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Separation of electron and hole dynamics in the semimetal LaSb
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We report investigations on the magnetotransport in LaSb, which exhibits extremely large magnetoresistance
(XMR). Foremost, we demonstrate that the resistivity plateau can be explained without invoking topological
protection. We then determine the Fermi surface from Shubnikov–de Haas (SdH) quantum oscillation
measurements and find good agreement with the bulk Fermi pockets derived from first-principles calculations.
Using a semiclassical theory and the experimentally determined Fermi pocket anisotropies, we quantitatively
describe the orbital magnetoresistance, including its angle dependence. We show that the origin of XMR in LaSb
lies in its high mobility with diminishing Hall effect, where the high mobility leads to a strong magnetic-field
dependence of the longitudinal magnetoconductance. Unlike a one-band material, when a system has two or
more bands (Fermi pockets) with electron and hole carriers, the added conductance arising from the Hall effect
is reduced, hence revealing the latent XMR enabled by the longitudinal magnetoconductance. With diminishing
Hall effect, the magnetoresistivity is simply the inverse of the longitudinal magnetoconductivity, enabling the
differentiation of the electron and hole contributions to the XMR, which varies with the strength and orientation
of the magnetic field. This work demonstrates a convenient way to separate the dynamics of the charge carriers
and to uncover the origin of XMR in multiband materials with anisotropic Fermi surfaces. Our approach can be
readily applied to other XMR materials.
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I. INTRODUCTION

Magnetoresistance (MR), i.e., the change induced by a
magnetic field in the electrical resistance [1], lies at the
core of data storage in computer hard drives [2] and of
other applications such as magnetic-field sensors [3,4]. Since
larger MRs can enhance the sensitivities of these devices,
searching for more materials with large MRs has remained
at the frontier of contemporary materials science research
[5–23]. Besides the giant MR (GMR) [2] and colossal MR
(CMR) [24] in magnetic thin films and compounds, extremely
large MR (XMR) was observed decades ago in nonmagnetic
materials such as bismuth [6] and graphite [7,8], though the
underlying mechanism is still under debate [8,25–27]. The
recent discovery of XMR in PtSn4 [9], PdCoO2 [10], NbSb2

[11], and WTe2 [12–14], and in particular, the revelation of
XMR in exotic topological Dirac [15–17] and Weyl [18–23]
semimetals, has triggered extensive research to uncover its
origin. More intriguingly, PtSn4 [25] and WTe2 [26] were also
found to be topological semimetals, implying the possible
relevance of topological protection for the observed XMR
[27]. Other mechanisms such as a magnetic-field-induced
metal-insulator transition (MIT) [28–33], electron-hole (e-h)
compensation [12,18,27,34], and forbidden backscattering at
zero field [15] have also been considered as possible origins
for XMR.

Recently, the rare-earth monopnictides LnX (Ln =
La, Y, Nd, Ce and X = Sb, Bi) [27,34–49] were added to
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the family of XMR materials. These materials, with a rocksalt
cubic crystal lattice, exhibit typical hallmark XMR behavior
such as power-law magnetoresistance and magnetic-field-
induced turn-on behavior as a function of temperature. Due
to their simple crystalline structure and possible topological
nature [27,39,40], these materials represent good candidates
for exploring the origin of XMR. The observed XMR in LaSb
has been attributed to a magnetic-field-induced MIT [27,35],
e-h compensation [27], and high mobility of the Dirac-like
bulk electronic bands [42].

Here, we aim to uncover the origin of the XMR in
LaSb. Since previous transport [27,35] and angle-resolved
photoemission spectroscopy (ARPES) [39] experiments on
rare-earth monopnictides have raised the possible role of the
surface states in the observed XMR, we first address the
surface versus bulk issue in the magnetoresistance of our LaSb
crystals. We demonstrate that the resistivity plateau at low
temperatures, which was considered a signature of surface
states [35], can be explained as a natural consequence of
Kohler’s rule scaling [50]. We show that the Fermi surfaces de-
rived from our Shubnikov–de Haas (SdH) quantum oscillation
measurements are in fact bulk Fermi pockets instead of surface
ones. Furthermore, these materials have ellipsoidal electron
Fermi pockets elongated along the � − X direction [27,35,36],
which can result in an angle-dependent magnetoresistance
[36,37,44,45] due to the anisotropic effective mass that governs
the mobility of the charge carriers. Hence a quantitative
analysis of the angle dependence of the magnetoresistance may
enable us to reveal the role of each Fermi pocket on the XMR.
We demonstrate here that all Fermi pockets play important
roles in the observed XMR and their relative contributions
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FIG. 1. (a) Temperature dependence of the resistivity ρ(T ) of sample A at various magnetic fields. Inset: schematic showing the definition
of the angle θ for the magnetic-field orientation. The magnetic field rotates in the (100) plane while the current flows in the [010] direction;
i.e., they are always perpendicular to each other. (b) Kohler’s rule scaling of ρ(T ) presented in (a). The symbols are the experimental data and
the solid line is a fit to MR ∼ (H/ρ0)1.71. (c) Temperature dependence of the resistivity at μ0H = 0 T and μ0H = 9 T and their differences.
The solid lines are fits to Eq. (1) with c = 2.5 × 10−10 [� cm/T]1.71 and m = 1.71.

vary with the strength and orientation of the magnetic field.
This work also indicates that the popular isotropic two-band
model with e-h compensation is insufficient to describe an
anisotropic multiband material.

We measured the resistivity of LaSb single crystals as a
function of temperature as well as the strength and orientation
of the magnetic field. The data can be quantitatively described
with a semiclassical theory for an anisotropic system. We find
that both electrons and holes have very high mobilities. More
importantly, the magnetoresistivity is found to be nearly equal
to the inverse of the longitudinal magnetoconductivity. This not
only allows us to differentiate the contributions of electrons
and holes but also to uncover the role of the Hall effect for
the observed XMR: The latter controls the measurable portion
of the XMR enabled by the longitudinal magnetoconductivity.
The full potential of XMR is unmasked with a diminishing
Hall effect. That is, a high mobility with diminishing Hall
effect is responsible for the occurrence of XMR in LaSb.
In this multiband material, every band plays an important
role and the overall XMR reflects the contribution from
all bands. We demonstrate that investigation on anisotropic
magnetoresistance can provide a convenient way to separate
the dynamics of the charge carriers and to uncover the origin of
XMR in multiband materials with anisotropic Fermi surfaces.
This revealed mechanism can account for the XMR observed
in other semimetals [9–14,35–49].

II. MATERIALS AND METHODS

Crystal growth and characterization. Single crystals of
LaSb were synthesized in tin flux following the procedures
in Ref. [35]. La powder (Alfa Aesar, 99.9%), Sb spheres (Alfa
Aesar, 99.999%), and Sn pieces (Alfa Aesar, 99.999%) were
loaded into an aluminum oxide crucible in a molar ratio of
1.5:1:20. The crucible with its top covered by a stainless steel
sieve was then sealed in an evacuated silica ampoule. The
sealed ampoule was heated to 1050 ◦C over 10 h, homogenized
at 1050 ◦C for 12 h, and then cooled to 700 ◦C at the rate of
2 ◦C per hour. Once the furnace reached 700 ◦C, the tin flux

was removed from the crystals using a centrifuge. Well-faceted
crystals were collected on the stainless steel sieve. The crystal
structure of the compound was verified by single-crystal x-ray
diffraction at room temperature using a STOE IPDS 2 T
diffractometer using Mo Kα radiation (λ = 0.710 73 Å) and
operating at 50 kV and 40 mA. The structure was solved by
direct methods and refined by full-matrix least squares on F 2

using the SHELXTL program package [51].
Resistivity measurements. We conducted dc resistivity

measurements on two LaSb crystals (sample A and sam-
ple B) in a Quantum Design PPMS-9 using constant
current mode (I = 4 mA). The dimensions of the crys-
tals are 223.33 μm (w) × 138.78 μm (d) × 790 μm (l) and
273.37 μm (w) × 218.93 μm (d) × 600 μm (l) for samples A
and B, respectively. The electric contacts were made by
attaching 50-µm-diameter gold wires using silver epoxy,
followed with baking at 120 ◦C for 20 min. In order to avoid
sample degradation, the contacting operation was carried out
in a glovebox with inert gas. Angular dependence of the
resistance was obtained by placing the sample on a precision,
stepper-controlled rotator with an angular resolution of 0.05◦.
The inset of Fig. 1(a) shows the measurement geometry
where the magnetic field H (θ ) is rotated in the (100) plane
and the current I flows along the [100] direction, such that
the magnetic field is always perpendicular to the applied
current I . The resistivity versus temperature ρ(T ) curves at
various magnetic fields were constructed by measuring ρ(H )
at various fixed temperatures. We define the magnetoresistance
as MR = (ρ − ρ0)/ρ0 where ρ and ρ0 are the resistivities at a
fixed temperature with and without the presence of a magnetic
field, respectively.

First-principles calculations. The electronic structure cal-
culations were carried out within density functional theory
(DFT) using the all-electron, full potential code WIEN2K [52]
based on the augmented plane wave plus local orbital (APW +
lo) basis set [53]. The Perdew-Burke-Ernzerhof (PBE) version
of the generalized gradient approximation (GGA) [54] was
chosen as the exchange correlation potential. Spin-orbit cou-
pling (SOC) was introduced in a second variational procedure
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[55]. A dense k mesh of 34 × 34 × 34 was used for the
Brillouin zone (BZ) sampling in order to check the fine
details of the influence of spin-orbit coupling on the electronic
structure. The product RmtKmax of the atomic sphere radius
Rmt and the plane wave cutoff parameter Kmax was chosen to
be 7.0 for all the calculations. The Rmt were 2.5 a.u. for both
La and Sb.

III. SURFACE VERSUS BULK TRANSPORT

Since LaSb was predicted to be a topological insulator [56],
Tafti et al. [35] attributed the XMR to surface states, backed
by the observation of a resistivity plateau at low temperatures
analogous to that in the topological insulator SmB6 as well
as the quasi-two-dimensional (2D) Fermi surfaces determined
through quantum oscillation measurements. Assuming surface
dominance in the conductance and using the lattice constant of
6.5 Å [27] as the thickness for the surface layer, we derived the
sheet resistance for sample A at the plateau temperature regime
to range from 1.2 m� at 1 T to 63 m� at 9 T. These values
are well below the theoretically predicted sheet resistance
(∼30 �) for perfect graphene that has Dirac cones and is a
ballistic conductor [57]. On the other hand, the surface in a
topological material can have strong coupling with the bulk,
enhancing the surface related conductance, e.g., by increasing
the conductance of near-surface layers [39]. Below, we tackle
the issue of surface versus bulk conductances in LaSb. We
will show that bulk transport can in fact account for both the
resistivity plateau and anisotropic Fermi surfaces, enabling us
to confidently separate the dynamics of electrons and holes in
the bulk, which is crucial to uncovering the origin of the XMR.

A. Understanding the resistivity plateau through
Kohler’s rule scaling

A signature of the XMR phenomenon is the so-called
turn-on temperature behavior: When the applied magnetic
field is above a certain value, the resistivity versus temperature
ρ(T ) curve shows a minimum at a field-dependent temperature
Tm. For T < Tm, the resistivity increases dramatically with
decreasing temperature while for T > Tm, it has a metallic
temperature dependence similar to that in zero field. As
presented in Fig. 1(a) for sample A, the magnetoresistance
of LaSb crystals displays the same temperature behavior: The
ρ(T ) curve obtained at μ0H = 1 T or higher shows a dip
at a field-dependent temperature. At very low temperatures
(T < 15 K) the resistivity begins to saturate, forming a plateau
in the ρ(T ) curve, as clearly shown in Fig. 1(c) where the
temperature is plotted in a logarithmic scale.

Since magnetic-field-induced MIT has been considered as
a possible origin for the XMR in graphite [28], Tafti et al.
[35] attributed the turn-on temperature behavior in LaSb to
a MIT. This MIT interpretation was adopted by other groups
to account for the XMR in both rare-earth monopnictide [43]
and other materials, including NbAs2, TaAs2, TaSb2, and ZrSiS
[31–33]. Below we use Kohler’s rule scaling approach, which
was successfully employed in WTe2 by Wang et al. [50], to
reveal the origin for both the turn-on temperature behavior and
the resistivity plateau.

According to Wang et al., ρ(T ) curves obtained for different
magnetic fields follow Kohler’s rule scaling MR = c(H/ρ0)m,
where α and m are sample-dependent constants. We found that
Kohler’s rule scaling can account for the ρ(T ) relationship in
LaSb, with c = 2.5 × 10−10 (� cm/T)1.71 and m = 1.71, as
shown in Fig. 1(b). We can also rewrite the Kohler’s rule
scaling as [50]

ρ(T ,H ) = ρ0 + cHm/ρ0
m−1. (1)

The second term is the magnetic-field-induced resistivity
�ρ. That is, the resistivity of a sample in a magnetic field
consists of two components, ρ0 and �ρ. Since �ρ ∼ 1/ρm−1

0 ,
it has a temperature dependence opposite to that of the first
term, ρ0. The competition of ρ0 and �ρ with changing
temperature results in a possible minimum at Tm in the total
resistivity ρ(T ,H ). Figure 1(c) showcases how Eq. (1) can
lead to the noted turn-on behavior, where the resistivity at
μ0H = 0 T and μ0H = 9 T as well as its difference �ρ =
ρ(T , 9 T) − ρ0 are presented.

As demonstrated by Wang et al. [50] for WTe2, one
can conveniently use Kohler’s rule scaling to elucidate other
turn-on behavior related features such as the magnetic-field
dependence of Tm and the temperature dependence of the
resistivity minima (ρm). Here, we show that Kohler’s rule
scaling can also describe the resistivity plateau, whose origin
was previously considered within a two-band model by Guo
et al. [34] and Sun et al. [38]. As presented in Fig. 1(c),
the experimental data at μ0H = 9 T, including the resistivity
plateau, can be fitted well by Eq. (1) with derived values of c

and m from Kohler’s scaling and the experimentally obtained
ρ0. Since ρ0 is the only temperature-dependent variable in
Eq. (1), the nearly perfect fits in Fig. 1(c) indicate that the
resistivity plateau originates from the temperature dependence
of ρ0. Following Eq. (1), at low temperatures �ρ � ρ0; thus
ρ(T ,H ) ≈ �ρ ∼ 1/ρm−1

0 . Since ρ0 is insensitive to tempera-
ture in the low-temperature regime, a plateau is expected in the
total resistivity. Hence the resistivity plateau at high magnetic
fields originates from the temperature-insensitive resistivity at
zero field. Since both the resistivity plateau and the turn-on
temperature behavior can be derived using the same Kohler’s
rule scaling, they should represent behavior originating from
the same region of the crystal, i.e., either the bulk or the surface
states. This excludes the possibility that the turn-on behavior
and the resistivity plateau [27,35] separately arise from the
bulk and surface states of the crystal, respectively. Thus we
can safely conclude that the resistivity plateau in LaSb at low
temperatures is a bulk property only.

B. Revealing the bulk origin of the Shubnikov–de Haas
oscillations

Although theory predicts that the rare-earth monopnictides
can be topological insulators or semimetals [56], ARPES
experiments from various groups have reached differing
conclusions: multiple Dirac-like surface states near the Fermi
level were observed in LaSb [39] and LaBi [39,40] and their
odd number suggests these are topological materials, with
Niu et al. [39] concluding that the surface and near-surface
bulk bands likely contribute strongly to the XMR in these two
materials. However, Wu et al. [41] found that the dispersion
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FIG. 2. (a) Projection of the calculated Fermi pockets in the magnetic-field rotation plane—the (100) plane. (b) A typical resistance versus
magnetic-field curve obtained for sample A at low temperatures, which shows Shubnikov–de Haas (SdH) oscillations at high magnetic fields.
The inset is the oscillatory component after subtracting a smooth background. (c) Fast Fourier transform (FFT) analysis of the SdH oscillation
in the inset of (b). (d) FFT amplitude versus frequency curves for field orientations at angles from θ = 91◦ to 271◦ in step sizes of 10◦. (e)
Angle dependence of the SdH oscillation frequencies. Symbols are experimental data and lines are fits to the equations described of the angle
dependences for Fα , Fβ , Fγ . The darker symbols and lines represent the fundamental frequencies assignable to the Fermi pockets α1, α2, β,
γ . The lighter symbols and the dashed lines are their corresponding higher harmonics (up to the fourth one for the α1, α2, and β with a few
second harmonics for γ ). The bicolored symbols represent frequencies that could result from two different Fermi pockets (see text).

of the surface states resembles a Dirac cone with a linear
dispersion for the upper band, separated by an energy gap
from the lower band that follows roughly a parabolic dispersion
instead. On the other hand, other ARPES results reveal that
both LaSb [42] and YSb [46] are topologically trivial, as they
did not observe surface states, with a bulk band structure
consistent with band theory. For a topological material whose
surfaces could be very conductive, its electrical conductance
can come from both the bulk and the surface states.

We conducted both angle-dependent SdH oscillations
measurements and first-principles calculations on LaSb. In
previous SdH oscillation experiments on LaSb [27,35] and
LaBi [36], the current flowed in the rotation plane of the
magnetic field. Such a configuration may lead to ambiguity
in determining the oscillation feature when the field direction
is near or parallel to that of the current, where the Lorentz
force is weak or diminishes. To mitigate this effect, in our
experiments the current flow is perpendicular to the field rota-
tion plane as shown by the schematic in the inset of Fig. 1(a)
and hence the Lorentz force and the orbital magnetic field
remain unchanged under varying magnetic-field orientation
[48].

Figure 2(b) shows a typical ρ(H ) curve at a low temperature
(T = 2.5 K) and at a specific magnetic-field orientation (θ =
121◦). SdH oscillations can be seen at high fields. The
inset of Fig. 2(b) shows the oscillations after subtracting a
smooth background from the ρ(H ) curve. The amplitude
of the oscillations does not decrease monotonically with
decreasing field as demonstrated in Fig. 2(b). Instead the
observed beating behavior indicates that the oscillations
contain more than one frequency. If the oscillations originated
from the surface states, we would expect to see up to two
frequencies in case the side surfaces of the crystal do not have
exactly the same states as those of the top/bottom surfaces.
However, fast Fourier transform (FFT) analysis shown in
Fig. 2(c) reveals more than two frequencies. Furthermore,
FFT results presented in Fig. 2(d) over a wide range of
field orientations show more frequencies than those that can
be described by the angle dependence of the SdH oscilla-
tion frequency of 2D Fermi surfaces, F ∼ 1/ cos(θ − nπ/2)
[27,35,36]. Thus we need to include the contributions from the
bulk.

The bulk electronic band structure and Fermi surface
of LaSb were investigated more than three decades ago
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[58–60] and also reported in recent publications [27,35,42].
As shown in the projection on the ky-kz plane in Fig. 2(a)
and in the three-dimensional (3D) plot in Fig. 3(b), the bulk
Fermi surface consists of electron pockets centered at X

and elongated along the � − X direction in addition to two
hole pockets centered at �. We could observe up to five
fundamental frequencies from the bulk Fermi surface with
our current–magnetic field configuration given in the inset of
Fig. 1(a). In Fig. 2(c) we indeed can identify four fundamental
frequencies and their higher harmonics. Applying the same
analysis procedure to the frequencies of the SdH oscillations
obtained at other angles, we derive the angle dependences of
the four fundamental frequencies. The results are presented
as dark blue, green, red, and purple solid circles in Fig. 2(e)
and labeled as Fα1, Fα2, Fβ , and Fγ (where α denotes the
electron surfaces and β, γ the hole surfaces). Their higher har-
monics are presented with the same symbols but with lighter
colors.

Although we obtained exactly the same frequency of 212 T
for H ‖ [001] and H //[010] as previously reported [27,35], the
anisotropy of ∼4 for Fα1, Fα2 and the observation of Fβ and
Fγ exclude 2D surface states to be (solely) responsible for the
observed SdH oscillations. On the other hand, the anisotropy
for Fα1, Fα2 is nearly the same as that of the bulk electron
pockets revealed by ARPES [42] and de Haas–van Alphen
(dHvA) oscillation [58,59] experiments.

In order to better understand the data in Fig. 2(e), we
calculated the angle dependence of the SdH oscillation
frequencies from band theory for the bulk Fermi pockets. As
presented in Figs. 3(c) and 3(d), the α1 and α2 electron pockets
and the β and γ hole pockets produce SdH oscillations with
angle dependences very close to those in Fig. 2(e): We obtain
an anisotropy of 4.25 and a minimum frequency of 225 T for
the electron pockets. The calculated angle dependences for

all the α1, α2, β, and γ pockets agree well with experimental
data, as shown in Fig. 3(e), where the calculated frequencies
are multiplied with a scaling factor close to 1, indicating a
slight deficiency of the DFT-derived Fermi surface.

We note that the frequencies expected for the electron
pocket α3 in Fig. 3(c) could not be identified from the
experimental data in Fig. 2(e), similar to that found in the
dHvA data [58,59]. One interpretation for this absence is that
the frequencies for the electron pocket α3 in LaSb are about
twice that of the hole pocket β and hence hidden by the second
harmonic of the latter. On the other hand, recent work on YSb
revealed an alternative explanation [48]: The current flows
along the long axis of the elliptical α3 Fermi pocket, and hence
the mobility of the associated electrons, is low [see discussions
below: The mobility (μ‖) of the electrons from the α3 Fermi
pocket is a factor of ∼16 (=λ2

μ) smaller than that (μ⊥) of
the α1 and α2 Fermi pockets]. Since the oscillation amplitude
depends exponentially on the mobility, δρ ∼ e−1/μH , the SdH
quantum oscillations from the α3 Fermi pocket could be
below the measurement sensitivity level associated with our
maximum magnetic field of 9 T.

Based on the above discussions we can confidently con-
clude that the SdH oscillations observed in our LaSb crystals
are solely from the 3D bulk Fermi surfaces, with Fα1, Fα2, Fβ ,
and Fγ from the electron pockets α1 and α2 and hole pockets β

and γ . In Fig. 2(e) all the detectable frequencies from the FFT
analysis can be assigned to these four fundamental frequencies
and their higher harmonics. We see that some frequencies can
also originate from more than one Fermi pocket.

The experimental data presented in Fig. 2(e) yield a
complete picture of the anisotropy of the bulk Fermi surface
in LaSb: the electron pockets are highly anisotropic while
the hole pockets are nearly isotropic. Quantitatively, the angle
dependence of Fα1, Fα2 can be fit with

Fα = F0/

√
cos2[θ − (n − 1)π/2] + λ−2

μ sin2[θ − (n − 1)π/2],

where F0 = 211.5 T, λμ = 4.1, and n = 1, 2 for the α1, α2

pockets, respectively.
Since the oscillation frequency F is proportional to the ex-

tremal orbit area A = π (ks
F )2/

√
cos2θ + λ−2

μ sin2θ with λμ =
kL
F /ks

F and kL
F and ks

F being the semimajor and semiminor axes
of the elliptic Fermi pocket. Using the Onsager relation F =
(φ0/2π2)A with φ0 being the flux quantum [27], we obtain
the short Fermi vector ks

F = (2πF0/φ0)1/2 = 8.02 × 106 cm−1

and the long Fermi vector kL
F = λμks

F = 3.288 × 107 cm−1

for the electron ellipsoid, corresponding to a density of
7.134 × 1019 cm−3 for each pocket and a total electron density
of 2.14 × 1020 cm−3. This value is significantly larger than the
previously reported one (1.6 × 1020 cm−3) [27], although the
values of their F0 and the short kF are nearly the same as ours.
Note that we used n = kL

F (ks
F )2/3π2 to calculate the density

rather than the typically used n = k3
F /3π2 for a spherical

Fermi surface [15].
The frequencies for the two hole pockets show a slight

angle dependence with a fourfold symmetry. Mathematically,

we can fit the data for the β and γ pockets, respectively, with

Fβ = 430/
√

cos22θ + 1.04−2sin22θ

and

Fγ = 890/

√
cos2(2θ − π/2) + 1.23−2sin2(2θ − π/2).

The “anisotropy” of 1.04 and 1.23 for the β and γ pockets is
much smaller than that (4.1) of the α pockets. To calculate the
hole density we treat both β and γ pockets as spheres with the
average frequencies of 438 and 995 T, corresponding to hole
densities of 5.186 × 1019 and 1.774 × 1020 cm−3, respectively.
Thus the total hole density is 2.29 × 1020 cm−3, which is ∼6%
higher than the electron density, indicating that LaSb is indeed
a nearly compensated semimetal, consistent with the ARPES
finding on the electron-hole ratio [42].
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FIG. 3. (a) Electronic band structure for LaSb obtained from first-principles calculations. (b) Three-dimensional (3D) plot of the calculated
Fermi surface. (c) Angle dependence of the calculated SdH oscillation frequencies in the (100) plane for all five Fermi pockets. (d,e) Comparison
of the experimental (symbols) and the calculated values. In (e) the calculated curves are scaled by the factor listed and presented as dashed
lines to show that their angle dependences are the same as those of the experimental data.

IV. SEPARATION OF THE BULK ELECTRON
AND HOLE DYNAMICS

Figure 4(a) presents the magnetic-field dependence of the
sample resistivity ρ(H ) at T = 3 K and H ‖ [001]. As shown
in the inset, this sample has a large MR of 4.45 × 104%
at μ0H = 9 T. At high magnetic fields, ρ(H ) follows a
power-law dependence with an exponent of 2, consistent with
that reported in other XMR materials [12,50]. Such a quadratic
relationship that implies a nonsaturating magnetoresistance
can be derived from the isotropic two-band model with e-h
compensation [12], which has become the most prevalent
explanation for the origin of the XMR [12,27,34,36,37].
Indeed, ARPES experiments [42] and our SdH oscillation
measurements (Sec. III B) reveal a nearly perfect e-h com-
pensation in LaSb. We can also use the two-band model
to fit ρ(H ) of our LaSb crystal, with the derived physical
parameters (ne = 9.03 × 1019 cm−3; nh = 8.77 × 1019 cm−3;
μe = 0.673 m2 V−1 s−1; μh = 0.639 m2 V−1 s−1) very close to
those reported in Ref. [27]. Although the ne/nh ratio does
indicate a nearly compensated nature, the absolute values of
the ne and nh are less than half of those determined by the SdH
experiments in Sec. III B. Furthermore, the isotropic two-band

mode cannot account for the fourfold angle dependence of
the resistivity ρ(θ ), as delineated in Fig. 4(b). Although the
surface states of a topological material such as SmB6 could
induce a similar fourfold angular magnetoresistance [61,62],
the anisotropy in Fig. 4(b) shows that nearly perfect fourfold
symmetry should not arise from the crystal surfaces, since the
crystal’s width (223.33 μm) is much larger than its thickness
(138.78 μm). ARPES experiments [42] have revealed that
LaSb is topologically trivial. Also, analysis on the resistivity
plateau and quantum oscillations in Sec. III clearly revealed
their bulk origin.

The magnetoresistance of a material with a bulk anisotropic
Fermi surface can also vary with magnetic-field orientation
due to the anisotropic mobility [63,64]. Strong anisotropy
in the magnetoresistance was observed in XMR materials
such as bismuth [63,64] and graphite [65] as well as in
WTe2 [66]. As presented in Fig. 2(a), which shows the
projection of the calculated Fermi pockets in the magnetic-field
rotation plane, LaSb has two pairs of elongated electron
Fermi pockets α1 and α2 in the ky-kz plane, and hence an
anisotropic magnetoresistance is expected when the magnetic
field is rotated in this plane. In order to correctly describe the
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FIG. 4. Magnetic-field (a) and angle (b) dependences of the
resistivity of sample A at T = 3 K. Symbols are the experimental
data and solid lines are fits to Eq. (2). Inset of (a) shows the MR, with
the dashed line presenting a quadratic field dependence.

magnetoresistance anisotropy, we need to consider the effects
of the elongated Fermi pockets.

For a nontopological material with a bulk ellipsoidal
electron Fermi surface, the longitudinal magnetoresistivity
with current flowing along the third axis is given as follows
[64]:

ρ33 = 1

σ33 + δσ33
, (2)

where σ33 and δσ33 are the respective longitudinal magneto-
conductivity and the additional magnetoconductivity induced
by the Hall effect in the current flowing direction, given as

δσ33 = σ12σ23σ31 + σ13σ21σ32 − σ11σ23σ32 − σ22σ13σ31

σ11σ22 − σ12σ21
,

(3)

σij = σ e0
ij

1 + H 2μ3[μ2cos2θ + μ1sin2θ ]
, (4)

where σ e0
11 = ne(μ1 + H 2cos2θμ1μ2μ3); σ e0

22 = ne(μ2 + H 2

sin2θμ1μ2μ3); σ e0
33 = neμ3; σ e0

12 = σ e0
21 = neH 2cosθsinθ

μ1μ2μ3; σ e0
13 = −σ e0

31 = −neH sinθμ1μ3; and σ e0
23 =

−σ e0
32 = neHcosθμ2μ3. Here n is the electron density; μ1,

μ2, and μ3 are the mobilities along the three axes of the
ellipsoid. The magnetic field rotates in the 1-2 plane and θ is

the angle of the magnetic field tilted away from the first axis.
Equations (2)–(4) are applicable to an ellipsoidal hole pocket
by changing the sign of both the charge e and the mobility.
They can also be implemented for the case of a spherical Fermi
pocket by assuming μ1 = μ2 = μ3. Equation (4) indicates
that the magnetoconductivity of each Fermi pocket is hence
determined by four parameters (n, μ1, μ2, and μ3).

LaSb has one electron band α with three orthogonal Fermi
pockets (α1, α2, and α3) and two hole bands β and γ [see
Figs. 2(a) and 3(b)]. In order to account for the measured
magnetoresistivity, we need to include contributions from
all five Fermi pockets, i.e., to replace the σij in Eq. (4)
with σT

ij = ∑
k σ k

ij , where k = α1, α2, α3, β, and γ . Once
the ratio of the ellipsoid’s semimajor and semiminor axes
kL
F and ks

F is known, the relationship of the mobility along
the long axis μ‖ and the short axis μ⊥ can be described
as μ⊥/μ‖ = m‖/m⊥ = (kL

F /ks
F )2 = λ2

μ, where m‖ and m⊥
are the effective masses along the long and short axes [65].
That is, only one of the three mobilities is an independent
fitting parameter. For example, we can rewrite the longi-
tudinal magnetoconductivity for the α1, α2, and α3 Fermi
pockets as σ e1

33 = σ 10
33 /[1 + μ2

⊥H 2( cos2θ + sin2θ/λ2
μ)],

σ e2
33 = σ 20

33 /[1 + μ2
⊥H 2( cos2θ/λ2

μ + sin2θ)], and σ e3
33 =

σ 30
33 /[1 + μ2

⊥H 2/λ2
μ], with σ 10

33 = ne1eμ⊥, σ 20
33 = ne2eμ⊥, and

σ 30
33 = ne3eμ‖ to be the zero-field conductivity for α1, α2,

and α3 electron pocket, respectively. λμ can be determined
through Shubnikov–de Haas (SdH) quantum oscillation mea-
surements, with λμ = 4.1 for sample A. Due to the crystalline
symmetry, α1, α2, and α3 are exactly the same Fermi pocket
but oriented differently. Thus they have the same electron
density, i.e., ne1 = ne2 = ne3, leading to σ 10

33 = σ 20
33 = σ e0

33 and
σ 30

33 = σ e0
33 /λ2

μ, where σ e0
33 = ne1eμ⊥. That is, we have only

two independent fitting parameters (σ e0
33 and μ⊥) for the three

electron Fermi pockets. For simplification we combine the
two spherical hole bands into one with an isotropic mobility
of μH and a zero-field conductivity of σh0

33 . With these two
parameters we can obtain σij for the combined hole bands,
e.g., σ33 = σh0

33 /[1 + μ2
HH 2].

As presented in Fig. 4, Eq. (2) can quantitatively describe
the measured ρ(H ) and ρ(θ ) with σ e0

33 = 6.05 × 105 S cm−1,
σh0

33 = 3.0 × 105 S cm−1, μ⊥ = 9.27 m2 V−1 s−1 (μ‖ =
μ⊥/λ2

μ = 0.552 m2 V−1 s−1), and μH = 1.5 m2 V−1 s−1.
Interestingly, the above hole mobility is not far away from that
(μh = 0.964 m2 V−1 s−1) derived using the isotropic two-band
model that gives an electron mobility (μe = 1.118 m2 V−1 s−1)
differing significantly from the values of μ⊥ and μ‖.

Equation (2) not only depicts a system with anisotropic
Fermi pockets, it also provides a convenient way to reveal the
role played by the Hall effect in the occurrence of XMR, as
demonstrated in Fig. 5. Using the parameters obtained from
fitting ρ(H ) in Fig. 4(a) with Eq. (2), we can calculate σ33

and δσ33 for each Fermi pocket and combinations thereof.
If only the α1 Fermi pocket were present, the Hall effect–
induced additional magnetoconductivity δσ33 would perfectly
compensate σ33 at any given magnetic field. This leads to
an unchanging ρ33 with varying magnetic field and hence
the absence of a MR, since the magnetoresistance reflects
the deflection of charge carriers by the magnetic field. The
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FIG. 5. Demonstration of the role of the Hall effect on the occurrence of XMR. σ33, δσ33, ρ33 are calculated using Eqs. (2)–(4) with
parameters derived from fitting the data in Fig. 4(a) for Fermi pocket α1 (a), α1 + α2 (b), �α = α1 + α2 + α3 (c), and all Fermi pockets
�α + β + γ (d). The inset in each panel is the projection of the corresponding Fermi pockets in the magnetic-field rotation plane. MRσ

and MRρ, which denote the MRs calculated from the magnetic-field dependence of 1/σ33 and ρ33, are the potential MR and measurable
MR, respectively. In (a,b) the MRρ curves cannot be seen in logarithmic coordinates because ρ33 is independent of magnetic field, resulting
in MRρ = 0.

MR vanishes when the Hall field completely compensates for
the deflection produced by the magnetic field. The situation
remains the same even with the addition of the α2 Fermi
pocket that has the same mobility (μ⊥) as that of α1 in the
current flowing direction. However, the addition of the α3

Fermi pocket with a different mobility (μ‖) reduces δσ33,
resulting in a magnetic-field-dependent ρ33 with MR ≈ 330%
at μ0H = 9 T. This is because the Hall field cannot prevent
the different mobility electrons from being deflected by the
magnetic field, resulting in a finite magnetoresistance [1]. By
further adding hole pockets, δσ33 becomes negligible and the
magnetic-field dependence of ρ33 follows 1/σ33. That is, in our
LaSb crystal for H ‖ [001], the contribution of the Hall effect
to the total magnetoconductivity nearly vanishes, leading to
ρ33 ≈ 1/σ33. Figure 6 shows that this conclusion is valid for
all magnetic-field orientations.

These discussions reveal that the origin of XMR comes
from a high mobility with diminishing Hall effect. High
mobility accounts for the strong magnetic-field dependence
of the longitudinal magnetoconductivity σ33. A diminishing
Hall effect that gives rise to ρ33 ≈ 1/σ33 enables ρ33 to benefit
from the drastic reduction of σ33 with increasing magnetic
field, leading to XMR. In other words, σ33 determines the upper
limit of the MR (denoted as MRσ in Fig. 5), which can be
completely unmasked when the Hall field vanishes. Figure 5(c)
even indicates that a large MR can occur in materials with
only one type of charge carrier with different high mobilities,
although the values could saturate at high magnetic fields.

The diminishing Hall effect, which leads to ρ33 ≈ 1/σ33,
enables us to uncover the roles played by each type of charge
carrier and/or even each band in the observed XMR. In
Fig. 7(a), we present the separation of electron and hole ρ(H )
behavior for H ‖ [001]. It indicates that the electrons are more
conductive at low fields but becomes nearly the same as that

FIG. 6. Comparison of the calculated angle dependence of the
total ρ33 (red lines) and 1/σ33 (blue lines) at T = 3 K and various
magnetic fields.
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FIG. 7. Separation of the magnetoresistivity ρ(H,θ ) of sample A at T = 3 K: (a,b) are the field dependence for H ‖ [001] and angle
dependence at μ0H = 9 T for the electrons and holes as well as their sum, respectively. (c,d) show the field dependence for H ‖ [001] and
angle dependence at μ0H = 9 T for the three electron pockets and the total electron value, respectively.

of the holes at high fields. The ρ(θ ) presented in Fig. 7(b) for
μ0H = 9 T shows that the electrons have a larger resistivity
at nearly all field orientations except along the two principal
axes of the crystal. That is, the contribution of the electrons
and holes to the measured magnetoresistivity varies with the
orientation of the magnetic field. We can also determine each
electron pocket’s contribution to the magnetoresistivity for
any strength and orientation of the magnetic field. In Figs. 7(c)
and 7(d), we plot ρ(H ) for each of the electron pockets and
their sum for the [001] direction and ρ(θ ) at μ0H = 9 T,
respectively. We can see that the α1 and α2 pockets are the
major contributors to the total electron conductivity, with
nearly all coming from the α2 pocket in the [001] direction
for H > 1.0 T.

Based on the above analysis, we can obtain the field and
angle dependences of the magnetoresistance MR for each
type of charge carrier and each electron pocket. Examples
of MR(H ) for H ‖ [001] and MR(θ ) for μ0H = 9 T are
presented in Fig. 8, which indicates that (1) both holes and
electrons as well as each electron pocket exhibit XMR, (2)
electrons have larger MR than holes for all field orientations,
(3) the total (measured) MR can have a magnetic-field
dependence different from a power-law relationship with an
exponent of 2 [see Fig. 8(a)] even if the electrons in each Fermi
pocket and the holes have quadratic MR.

V. CONCLUSION

In summary, we succeeded in the separation of electron
and hole dynamics in LaSb by investigating the anisotropic
magnetoresistance and demonstrated that the XMR in LaSb
crystals originates solely from the bulk. We used Kohler’s
rule scaling to understand the observed resistivity plateau
without having to invoke topological protection. We conducted
Shubnikov–de Haas oscillation experiments and found that the
results agree well with our analysis of the bulk Fermi surfaces,
excluding a possible surface origin. We further showed that
both the magnetic-field and angle dependences of the sample
resistivity can be quantitatively described with a semiclassical
theory that accounts for the anisotropic mobility of the
ellipsoidal electron Fermi pockets. The analysis indicates that
both the electrons and holes have high mobility and the
multiband nature results in a diminishing Hall effect. The
high mobility together with diminishing Hall effect lead to
the observed XMR in LaSb: The high mobility produces
a strong field-dependent longitudinal magnetoconductivity.
With diminishing Hall effect, the measured magnetoresistivity
becomes the inverse of the longitudinal magnetoconductivity,
leading to the emergence of XMR behavior. Both the electrons
and holes are found to play important roles in the observed
XMR and their relative contributions vary with the strength
and orientation of the magnetic field. We demonstrated that
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FIG. 8. Separation of the magnetoresistance MR of sample A at T = 3 K for the data in Fig. 4: (a,b) are the field dependence for H ‖ [001]
and angle dependence at μ0H = 9 T for the electrons and holes as well as their sum, respectively. (c,d) show the field dependence for H ‖ [001]
and angle dependence at μ0H = 9 T for the three electron pockets and the total electron value, respectively.

investigations of the anisotropic magnetoresistance provide a
convenient way to separate the dynamics of charge carriers
and to uncover the origin of the XMR in multiband materials
with anisotropic Fermi surfaces. The high mobility with
diminishing Hall effect can also explain XMR behavior in
other materials.
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