high densities. On the other hand, the temperature
dependence of the inverse mobility is much more pronounced
at low temperatures.

When compared with the values obtained when only
intrinsic deformation phonons are taken into account, we find
that the contributions of the piezoelectric acoustic phonons to
the inverse lifetime and mobility dominate over a considerable
range of temperatures and doping levels, a parameter range
that becomes almost pervasive if low values of the deformation
coupling constant are chosen from the literature.

As our results are applicable to piezoelectric materials of
various lattice symmetries and interaction strengths, they will
be helpful in the development of electronic devices involving
graphene deposited on piezoelectric substrates. Among such
potential devices, we may mention the graphene field-effect
transistor on a piezoelectric substrate as studied experimentally
in Refs. [24] and [25] with PZT and LiNbO3, respectively. That
class of setups was also investigated as a possible basis for
the building of nonvolatile memories [46]. Finally, a suitable
understanding of the interaction between graphene electrons
and acoustic piezoelectric phonons will enhance applications
based on the use of piezoelectric surface acoustic waves
beneath a graphene layer.
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