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Understanding the microscopic mechanism of coexisting long-range orders (such as lattice supersolidity) in
strongly correlated systems is a subject of immense interest. We study the possible manifestations of long-range
orders, including lattice-supersolid phases with differently broken symmetry, in a two-dimensional square lattice
system of hard-core bosons (HCBs) coupled to archetypal cooperative/coherent normal-mode distortions such as
those in perovskites. At strong HCB-phonon coupling, using a duality transformation to map the strong-coupling
problem to a weak-coupling one, we obtain an effective Hamiltonian involving nearest-neighbor, next-nearest-
neighbor, and next-to-next-nearest-neighbor hoppings and repulsions. Using stochastic series expansion quantum
Monte Carlo, we construct the phase diagram of the system. As coupling strength is increased, we find that the
system undergoes a first-order quantum phase transition from a superfluid to a checkerboard solid at half-filling
and from a superfluid to a diagonal striped solid [with crystalline ordering wave vector �Q = (2π/3,2π/3) or
(2π/3,4π/3)] at one-third filling without showing any evidence of supersolidity. On tuning the system away from
these commensurate fillings, checkerboard supersolid is generated near half-filling whereas a rare diagonal striped
supersolid is realized near one-third filling. Interestingly, there is an asymmetry in the extent of supersolidity
about one-third filling. Within our framework, we also provide an explanation for the observed checkerboard and
stripe formations in La2−xSrxNiO4 at x = 1/2 and x = 1/3.
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I. INTRODUCTION

The origin and character of lattice supersolidity [1] [i.e., the
single-phase coexistence of superconductivity/superfluidity
and charge density wave (CDW) realized in discrete lattices] in
naturally formed and artificially designed systems is a central
issue in condensed matter physics. While phenomenological
pictures [2,3] exist to explain lattice-supersolidity, a micro-
scopic theory that elucidates the homogeneous coexistence is
yet to be formulated. Supersolidity is observed in a variety of
lattice systems such as the three-dimensional doped BaBiO3

[3,4], the layered dichalcogenides [5], and molecular crystals
[6], and the quasi-one-dimensional doped trichalcogenide
NbSe3 [7], and doped spin ladder Sr14Cu24O41[8,9]. Of impor-
tance are the class of materials that display superconductivity
and diagonal long-range order due to strong electron-phonon
interaction such as K or Pb doped BaBiO3 (where a 10%
change in the Bi–O bond length[10] has been observed) and
the alkali metal fullerides [11]. Interestingly, BaBiO3 assumes
perovskite structure with two adjacent oxygen octahedra
sharing an oxygen leading to a cooperative breathing mode
(CBM). Furthermore, BaBiO3 displays valence disproportion-
ation with local cooper pairs [i.e., hard-core bosons (HCBs)]
being formed and these HCBs couple to the CBM [12].

As regards artificially engineered systems, cold bosonic
atoms in optical lattices provide a fertile playground for
actualizing exotic phases such as lattice-supersolid phases
with differently broken symmetry. In fact, only recently
supersolidity was experimentally produced in an optical lattice
by generating effective long-range interactions using a vacuum
mode of an optical cavity [13]. On the theoretical side, lattice
supersolidity has been realized in two-dimensional (2D) square
[14–23], triangular [24–30], and honeycomb [31,32] lattices as
well as in a one-dimensional lattice [33–35]. By using extended

boson Hubbard models involving hard-core bosons, com-
mensurate supersolid has been unobtainable in unfrustrated
systems such as square lattices. On the other hand, supersolids
can be realized in square lattices at incommensurate fillings by
a mechanism where particles (i.e., interstitials) or holes (i.e.,
vacancies) doped into a perfect crystal form a condensate by
delocalizing in the crystalline order. Furthermore, although
striped supersolidity has been achieved in Refs. [16,18]
on square lattices, it is nondiagonal and characterized by
density ordering wave vector (π,0) or (0,π ). Even though
diagonal stripes [characterized by crystalline ordering wave
vector (2π/3,2π/3) or (2π/3,4π/3)] have been observed
in systems such as La2−xSrxNiO4 (LSNO) at x = 1/3 hole
doping [36–42] and predicted theoretically for long-range
interactions in a lattice gas model at one-third filling [43],
so far, the corresponding diagonal striped supersolid (dsSS)
has been elusive on a square lattice (that is not subject to
an external potential). Additionally, whether a cooperative
electron-phonon interaction (that involves cooperative Jahn-
Teller distortions) can explain the observed stripe charge order
in LSNO is a controversial issue [44–46].

In the class of extended boson Hubbard models of the type
t1 − t2 − . . . − tm − V1 − V2 − . . . − Vn [involving hoppings
t1, t2, t3, etc., and interactions V1, V2, V3, etc., of ranges
nearest neighbor (NN), next-nearest neighbor (NNN), next-
to-next-nearest neighbor (NNNN), etc.] on a square lattice,
the minimum model for realizing a checkerboard supersolid
(cSS) is the t2 − V1 model [47,48]. It has also been shown that
star/stripe supersolid [corresponding to crystalline ordering
wave vector (π,0) or (0,π )] can be realized in a t1 − V1 − V2

model; at one-fourth filling, a star solid results which is
asymmetric with respect to doping with interstitials and va-
cancies [16]. Identifying the relevant extended boson Hubbard
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model for obtaining the dsSS around one-third filling and
characterizing the state are still open problems.

Here, inspired by the doped bismuthate systems, we
develop a microscopic theory of HCBs strongly coupled to
the cooperative breathing mode in a 2D perovskite lattice.
The effective Hamiltonian for the HCBs is shown to be
an extended boson Hubbard model of the form t1 − t2 −
t3 − V1 − V2 − V3. The V1, V2, and V3 repulsive interactions
correspond to the minimum interactions needed to realize the
diagonal striped order at one-third filling. Unlike many lattice
models of the extended boson Hubbard type, the parameters
(i.e., hopping term, strength of HCB-phonon coupling, and
phonon frequency) in our t1 − t2 − t3 − V1 − V2 − V3 model
either can be determined from band-structure calculations
or can be obtained from experiments. Supersolidity in our
model results only away from one-third filling and is shown
to be asymmetric with respect to doping the commensurate
diagonal-striped solid (dsS) with vacancies and interstitials.
Although checkerboard supersolidity (away from half-filling)
and diagonal striped supersolidity (away from one-third filling)
are realized, there is no direct supersolid-supersolid phase
transition between the two phases. We also show that our
cooperative HCB-phonon framework can be extended to study
charge order in LSNO; we demonstrate that the observed
diagonal-stripe order at one-third filling and the checkerboard
order at half-filling in LSNO can be explained by invoking
cooperative Jahn-Teller effect.

The paper is organized as follows. In Sec. II, we derive an
effective Hamiltonian of the system using a nonperturbative
treatment. Next, in Sec. III we briefly describe the numerical
procedure, as well as the quantities/parameters used in our
study. Then, we discuss the results in Sec. IV, followed by a
comparison with experimental observations in Sec. V. Finally,
in Sec. VI, we conclude.

II. EFFECTIVE HAMILTONIAN

We start with a 2D model of HCBs depicted in Fig. 1.
The HCBs interact with the in-plane (xy) oxygen atoms via
CBM, whereas the nature of the interaction is noncooperative
in the case of the out-of-plane oxygen atoms in the z direction.
The Hamiltonian of such a system can be written as H =
Ht + HI + Hl , where the hopping term Ht is given by

Ht = −t
∑
i,j

(d†
i+1,j di,j + d

†
i,j+1di,j + H.c.), (1)

with di,j (d†
i,j ) being the destruction (creation) operator of a

HCB at the hopping site (i,j ) and t being the hopping integral.
The second term HI in the Hamiltonian, which represents the
HCB-phonon interaction, has the form

HI = −gω0

∑
i,j

[(a†
x;i,j + ax;i,j )(ni,j − ni+1,j )

+ (b†y;i,j + by;i,j )(ni,j − ni,j+1) + γ (c†z;i,j + cz;i,j )ni,j ],

(2)

where γ = √
2, g is the HCB-phonon coupling constant,

and ω0 is the optical-phonon frequency. The terms (a†
x;i,j +

ax;i,j )/
√

2Mω0 and (b†y;i,j + by;i,j )/
√

2Mω0 denote the dis-

x

y

z i,j i+1,j i+2,j

i+1,j+1

i+1,j-1

i,j+1i-1,j+1

i,j+2

FIG. 1. Two-dimensional cooperative breathing mode (CBM)
system with hopping sites of hard-core bosons (filled circles), in-plane
oxygen atoms (black empty circles), and out-of-plane oxygen atoms
(red empty circle). Only the in-plane oxygens are involved in
cooperative distortions.

placement of the oxygen atom that is next to the (i,j )th hopping
site and in the positive x and y directions, respectively; here, M
is the mass of oxygen atom. The relative displacement of the
two out-of-plane oxygens next to the (i,j )th site couples to the
HCB at (i,j )th site and is denoted by (c†z;i,j + cz;i,j )/

√
2M

2 ω0

with M/2 being the reduced mass of the oxygen pairs. The
expressions (ni,j − ni+1,j ) and (ni,j − ni,j+1) in the first and
second terms of Eq. (2) take care of the cooperative HCB-
phonon interaction along the x and y directions, respectively.
In the third term, note that we have only ni,j because of
the noncooperative nature of the HCB-phonon interaction
along the z direction. Furthermore, the last term in the
Hamiltonian (i.e., the lattice term Hl), representing simple
harmonic oscillators, is of the form

Hl = ω0

∑
i,j

(a†
x;i,j ax;i,j + b

†
y;i,j by;i,j + ηc

†
z;i,j cz;i,j ), (3)

with η = 1. It is important to note that the above equation
for the lattice term Hl treats the displacements (a†

x;i,j +
ax;i,j )/

√
2Mω0 and (b†y;i,j + by;i,j )/

√
2Mω0 as independent

variables; this is justified because these displacements de-
pend on the site-occupancy differences (ni,j − ni+1,j ) and
(ni,j − ni,j+1), which are independent of each other. A similar
consideration leads to a similar lattice term [given by Eq. (4)]
in the treatment of cooperative Jahn-Teller distortions in
Ref. [49].

We consider systems in the nonadiabatic regime (t/ω0 � 1)
and strong-coupling region (large g2). To produce an effective
polaronic Hamiltonian, we employ a duality transformation
where the strong-coupling problem in the original frame of
reference [with small parameter ∝(gω0)/t] is transformed
into a weak-coupling problem in a dual frame of reference
[with small parameter ∝t/(gω0), i.e., inverse of the small
parameter in the original frame of reference]. To achieve the
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above end, we need to modify the Lang-Firsov transformation
[50] so as to take into account the cooperative nature of the
distortions along the x and y directions and noncooperative
nature in the z direction. This involves the following canonical
transformation H̃ = exp(S)H exp(−S), where S is given by

S = −g
∑
i,j

[(a†
x;i,j − ax;i,j )(ni,j − ni+1,j )

+(b†y;i,j − by;i,j )(ni,j − ni,j+1) + γ (c†z;i,j − cz;i,j )ni,j ].

(4)

The transformed Hamiltonian can be written as H̃ = H0 + H1,
where the unperturbed Hamiltonian is given by

H0 = ω0

∑
i,j

(a†
x;i,j ax;i,j + b

†
y;i,j by;i,j + ηc

†
z;i,j cz;i,j )

−Ep

∑
i,j

ni,j + 2Vp

∑
i,j

(ni,jni+1,j + ni,jni,j+1)

− te−(Ep+Vp)/ω0
∑
i,j

(d†
i+1,j di,j + d

†
i,j+1di,j + H.c.),

(5)

and the perturbation by

H1 =
∑
i,j

H1i,j

= −te−(Ep+Vp)/ω0
∑
i,j

[
d
†
i+1,j di,j

(
τ

ij
+x

†
τ

ij
−x − 1

)

+ d
†
i,j+1di,j

(
τ

ij
+y

†
τ

ij
−y − 1

) + H.c.
]
, (6)

where

τ
ij
±x = exp[±g(2ai,j − ai−1,j − ai+1,j )

± g(bi+1,j−1 + bi,j − bi,j−1 − bi+1,j )

±γg(ci,j − ci+1,j )]

and

τ
ij
±y = exp[±g(2bi,j − bi,j−1 − bi,j+1)

± g(ai−1,j+1 + ai,j − ai−1,j − ai,j+1)

± γg(ci,j − ci,j+1)].

Here, Ep = (4 + γ 2)g2ω0 is the polaronic energy and 2Vp =
2g2ω0 represents the nearest-neighbor repulsion for the HCBs.

The eigenstates of the unperturbed Hamiltonian H0, rel-
evant for perturbation theory, are |n,m〉 = |n〉hcb ⊗ |m〉ph,
with |0,0〉 being the ground state with no phonons. The
corresponding eigenenergies of such states are given by
En,m = Ehcb

n + E
ph
m . Similar to the case of one-dimensional

CBM model [51], we also have 〈n,0|H1|n,0〉 = 0, which
yields the first-order perturbation term 〈0,0|H1|0,0〉 = 0. In
the region of interest in the parameter space, we note that
te−(Ep+Vp)/ω0 � ω0; we perform second-order perturbation
theory similar to that in the 1D CBM model [51] and obtain
the effective Hamiltonian to be

Heff = 〈0|phH0|0〉ph + H (2), (7)

where

H (2) =
∑
i,j,k,l

∑
m

〈0|phH1i,j |m〉ph〈m|phH1k,l|0〉ph

E
ph
0 − E

ph
m

. (8)

One can easily see that the first term in Heff is

〈0|phH0|0〉ph

= −Ep

∑
i,j

ni,j + 2Vp

∑
i,j

(ni,jni+1,j + ni,jni,j+1)

− te−(Ep+Vp)/ω0
∑
i,j

(d†
i+1,j di,j + d

†
i,j+1di,j + H.c.), (9)

whereas the simplification of the second term (i.e., H (2))
requires quite a bit of algebra. We extend the derivation
of the effective Hamiltonian for the 1D CBM case [51]
to our 2D case as well. As shown by using Schrieffer-
Wolff transformation in Appendix A of Refs. [52,53], since
te−(Ep+Vp)/ω0 � ω0, Heff represents the exact Hamiltonian up
to second order in perturbation. The small parameter here is

given by [ t2

2(Ep+Vp)ω0
]

1
2 whose derivation is similar to that in

Ref. [54]. For the second term H (2) in Heff , we obtain the terms
given in the following sections.

A. Nearest-neighbor (NN) repulsion

The NN repulsion term comes from a process
where a particle jumps to a neighboring site and
comes back. In 2D, this term further consists of
two parts:

∑
i,j [ni,j (1 − ni+1,j ) + ni+1,j (1 − ni,j )] and∑

i,j [ni,j (1 − ni,j+1) + ni,j+1(1 − ni,j )]. Following a proce-
dure explained in Appendix A, we get the expression for this
process to be

−Vz

∑
i,j

[ni,j (1 − ni+1,j ) + ni,j (1 − ni,j+1)], (10)

with Vz ≈ 2t2

2Ep+2Vp
. The denominator 2Ep + 2Vp in Vz is the

difference of the energy of the intermediate state (i.e., Ep +
2Vp corresponding to the particle in the intermediate site) and
the energy of the initial state (−Ep). The exact expression for
Vz is derived in Appendix A.

B. Next-nearest-neighbor (NNN) and next-to-next-nearest-
neighbor (NNNN) repulsions

We first make an important point while considering a
process of a particle hopping to a neighboring site and coming
back. In 2D, excluding the originating site, we must take
into account the occupancy information about all the three
remaining NN sites of the intermediate site of the hopping
process. For example, consider a process where an HCB at site
(i,j ) hops to its neighboring site (i + 1,j ) and comes back. For
this process, we need to keep in mind the occupancy of the sites
(i + 2,j ), (i + 1,j + 1), and (i + 1,j − 1), which are the three
relevant neighboring sites of the intermediate site (i + 1,j )
(see Fig. 1). Depending on whether these sites are occupied
or empty, the coefficient of the process will be modified
accordingly. Essentially, there are four cases: (1) all the three
NN sites are empty, (2) any one of the three neighboring sites
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is occupied, (3) any two of the NN sites are occupied, and
(4) all the three neighboring sites are occupied. Considering
all the cases above, we end up with the following NNN and
NNNN repulsion terms in H (2) as detailed in Appendix B.

1. NNN repulsion along diagonals

The first term is the NNN repulsion, which acts along the
diagonals of the square lattice, and it is given by

V2

∑
i,j

(ni,jni+1,j+1 + ni,j ni−1,j+1), (11)

where

V2 = 2t2

[(
1

2
− m

)2 2Vp

(Ep + Vp)(Ep + 2Vp)

+
(

1

4
− m2

)
4EpVp

(Ep + Vp)(Ep + 2Vp)(Ep + 3Vp)

+
(

1

2
+ m

)2 2EpVp

(Ep + 2Vp)(Ep + 3Vp)(Ep + 4Vp)

]
,

(12)

with m being the magnetization of the system.

2. NNNN repulsion along the x and y axes

We find the second term to be the NNNN repulsion, which
acts along the x and y axes of the square lattice; it is given by

V3

∑
i,j

(ni,jni+2,j + ni,jni,j+2), (13)

with V3 = V2
2 . It is important to note that, in the absence of the

NN repulsion 2Vp, we obtain expressions for Vz, V2, and V3

consistent with the noncooperative treatment of the electron-
phonon interaction in Refs. [21,22].

C. NNN and NNNN hoppings

The remaining terms in H (2) are the hoppings of the HCBs
to the NNN and NNNN sites. Similar to the NNN and NNNN
repulsions, the hopping contributions of the HCBs can also be
divided into two types: NNN hopping along the diagonals and
NNNN hopping along the x and y axes (see Appendix C for
details).

1. NNN hopping along diagonals

While calculating the coefficient of the NNN hopping,
we have to keep in mind the fact that the HCB passes
through an intermediate site while hopping to its NNN site.
So the coefficient must depend on the occupancy of the two
neighboring sites of the intermediate site. For example, if a
HCB at site (i,j ) is hopping to its right-upper diagonal site,
i.e., (i + 1,j + 1), it can follow any one of the two possible
paths: (a) first going along x axis to the (i + 1,j )th site and
then along y axis to the (i + 1,j + 1)th site; and (b) the
interchanged process, i.e., hopping along the y axis first to
the (i,j + 1)th site followed by a hop along the x axis to
the (i + 1,j + 1)th site (see Fig. 1). For the first path, the
coefficient of the hopping depends on whether the two sites
(i + 2,j ) and (i + 1,j − 1), which are NN of the intermediate

site (i + 1,j ), are occupied or empty. On the other hand, for the
second path, the hopping coefficient depends on the occupancy
of the two neighboring sites of the intermediate site (i,j + 1),
i.e., (i − 1,j + 1) and (i,j + 2). To calculate the NNN hopping
coefficient, first we forget about the occupancy of the two
neighbors of the intermediate site; then, the NNN hopping
along the diagonals is obtained to be

− 2t2e−Ep/ω0

Ep + 2Vp

∑
i,j

(d†
i+1,j+1di,j + d

†
i−1,j+1di,j + H.c.), (14)

where the coefficient 2t2e−Ep/ω0

Ep+2Vp
is an approximation with the

exact expression being given in Appendix C.
Now, taking the two neighbors of the intermediate site into

account, the NNN hopping term along the diagonals of the
square lattice gets modified to be

−t2
∑
i,j

(d†
i+1,j+1di,j + d

†
i−1,j+1di,j + H.c.), (15)

where

t2 = 2t2e−Ep/ω0

Ep + 2Vp

[(
1

2
− m

)2

+
(

1

4
− m2

)
2Ep + 4Vp

Ep + 4Vp

+
(

1

2
+ m

)2
Ep + 2Vp

Ep + 6Vp

]
. (16)

2. NNNN hopping along the x and y axes

Next, we consider the hopping of the HCBs to the NNNN
sites along the x and y axes of the square lattice. Similar to
the previous case, the coefficient of the hopping in this case,
depends on the occupancy of the two neighboring sites of the
intermediate site. For example, if a HCB is hopping from site
(i,j ) to its NNNN site (i + 2,j ), it has to pass through the
intermediate site (i + 1,j ) (see Fig. 1). So, the coefficient for
this process depends on whether the neighboring sites of site
(i + 1,j ), i.e., (i + 1,j + 1) and (i + 1,j − 1), are occupied
or empty. Taking into account all the occupancy possibilities
of the neighboring sites of the intermediate site, we get the
NNNN hopping term to be

−t3
∑
i,j

(d†
i+2,j di,j + d

†
i,j+2di,j + H.c.), (17)

with t3 = t2
2 . Again, it should be pointed out that, in the absence

of the NN repulsion 2Vp, the expressions for t2 and t3 simplify
to be consistent with the results of the noncooperative analysis
of the electron-phonon interaction in Refs. [21,22].

Finally, taking all the terms present in H (2) into account,
Heff in Eq. (7) reduces to

Heff = −(Ep + 2Vz)
∑
i,j

ni,j

− t1
∑
i,j

(d†
i+1,j di,j + d

†
i,j+1di,j + H.c.)

+V1

∑
i,j

(ni,jni+1,j + ni,jni,j+1)

− t2
∑
i,j

(d†
i+1,j+1di,j + d

†
i−1,j+1di,j + H.c.)
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+V2

∑
i,j

(ni,jni+1,j+1 + ni,jni−1,j+1)

− t3
∑
i,j

(d†
i+2,j di,j + d

†
i,j+2di,j + H.c.)

+V3

∑
i,j

(ni,jni+2,j + ni,j ni,j+2), (18)

where t1 = te−(Ep+Vp)/ω0 , V1 = 2Vp + Vz, and the expressions
for all the remaining terms, Vz, t2, t3, V2, and V3, being the
same as defined earlier.

III. NUMERICAL CALCULATIONS

To study the phase diagram of our effective Hamiltonian of
HCBs, we use quantum Monte Carlo (QMC) simulation adopt-
ing the stochastic-series-expansion (SSE) technique [55,56];
furthermore we employ directed loop update [57,58]. We find
it convenient to rewrite the Hamiltonian in terms of spin-1/2
operators. Identifying the relations between the operators for
HCBs and those for spin-1/2 particles as d

†
i,j = S+

i,j , di,j =
S−

i,j , and ni,j = Sz
i,j + 1

2 , we recast our effective Hamiltonian
for HCBs, in units of 2t1, as an extended XXZ spin-1/2
Hamiltonian, given by

H =
∑
i,j

[
− 1

2
(S+

i+1,j S
−
i,j + S+

i,j+1S
−
i,j + H.c.)

+�1
(
Sz

i,j S
z
i+1,j + Sz

i,j S
z
i,j+1

)]

+
∑
i,j

[
− J2

2
(S+

i+1,j+1S
−
i,j + S+

i−1,j+1S
−
i,j + H.c.)

+�2
(
Sz

i,j S
z
i+1,j+1 + Sz

i,j S
z
i−1,j+1

)]

+
∑
i,j

[
− J3

2

(
S+

i+2,j S
−
i,j + S+

i,j+2S
−
i,j + H.c.

)

+�3
(
Sz

i,j S
z
i+2,j + Sz

i,j S
z
i,j+2

)] − h0

∑
i,j

Sz
i,j . (19)

Looking at Eqs. (18) and (19), one can easily see that
J2 = t2/t1, J3 = t3/t1, �1 = V1/(2t1), �2 = V2/(2t1), �3 =
V3/(2t1), and h0 = Ep + 2Vz − 2V1 − 2V2 − 2V3; here, Ji

and �i are the transverse and longitudinal couplings, respec-
tively.

Now, to figure out the phase diagram of the system, we need
to study the Hamiltonian at various filling-fractions of HCBs.
To vary the number of HCBs in the system, or in other words
to tune the magnetization of the spin-1/2 system, we replace
the constant h0 by a variable h in the term −h0

∑
i,j Sz

i,j of
the Hamiltonian H given by Eq. (19); here, h is taken as the
external magnetic field in units of 2t1. By tuning the external
magnetic field h, we can actually tune the magnetization of the
system and study the behavior of the system at various fillings.

To capture the ground-state properties of a L × L square
lattice using SSE, the simulations should be done at low
enough temperatures, i.e., the inverse temperature β ∼ L [59].

For our Hamiltonian, since the numerical calculations for
β = 3L/2 and β = 2L produce same results within the error
bars of our calculations, we present the results for β = 3L/2.

We use two kinds of order parameter: structure factor S( �Q)
(to identify diagonal long-range order) and superfluid density
ρs (to identify off-diagonal long-range order) and construct
the phase diagram. The structure factor per site is defined as

S( �Q) = 1

N2
s

∑
i,j

∑
m,n

ei �Q·( �Ri,j − �Rm,n)
〈
Sz

i,j S
z
m,n

〉
, (20)

with 〈. . .〉 being the ensemble average. We study S( �Q) at all
values of �Q and identify those that produce peaks in the
structure factor. Here we would like to point out that the
maximum possible value of S( �Q) is 0.25.

The superfluid density is expressed in terms of the winding
numbers, Wx and Wy , in the x and y directions as [56]

ρs = 1

2β

〈
W 2

x + W 2
y

〉
. (21)

The winding number Wx along the x direction can be
calculated as Wx = 1

Lx
(N+

x − N−
x ), where N+

x and N−
x denote

the total number of operators transporting spin in positive and
negative x directions, respectively, and Lx denotes the length
of the lattice along the x direction.

We now discuss the values of different parameters in our
Hamiltonian given by Eq. (19) and used in our numerical
calculations. We concentrate on the case t/ω0 = 1.0 for the
construction of our phase diagram. Since γ = √

2, we set
g̃2 = 7g2 so as to get the simple expression Ep + Vp = g̃2ω0.
The coefficients J2(=2J3) and �2(=2�3) depend on the
magnetization m of the system. While Fig. 2 depicts that J2
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FIG. 2. Dependence of NNN longitudinal coupling �2 and NNN
transverse coupling J2 on magnetization m as derived from Eqs. (12),
(16), (18), and (19) for the following cases: (a) and (b) at g̃ = 1.4,
(c) and (d) at g̃ = 2.0, (e) and (f) at g̃ = 2.5, and (g) and (h) at
g̃ = 3.0.
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TABLE I. Values of NN longitudinal coupling �1 and maximum
values of NNN longitudinal coupling �2 and NNN transverse
coupling J2 for different values of g̃.

g̃ �1 (�2)max (J2)max

1.0 1.7436 0.4757 1.6486
1.5 5.7744 0.7379 0.8760
1.8 16.6463 1.3791 0.7007
2.0 39.2161 2.3887 0.6327
2.25 131.8584 5.4612 0.5818
2.5 507.9968 14.5044 0.5584
3.0 10896.8217 157.5599 0.5744

and �2 values (at various couplings g̃) monotonically decrease
with increasing magnetization m, Table I shows the values of
�1 and the maximum values of �2 and J2 for different values
of g̃. As one can see, �1/(�2)max increases monotonically
approximately from 3.665 to 69.159 as g̃ is varied from
1.0 to 3.0. At larger values of g̃, when �1 and �2 assume
large values, our numerical calculations suffer from significant
slowing down resembling the situation in Ref. [21]; with our
computational constraints we cannot use exact values when
�1 and �2 assume large values. We can set a cutoff for the
parameters �1 and �2 above which the essential physics for
our system remains unaltered. Similar to Ref. [21], the upper
cutoff for �1 is 16. Furthermore, to identify the cutoff for
�2, we need to find out the lowest value of �1/�2 which
can be used without changing the essential physics. To this
end, we have calculated the superfluid density and structure
factor at half-filling (where �2 = (�2)max) for the following
set of values of (�1,(�2)max): (20,4), (20,5), (20,6), (16,5),
(20,7), (17,6), (16,7), and (20,9) with the value of �1/(�2)max

being 5, 4, 3.33, 3.2, 2.86, 2.83, 2.29, and 2.22, respectively.
Numerical results show that for the first four cases, where �1 >

3(�2)max, at half-filling, the system manifests a checkerboard
solid (cS) with a peak in the structure factor S(π,π ). On the
other hand, for the last four cases where 2(�2)max < �1 <

3(�2)max, at half-filling, the system produces a completely
different type of solid depicted in Fig. 3 (which we call
honeycomblike solid), indicated by a peak in S(π/2,π ) or
S(π,π/2). The reason can be explained as follows. In the cS
phase, each particle feels 6(�2)max amount repulsion, whereas
in the honeycomblike solid the repulsion felt by each particle
is �1 + 3(�2)max. The checkerboard solid will be favored over
the honeycomblike solid only if �1 + 3(�2)max > 6(�2)max,

(a) (b)

FIG. 3. Two types of honeycomblike solid depicted by a peak in
(a) S(π/2,π ) and (b) S(π,π/2).

TABLE II. Autocorrelation times measured for g̃ = 2.5 using
ε1 = 8, ε2 = 5/4, and ε3 = ε2/2; chosen magnetic fields are in the
vicinity of the transitions as well as away from the transitions (see
Fig. 8 for details).

h 5.0 13.0 15.35 29.50 34.0

τint 279692 55792 147933 192790 5747

i.e., �1 > 3(�2)max. Therefore, to capture the correct physics
of our system, the minimum value of �1/�2 must be greater
than 3. Keeping all these facts in mind, we set the cutoff values
to be �1 = 16 and �2 = 5 (with �3 = �2

2 ), so that the physics
of the system still remains the same.

As discussed in Ref. [21], it is important to mention
here that the parameter εi (see Appendix D for details),
introduced to make the two-spin matrix elements positive, can
affect the autocorrelation time especially for large anisotropies
(i.e., large values of �1, �2 and �3). To ensure that the
autocorrelation time is much smaller than the bin size used
to calculate the observables (in all the cases considered), we
compute the autocorrelation time τint given by the following
formula:

τint[m] = 1

2
+

∞∑
t=1

Am(t) (22)

with

Am(t) = 〈m(i + t)m(i)〉 − 〈m(i)〉2

〈m(i)2〉 − 〈m(i)〉2
, (23)

where i and t represent Monte Carlo sweeps and 〈· · · 〉 denotes
average over the time i. Based on our autocorrelation data, we
observe that when �i � 10, taking εi = �i/4 is good enough
to keep the autocorrelation time much smaller than the bin
size. Given the cutoff values of �2 and �3 mentioned above,
we always take ε2 = �2/4 and ε3 = �3/4. On the other hand,
as �1 increases from 10 to 16 (i.e., cutoff value of �1), ε1

is taken to steadily increase from �1/4 (i.e., 2.5) to �1/2
(i.e., 8). To give an estimate of the autocorrelation time at
large �1 values, Table II shows the autocorrelation times for
g̃ = 2.5 at magnetic fields chosen in the vicinity of the phase
transitions (where the autocorrelation time is expected to be
large) as well as in regions far from the transitions. In Table II,
the magnetic field h = 5.0 corresponds to a point in the cSS
region close to the cSS-SF transition; whereas h = 15.35 and
29.50 represent points in the dsSS region in the vicinity of
the dsSS-SF transition (see Fig. 8). On the other hand, h =
13.0 and 34.0 correspond to two points in the SF region away
from the transitions. The values of the autocorrelation time τint

(listed in Table II) clearly show that close to the transitions the
autocorrelation time increases significantly, whereas it remains
comparatively small in the regions away from the transitions.
The bin size used for all calculations is 20 00 000; this ensures
that τint is well within the bin size.

All numerical results in Figs. 4–11 have been obtained on
an 18 × 18 lattice with t/ω0 = 1.0. Furthermore, along with
the 18 × 18 phase diagram, in Fig. 6, the phase boundaries for
a 12 × 12 lattice are also plotted.
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FIG. 4. Plots of structure factor S( �Q) and superfluid density ρs

vs magnetization m for HCBs on a 18 × 18 lattice with t/ω0 = 1.0
and when (a) g̃ = 1.4 and (b) 2.5. Curves are averaged results from
simulations using three different random number seeds.

IV. RESULTS AND DISCUSSIONS

To determine the various phases of our 2D t1 − t2 − t3 −
V1 − V2 − V3 model, one needs to understand the interplay
between different types of hopping and repulsion. To construct
the phase diagram, we vary the magnetization m from 0 to 0.5;
this corresponds to varying the particle filling ρ from 1/2 to
1. Due to the particle-hole symmetry of the Hamiltonian, the
physics at any filling fraction for particles is identical to that
for holes at the same filling.

Figure 4 shows the variation of the structure factor S( �Q)
and the superfluid density ρs as a function of the magnetization
m, for two different values of g̃, i.e., 1.4 and 2.5. A key point to
note here is that, in general, larger values of repulsion aid in the
formation of a CDW, whereas larger values of NNN tunneling
t2 help a particle hop in the same sublattice. For g̃ = 1.4,
at half-filling, the HCBs form a checkerboard solid shown
in Fig. 5(a) and indicated by a peak in the structure factor
S(π,π ). Slightly away from half-filling, a supersolid region
develops after which the system retains only its superfluidity.
The reason can be understood by examining the coefficients of
different terms in the Hamiltonian in Eq. (19). Since the NN

(a)

i,j i+1,j

i,j-1 i+1,j-1

(b) (c)

FIG. 5. Different types of CDWs: (a) checkerboard solid (cS) at
half-filling with S( �Q) peaking at �Q = (π,π ); (b) diagonal striped
solid (dsS) indicated by peak in S( �Q) at �Q = (2π/3,2π/3); and
(c) dsS characterized by ordering wave vector �Q = (2π/3,4π/3).

repulsion dominates over the NNN and NNNN repulsions,
at half-filling the system becomes a cS phase to avoid NN
occupation, even though the particles experience NNN and

 1

 1.5

 2

 2.5

 3

      

 0.5  0.6  0.7  0.8  0.9  1

ρ       (m+1/2)or

2/3

g~ SF
cSS

cS

dsSS

dsSS

ds
S

FIG. 6. Phase diagram in terms of filling fraction ρ (or mag-
netization m) for HCBs on a 12 × 12 and 18 × 18 lattice with
t/ω0 = 1.0. The magenta dashed lines and open circles represent the
phase boundaries for the 12 × 12 system, whereas the boundaries
for the 18 × 18 lattice are depicted by the solid lines and filled
circles (i.e., in cyan, blue, black, and green colors). Here, cS
represents a checkerboard solid with cSS being the corresponding
supersolid; dsS stands for diagonal striped solid with dsSS being the
related supersolid. Plots represent averaged results from simulations
employing three different random number seeds.
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FIG. 7. Plots of S( �Q) and ρs vs coupling strength g̃ depicting
first-order transitions at two different magnetization values: (a) m = 0
(or half-filling) and (b) m = 1/6 (or two-third filling).

NNNN repulsions. Now, if we add one additional particle to
the half-filled system, the extra particle can be at any one of the
empty sites; irrespective of the site it resides on, the particle
will feel the same extra repulsion 4V1. This extra particle can
hop to its NNN or NNNN sites, without changing the repulsive
interaction in the system that has a checkerboard solid in the
background, resulting in the coexistence of superfluidity and
CDW state. If we keep on increasing the particle number, after
a certain filling fraction, the checkerboard structure is lost with
the system continuing to be a superfluid.

Now looking at Fig. 4(b) for g̃ = 2.5, we see that an
additional CDW appears at fillings ρ = 1/3 and 2/3. Since
the physics pertinent to ρ = 1/3 is the same as that for

 0
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g~=2.5 S(d1) + S(d2)
S(π,π)
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FIG. 8. Evolution of order parameters S( �Q), ρs , and m as the
magnetic field h is varied at a fixed coupling strength g̃ = 2.5. No
discontinuous transitions are exhibited.
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FIG. 9. Plots of (a) S(π,π ) and (b) ρs vs coupling strength g̃,
at density ρ = 0.61635 ± 0.00007, depicting a continuous transition
from SF to cSS phase as we increase the g̃ value.

ρ = 2/3, we will analyze them interchangeably based on
our convenience. At ρ = 1/3, the HCBs form a diagonal
striped solid manifesting spontaneously broken symmetry
and characterized by a peak in the structure factor at wave
vector �d1 = (2π/3,2π/3) [corresponding to Fig. 5(b)] or �d2 =
(2π/3,4π/3) [related to Fig. 5(c)]. Although each particle in
the stripe experiences a repulsion 2V2, it is still the minimum
energy state of the system at one-third filling. If we add
one extra particle to the system, it occupies any one of the
empty sites between the stripes and experiences a repulsion
2V1 + V2 + 2V3. Now, this extra particle can hop to any of its
unoccupied NN, NNN, or NNNN sites without a change in
the potential energy of the system; thus, coexistence of stripe
order and superfluidity is realized on the interstitial side. On
the other hand, if we remove one particle from the system
at ρ = 1/3, the extra hole (residing in the stripes) can hop
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FIG. 10. Variation of S( �Q) and ρs vs magnetization m in the
absence of the NNNN repulsion V3 along x- and y-axes in the t1 −
t2 − t3 − V1 − V2 − V3 model of Eq. (18).
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FIG. 11. Plots of S( �Q) and ρs vs magnetization m, in the vicinity
of striped phase, for three different cases in the t1 − t2 − t3 − V1 −
V2 − V3 model of Eq. (18): (a) all the three hoppings t1, t2, and t3 are
present, (b) NNNN hopping t3 along x and y axes is set to zero, and
(c) only NN hopping t1 is present. The minimum model for diagonal
striped solid (dsS) is shown to be t1 − V1 − V2 − V3.

along the stripes without altering the potential energy; thus,
supersolidity is exhibited on the other (i.e., vacancy) side of the
diagonal striped phase as well. Thus the mechanism governing
the existence of a supersolid phase away from commensurate
fillings 1/2 and 1/3, on our unfrustrated system (i.e., the square
lattice), is that interstitials or vacancies can move without
frustration, i.e., without a cost in the potential energy.

The complete ground-state phase diagram is depicted in
Fig. 6 for 12 × 12 and 18 × 18 square lattices; we see that the
phase diagram is by and large independent of the system size
for 6L × 6L square lattices when L � 2. It should be noted
that, for L � 4, the simulation times are prohibitively large
at large repulsions (or anisotropies). We will now proceed
to discuss the phase diagram for the 18 × 18 lattice. The
half-filled system shows the signature of a checkerboard solid
(cS) for all g̃ values above 1.37. Next to this CDW, we
have a supersolid region (cSS) where S(π,π ) and ρs coexist
homogeneously. On the other hand, at filling fraction ρ = 1/3,
the system realizes a dsS beyond g̃ = 2.11. On both sides of
this striped solid, we have a region of supersolid (dsSS), which
is a homogeneous coexistence of the diagonal striped solid and
a superfluid. As we increase g̃ beyond 1.37, the width of the
supersolid region cSS increases and attains its maximum at
g̃ = 2.0. Further increase in g̃ results in a decrease in the width
of the cSS region, thereby making way for diagonal stripe
supersolid at higher values of g̃. However, we should point out
that there is no direct supersolid-supersolid transition. Next, it
is interesting to note that there is an asymmetry in the extent
of the dsSS region around one-third filling. Thus there is an
asymmetry at ρ = 1/3 with respect to doping with interstitials
and vacancies similar to the asymmetry at one-fourth filling
reported in Ref. [16] for a t1 − V1 − V2 model when V1 < 2V2.
It is also worth noting that, at lower fillings such as ρ = 1/4
and ρ = 1/5, there is no CDW order.

In a recent study of HCBs on a square lattice with NN
hopping and NN repulsion (i.e., in a t1 − V1 model), when a

sizable external potential is applied along the diagonal stripes
in Figs. 5(b) and 5(c), the authors obtain the corresponding
diagonal striped CDW at ρ = 1/3 and a striped supersolid
phase away from one-third filling [60]. Similar to our case,
the physics governing the formation of a supersolid phase is
that the interstitial particles or vacancies in the vicinity of the
commensurate filling ρ = 1/3 can hop without changing the
potential energy of the system.

In our simulations using SSE, we cannot tune the mag-
netization (density) directly. Instead, we tune the magnetic
field which determines the magnetization of the system.
For a particular value of the magnetic field, the resulting
magnetization generally fluctuates during simulation. As a
result, usually it is not possible to study the nature of the phase
transitions by keeping the magnetization (filling-fraction) fixed
at a particular value and varying g̃. However, when the system
is in a CDW state, the magnetization remains constant over a
range of magnetic field values; this makes it possible to vary
g̃ at a fixed magnetization.

We see from Fig. 7(a) that for the half-filled system (i.e., at
m = 0), as we increase the g̃ value from 1 to 3, the structure
factor S(π,π ) jumps from 0 to almost its maximum value
and the superfluid density suddenly drops down to zero at
g̃ = 1.37. In the phase diagram (depicted in Fig. 6), this
indicates a first-order transition at g̃ = 1.37 from a superfluid
to a checkerboard solid at filling fraction 1

2 ; since the transition
is from a U(1) symmetry breaking state to a translational
symmetry breaking state, the order of the transition is con-
sistent with Landau’s picture. Furthermore, our observation
of discontinuous transition from a superfluid to checkerboard
solid is also consistent with the results of Refs. [31,61].
Similarly, at magnetization m = 1

6 corresponding to filling
fraction 2

3 , at g̃ = 2.11, Fig. 7(b) shows a dramatic jump in
the structure factor S(2π/3,2π/3) + S(2π/3,4π/3) from 0
to its maximum value accompanied by a discontinuous drop
in the superfluid density to zero. This signifies a first-order
transition as we move along the g̃-axis at m = 1/6 in the phase
diagram (shown in Fig. 6). Thus, consistent with the literature
[16,18,62], no supersolidity is detected at commensurate
fillings in our unfrustrated system. Here it should be pointed
out that in Fig. 7(a) and 7(b), after the transition from superfluid
to CDW (cS and dsS) state, the magnetizations can be fixed
exactly at m = 0 and 1/6, respectively. However, before the
transitions, i.e., in the superfluid region, the magnetizations
are given by m = 0 ± 0.0000006 and 1/6 ± 0.00002.

Next, away from the special points [63] (ρ = 0.5,g̃ = 1.37)
and (ρ = 2/3,g̃ = 2.11), we will study the nature of the
transitions as a function of the magnetization. As seen in
Fig. 4, the order parameters change continuously, upon tuning
the magnetization of the system at a fixed g̃ value, signifying
continuous phase transitions between different phases. A more
reliable indicator, to detect the nature of the phase transitions
along the ρ axis of the phase diagram, is the behavior of the
order parameters (i.e., magnetization, superfluid density and
structure factor) as the magnetic field h is varied. In Fig. 8,
the continuous variation of the order parameters as a function
of the magnetic field h clearly eliminates the possibility of a
first-order phase transition. Therefore, in the phase diagram
displayed in Fig. 6, as we move along the ρ axis at any
particular g̃ value, all the different phases are separated from
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each other via continuous phase transitions, i.e., all supersolid-
solid and superfluid-supersolid transitions are continuous.

As mentioned earlier, at a fixed magnetization, it is difficult
to analyze the transition between the superfluid and the
supersolid phases as a function of g̃. Now, it is expected
that the nature of the transition between the two phases is
independent of whether it is driven by the coupling or the
density. To demonstrate this, we concentrate on the phase
transition between SF and cSS. From the phase diagram in
Fig. 6, we see that around ρ ≈ 0.616, a phase transition takes
place between SF and cSS as g̃ is varied from 1.35 to 1.40.
Therefore, for a number of g̃ values ranging from 1.3 to 1.5,
we have varied the magnetic field (in very small steps) so as to
obtain the density ρ as close as possible to 0.616 for each g̃.
Figure 9 shows the behavior of S(π,π ) and ρs as a function of
g̃ at density ρ = 0.61635 ± 0.00007. The smooth variation of
the order parameters suggest that the nature of the transition
between superfluid (SF) and checkerboard supersolid (cSS) is
continuous as we move along the g̃ axis in the phase diagram.
Similarly, we expect the nature of the transition to be also
continuous between the superfluid (SF) and diagonal striped
supersolid (dsSS) phases as we tune the g̃ value.

We will now identify the minimum model for the diagonal
striped supersolid. Compared to the checkerboard supersolid,
the dsSS phase is rarely observed. To determine the minimum
model for the realization of the dsSS phase, we first identify
the necessary repulsions required to observe the diagonal
striped solid phase in the t1 − t2 − t3 − V1 − V2 − V3 model
of Eq. (18). From Fig. 10, we see that, as soon as we tune the
NNNN repulsion V3 along x and y axes to zero, the structure
factor corresponding to the dsS phase completely disappears.
This feature can be explained based on Figs. 5(b) and 5(c).
For instance, when the NNNN repulsion V3 is set to zero in
the structure given by Fig. 5(b), the particles at sites (i,j )
and (i + 1,j − 1) can both be shifted to the neighboring sites
(i + 1,j ) and (i,j − 1) without changing the potential energy
of the system. This process destroys the striped structure. Thus
it follows that all the three repulsions (i.e., V1, V2, and V3) are
necessary to stabilize the dsS structure. A similar argument
can be made to destroy the structure given by Fig. 5(c).

Next, in Fig. 11, we focus on the region in the vicinity of
the striped phase. Compared to Fig. 11(a), in which all the
three hopping parameters are nonzero, the superfluid density
reduces slightly when the NNNN hopping t3 is set to zero [as
can be seen in Fig. 11(b)]. The interesting feature to note is that,
even when only NN hopping t1 is present with the other two
hopping parameters t2 and t3 being zero [as in Fig. 11(c)], we
have a diagonal striped supersolid region around m = 1/6 with
the width of the dsSS being almost unaffected. This elucidates
the fact that the minimum model to obtain a dsSS phase is the
t1 − V1 − V2 − V3 model.

V. COMPARISON WITH LSNO EXPERIMENTAL RESULTS

Stripelike charge order has been reported in a number of lay-
ered transition-metal oxides [36]. Among these compounds,
the layered nickelate LSNO is an archetypal system to exhibit a
firm charge stripe order. In La2−xSrxNiO4, static checkerboard
charge order [such as in Fig. 5(a)] is expressed at x = 1/2 and
static diagonal stripe order [as shown in Figs. 5(b) and 5(c)] is

manifested at x = 1/3 with the transition temperatures at these
dopings showing local maxima [37–42]. The observed lattice
constant ratio c/a in LSNO displays a maximum at x = 1/2,
thereby indicating that in the region 0 < x < 1/2 holes are
doped into the dx2−y2 orbitals and in the region 1/2 < x < 1
holes are doped into the dz2 orbitals [39,64]. Measurements of
Hall coefficient for La2−xSrxNiO4 by T. Katsufuji et al. [65],
revealed that the charge carriers change from electronlike to
holelike while going from the hole density x < 1/3 to x > 1/3.

In the undoped La2NiO4, the oxidation state of nickel is
Ni2+ with the electronic configuration [Ar]4s03d8. Hence only
dz2 and dx2−y2 orbitals are relevant in the doped compound
La2−xSrxNiO4. The electron-phonon interaction term of the
Hamiltonian is given by

Hep = −gω0

4

∑
i,j

(d†
z2;i,j d

†
x2−y2;i,j )

×
(

qx;i,j + qy;i,j + 4qz;i,j −√
3qx;i,j + √

3qy;i,j

−√
3qx;i,j + √

3qy;i,j 3qx;i,j + 3qy;i,j

)

×
(

dz2;i,j

dx2−y2;i,j

)
, (24)

where the distortions qx;i,j ≡ (a†
x;i,j + ax;i,j ) − (a†

x;i−1,j +
ax;i−1,j ), qy;i,j ≡ (b†y;i,j + by;i,j ) − (b†y;i,j−1 + by;i,j−1), and

qz;i,j ≡ (c†z;i,j + cz;i,j ). In the undoped compound, since both
dz2 and dx2−y2 orbitals are occupied, there are only breathing
mode distortions (4qx;i,j + 4qy;i,j + 4qz;i,j ) and no active
Jahn-Teller (JT) distortions. Now, when we introduce holes
in the system (by doping with Sr such that 0 < x < 1/2), the
holes occupy the dx2−y2 orbitals; this is because a site with a
single electron in dx2−y2 orbital will produce in-plane distor-
tions (3qx + 3qy) which have a greater incompatibility with the
breathing mode distortions (4qx + 4qy + 4qz) on the adjacent
sites and thus cost more energy than a singly occupied dz2

orbital. These dx2−y2 holes can hop and are responsible for the
transport properties. Each site with a dx2−y2 hole is JT active.

The Hamiltonian for cooperative Jahn-Teller (CJT) distor-
tions in the two-dimensional LSNO system involves holes in
dx2−y2 orbitals as the active carriers. The starting Hamiltonian
HLSNO, describing La2−xSrxNiO4 for 0 � x � 0.5, consists
of the following terms expressed in terms of the creation
(destruction) operator h

†
i,j (hi,j ) for the holes in dx2−y2 orbitals:

(i) hopping term:

H ′
t = 3t

4

∑
i,j

(h†
i+1,j hi,j + h

†
i,j+1hi,j + H.c.); (25)

(ii) hole-phonon interaction term:

H ′
I = 3

4
gω0

∑
i,j

[
(a†

x;i,j + ax;i,j )
(
nh

i,j − nh
i+1,j

)

+ (b†y;i,j + by;i,j )
(
nh

i,j − nh
i,j+1

)]
; (26)

and (iii) lattice term:

H ′
l = ω0

∑
i,j

(a†
x;i,j ax;i,j + b

†
y;i,j by;i,j ), (27)

where nh
i,j ≡ h

†
i,j hi,j .
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The Lang-Firsov transformed Hamiltonian is given by
H̃LSNO = exp(S)HLSNOexp(−S) where S has the form

S = 3

4
g

∑
i,j

[
(a†

x;i,j − ax;i,j )
(
nh

i,j − nh
i+1,j

)

+ (b†y;i,j − by;i,j )
(
nh

i,j − nh
i,j+1

)]
. (28)

Setting t ′ = −3t/4 and g′ = −3g/4, in the nonadiabatic
regime (|t ′|/ω0 � 1) and at strong coupling (i.e., large g′2),
the transformed Hamiltonian can be split into two terms: the
unperturbed Hamiltonian and the perturbation term. These two
terms are the same as the ones given by Eqs. (5) and (6), except
that they are written in hole-operator language; both γ and η

are set to zero value; and t and g are replaced by t ′ and g′,
respectively. If the carriers are taken to be HCBs instead of
fermionic holes, then after following the same second-order
perturbative procedure as in Sec. II, we end up with an effective
Hamiltonian that is exactly the same as that given by Eq. (18)
with γ = 0 = η and with t and g being replaced by t ′ and g′,
respectively. It is important to note that the small parameter

value is again given by [ t2

2(Ep+Vp)ω0
]

1
2 and remains unaltered.

Now, since we are dealing with fermionic holes and not HCBs,
we get the following effective Hamiltonian:

H ′
eff = −(Ep + 2Vz)

∑
i,j

nh
i,j

− t1
∑
i,j

(h†
i+1,j hi,j + h

†
i,j+1hi,j + H.c.)

+V1

∑
i,j

(
nh

i,j n
h
i+1,j + nh

i,j n
h
i,j+1

)

− t2
∑
i,j

(
h
†
i+1,j+1

(
1 − nh

i+1,j − nh
i,j+1

)
hi,j

+h
†
i−1,j+1

(
1 − nh

i−1,j − nh
i,j+1

)
hi,j + H.c.

)

+V2

∑
i,j

(
nh

i,j n
h
i+1,j+1 + nh

i,j n
h
i−1,j+1

)

− t3
∑
i,j

(
h
†
i+2,j

(
1 − 2nh

i+1,j

)
hi,j

+h
†
i,j+2

(
1 − 2nh

i,j+1

)
hi,j + H.c.

)

+V3

∑
i,j

(
nh

i,j n
h
i+2,j + nh

i,j n
h
i,j+2

)
, (29)

with γ = 0 = η and with t and g being replaced by t ′
and g′, respectively. Since the interaction terms for the CJT
Hamiltonian of LSNO are the same as those for the t1 − t2 −
t3 − V1 − V2 − V3 Hamiltonian in Eq. (18), in LSNO also we
expect to get the same charge-ordered phases obtained for
the t1 − t2 − t3 − V1 − V2 − V3 model. Thus, at hole doping
1/2 and 1/3 (i.e., at x = 1/2 and x = 1/3 in La2−xSrxNiO4),
we will realize checkerboard solid and diagonal stripes,
respectively, which match exactly with the charge ordering
obtained for LSNO experimentally.

Now, if we add one extra hole to the system at one-third hole
doping (i.e., at x = 1/3), then the extra hole will reside in the
region between two diagonal stripes. This extra hole can hop

anywhere in the region between the stripes without changing
the potential energy of the system. Thus the carriers for the
hole doping x > 1/3 are holes. On the other hand, adding one
electron to the striped phase so that x < 1/3 will result in the
extra electron occupying any one of the sites along the stripes;
this extra electron is free to hop along the stripes without
altering the potential energy of the system. This means that
electrons are the carriers for the doping x < 1/3. Therefore,
based on our model, we can explain the hole or electron doping
(into the charge-ordered Mott insulator La5/3Sr1/3NiO4) that
was reported by T. Katsufuji et al. [65].

One can obviously ask how a system of HCBs can
reproduce some experimental results of a system of electrons.
The reason behind the charge orderings at hole-doping values
1/2 and 1/3 is repulsion; hopping does not play any role in
the ordering. Hence, for these two CDWs, it does not matter
whether the carriers of the system are HCBs or electrons.
Close to one-third doping, only single carrier physics plays
a role; consequently, particle-hole asymmetry is captured.
Next, it is important to note that CJT interaction is needed
to generate NNN and NNNN repulsions V2 and V3 which in
turn are needed to explain diagonal stripes. Thus we see that
our work resolves the controversy whether cooperative Jahn-
Teller distortions can explain the observed diagonal-stripe
charge order at one-third doping in LSNO [44–46]. Lastly,
it should also be pointed out that, although experimentally
[39] insulating behavior is observed in LSNO for x � 0.9,
theoretically we expect metallic nature; we believe, this
discrepancy is due to localization effects produced by disorder
in real LSNO systems.

VI. CONCLUSIONS AND OPEN PROBLEMS

To conclude, we investigated a 2D system of HCBs, mod-
ulated by the cooperative breathing mode, which is important
in real materials such as BaBiO3 and nickelates as well as
in artificial cold-atom systems. Using a duality treatment, we
obtained the effective Hamiltonian and generated the phase
diagram employing the SSE technique.

In the phase diagram displayed in Fig. 6, a first-order
transition occurs from a superfluid to a checkerboard solid
at filling-fraction 1/2 and from a superfluid to a diagonal
striped solid at filling 1/3. We interpreted the nature of the
transition by invoking Landau’s explanation. It would be
interesting to verify whether in other unfrustrated lattices, such
as the checkerboard lattice, a discontinuous superfluid-solid
transition is manifested at commensurate fillings such as
1/4 [62]. Furthermore, at a fixed interaction strength, our
t1 − t2 − t3 − V1 − V2 − V3 model realizes only continuous
transitions (i.e., superfluid-supersolid and supersolid-solid
transitions) as density is varied. Contrastingly, the t1 − t2 −
t3 − V1 model (pertaining to the strong-coupling case of
the Holstein model) manifests a discontinuous superfluid-
supersolid transition when density is varied [21,22]. Thus,
more insight is needed to identify which class of models yield
what type of superfluid-supersolid transition.

We have identified the t1 − V1 − V2 − V3 model as the
minimum model for obtaining a diagonal striped supersolid
on a square lattice. It would be exciting to realize this system
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in a cold-atom system, thereby adding to the understanding of
lattice supersolidity generated by long-range interactions [13].

The asymmetry of the supersolid phase about a commensu-
rate filling, such as one third in our case and one fourth in the
case of Ref. [16], in a square lattice occurs possibly because
particle-hole symmetry is not respected by the Hamiltonian
about these fillings. It would be worthwhile to study the
nature of such asymmetry in other lattices such as honeycomb,
checkerboard, etc.

We have explained the charge ordering in La2−xSrxNiO4

at hole doping x = 1/2 and 1/3 by considering cooperative
Jahn-Teller effect. However, studies involving CJT effect are
needed at dopings away from these fillings and particularly in
the region x > 1/2 where holes are doped into the dz2 orbitals.
Also of interest would the explanation for the metal-insulator
transition observed at x ∼ 0.9 [39].

In a different but related system La2−xSrxCoO4, CDWs
similar to those in LSNO are observed. At half-doping, there
is a signature of checkerboard charge ordering with alternate
Co2+ and Co3+ ions (below TCO ≈ 750 K) [66]. On the other
hand, at the doping x = 1/3, the holes form a diagonal-stripe
pattern similar to the stripes in LSNO at a transition temper-
ature well above the room temperature [67–70]. Furthermore,
the presence of substantial disorder in these diagonal stripes
has been confirmed by the experiment [70] done by A. T.
Boothroyd et al. The electronic configuration of cobalt is
[Ar]3d74s2. In La2−xSrxCoO4, cobalt shows two different
oxidation states: Co2+ and Co3+. The Co3+ ions are found to
have the low-spin ground state (S = 0) [71] with the electronic
configuration [Ar]3d6. In this case, all the six d electrons

occupy the t2g orbitals and both the eg orbitals are empty.
Therefore Co3+ ions do not cause any Jahn-Teller distortion
in the system. On the other hand, in the case of Co2+ ions,
the electrons are in the high-spin ground state (S = 3/2) with
the electronic configuration [Ar]3d7. This state consists of
five electrons in the t2g orbitals and two in the eg orbitals.
Two out of the three t2g orbitals are completely filled with
four electrons, whereas the remaining orbital contains a single
electron. Since both the eg orbitals are occupied by one electron
each, JT distortion comes into play due to the singly occupied
t2g orbital only. Owing to the fact that the JT distortion arising
from t2g electrons is weaker than the one arising from eg

electrons, it needs to be examined whether this can explain the
disorder in the stripe pattern in La2−xSrxCoO4.
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APPENDIX A: NEAREST-NEIGHBOR REPULSION

The second-order perturbation term is given by

H (2) = −
∑
m

∑
i,j,k,l

〈0|phH1i,j |m〉ph〈m|phH1k,l|0〉ph

E
ph
0 − E

ph
m

= −t2
1

∑
m

∑
i,j,k,l

1

�E
ph
m

[(
d
†
i+1,j di,j 〈0|ph

(
τ

ij
−x − 1

)|m〉ph + d
†
i,j di+1,j 〈0|ph

(
τ

ij
+x − 1

)|m〉ph + d
†
i,j+1di,j 〈0|ph

(
τ

ij
−y − 1

)|m〉ph

+ d
†
i,j di,j+1〈0|ph

(
τ

ij
+y − 1

)|m〉ph
)(

d
†
k+1,ldk,l〈m|ph

(
τ kl
+x

† − 1
)|0〉ph + d

†
k,ldk+1,l〈m|ph

(
τ kl
−x

† − 1
)|0〉ph

+ d
†
k,l+1dk,l〈m|ph

(
τ kl
+y

† − 1
)|0〉ph + d

†
k,ldk,l+1〈m|ph

(
τ kl
−y

† − 1
)|0〉ph

)]
, (A1)

where t1 = te−(Ep+Vp)/ω0 and �E
ph
m = E

ph
0 − E

ph
m .

As already mentioned in Sec. II A, the NN repul-
sion results from a process where a particle hops to its
neighboring site and returns back, which in 2D consists
of two terms:

∑
i,j [ni,j (1 − ni+1,j ) + ni+1,j (1 − ni,j )] and∑

i,j [ni,j (1 − ni,j+1) + ni,j+1(1 − ni,j )].
Since,

∑
i,j ni,j (1 − ni+1,j ) = ∑

i,j ni+1,j (1 − ni,j ) and∑
i,j ni,j (1 − ni,j+1) = ∑

i,j ni,j+1(1 − ni,j ), so the process is
effectively given by

∑
i,j [ni,j (1 − ni+1,j ) + ni,j (1 − ni,j+1)]

with the coefficient doubled.
Now, we can rewrite the term

∑
i,j ni,j (1 − ni+1,j ) as∑

i,j

d
†
i,j di,j (1 − d

†
i+1,j di+1,j ) =

∑
i,j

d
†
i,j di,j di+1,j d

†
i+1,j

=
∑
i,j

d
†
i,j di+1,j d

†
i+1,j di,j .

Looking at the expression of H (2), one can figure out that
the above term comes from the multiplication of the terms
d
†
i,j di+1,j and d

†
k+1,ldk,l for k = i and l = j . So, the coefficient

of this term is given by

t2
1

∑
m

〈0|ph
(
τ

ij
+x − 1

)|m〉ph〈m|ph
(
τ

ij
+x

† − 1
)|0〉ph

�E
ph
m

, (A2)

where

τ
ij
+x = exp[g(2ai,j − ai−1,j − ai+1,j ) + g(bi+1,j−1

+ bi,j − bi,j−1 − bi+1,j ) + γg(ci,j − ci+1,j )];

consequently, the coefficient simplifies exactly to be
t2
1

ω0
G9(4,1,1,1,1,1,1,γ 2,γ 2). Now, the general form
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Gn(α1,α2, · · · ,αn) can be expressed as

Gn(α1,α2, · · · ,αn) =
′∑

m1,m2,...,mn

(α1g
2)m1 · · · (αng

2)mn

m1! · · ·mn!(m1 + · · · + mn)
,

where mi = 0,1,2, . . . .,∞ and the prime in
∑′ implies

the case m1 = m2 = . . . = mn = 0 is excluded from the
summation. It is important to note that for large values of
g2, Gn can be approximately expressed as

Gn(α1,α2, · · · ,αn) ≈ exp
( ∑n

i=1 αig
2
)

∑n
i=1 αig2

. (A3)

Then, the NN repulsion is given by

−Vz

∑
i,j

[ni,j (1 − ni+1,j ) + ni,j (1 − ni,j+1)], (A4)

where

Vz = 2t2e−2(Ep+Vp)/ω0

ω0
G9(4,1,1,1,1,1,1,γ 2,γ 2)

≈ 2t2

2Ep + 2Vp

. (A5)

Now, in arriving at Eq. (A4), we did not take into account
the occupancy of the neighbors of the intermediate site. For
example, when the particle hops from site (i,j ) to NN site
(i + 1,j ) and back, we have not considered the occupancy of
the sites (i + 2,j ), (i + 1,j + 1) and (i + 1,j − 1), which are
the neighboring sites of the intermediate site (i + 1,j ) (as can
be seen from Fig. 1). We will consider this occupancy in the
next appendix.

APPENDIX B: NNN REPULSION AND NNNN REPULSION

In this appendix, we first outline the procedure of calculat-
ing the coefficient of next-nearest-neighbor (NNN) repulsion,
which occurs along the diagonals. Consider the case where
a particle hops to its neighboring site and returns back
yielding the term ∝ ∑

〈i,j〉 ni(1 − nj ) with 〈i,j 〉 indicating
nearest-neighbor (NN) pairs of sites. In this process, we have
to take into account the occupancy of the neighboring sites of
the intermediate site j . For example, in Fig. 12, if a particle
at site 1 hops to site 2 and comes back, then the coefficient of
this process depends on the occupancy of the sites 3, 4, and 5.
If all the three sites are empty, then this term can be expressed
as −Vzn1(1 − n3)(1 − n4)(1 − n5), where Vz ≈ 2t2

2Ep+2Vp
; here,

we have omitted the term (1 − n2) because the possibility of
NN occupancy (for particle at site 1) is already excluded from
the process due to the large value of NN repulsion 2Vp. Due to
numerical difficulties in our simulations using SSE, we need
to simplify the four-operator term into a two-operator one
by applying mean field to the remaining two operators. One
can easily see that this mean-field procedure leaves us with a
term which represents NNN repulsion (which acts along the
diagonals) or NNNN repulsion (which acts along the axes).

We will now calculate the NNN repulsion coefficient
which pertains to the diagonals of the square lattice in
Fig. 12. To this end, we consider all the possible processes
yielding the operator n1n3 and add all the corresponding

1 2

3

4

5

6 7

8

FIG. 12. Pictorial description of the process where a particle at
site 1 hops to site 2 and comes back.

terms to evaluate its coefficient. The following are the relevant
cases.

Case 1. NNN interaction, when all the three neighboring
sites of the intermediate site are unoccupied, involves the
following. (i) The contribution of particle hopping from site 1
to site 2 and coming back can be written as

− 2t2

(2Ep + 2Vp)
n1(1 − n3)(1 − n4)(1 − n5)

≈ − 2t2

(2Ep + 2Vp)
n1(1 − n3)〈1 − n4〉〈1 − n5〉

≈ − 2t2

(2Ep + 2Vp)
n1(1 − n3)

(
1

2
− m

)2

, (B1)

where 〈. . .〉 implies mean value and 〈1 − n4〉 = 〈1 − n5〉 =
( 1

2 − m) with m being the magnetization of the system. (ii)
The contribution of particle hopping from site 1 to site 7
and returning back involves a similar situation as (i) and is
given as

≈ − 2t2

(2Ep + 2Vp)
n1(1 − n3)〈1 − n6〉〈1 − n8〉

≈ − 2t2

(2Ep + 2Vp)
n1(1 − n3)

(
1

2
− m

)2

. (B2)

(iii) The contribution of particle hopping from site 3 to site 2
and coming back:

≈ − 2t2

(2Ep + 2Vp)
n3(1 − n1)〈1 − n4〉〈1 − n5〉

≈ − 2t2

(2Ep + 2Vp)
n3(1 − n1)

(
1

2
− m

)2

. (B3)

(iv) The particle hopping from site 3 to site 7 and returning back
is similar to (iii) and yields the same expression as Eq. (B3).
(v) The contribution of particle hopping from site 4 to site 2
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and coming back:

≈ − 2t2

(2Ep + 2Vp)
(1 − n3)(1 − n1)〈n4〉〈1 − n5〉

≈ − 2t2

(2Ep + 2Vp)
(1 − n3)(1 − n1)

(
1

4
− m2

)2

. (B4)

(vi) The contribution of particle hopping from site 5 to site 2
and coming back is similar to (v) and is given by Eq. (B4).
(vii) The particle hopping from site 6 to site 7 and returning
back is also similar to (v) and the contribution is again given
by Eq. (B4). (viii) The contribution of particle hopping from
site 8 to site 7 and coming back is also similar to (v) and hence
is given by Eq. (B4). Adding all the contributions for case 1,
we get the coefficient of n1n3 to be

2t2

(2Ep + 2Vp)

[
4

(
1

2
− m

)2

− 4

(
1

4
− m2

)]
. (B5)

Case 2. We consider contribution to NNN interaction when,
among the three sites that are NN to the intermediate site,
one of them is occupied and the other two are empty. Thus,
compared to case 1, there is an extra repulsion term 2Vp in
the denominator of the coefficient. Then, NNN interaction
involves the following. (i) The particle hops from site 1 to site
2 and comes back. Any one of the three neighboring sites of
site 2, i.e., 3, 4, or 5, is occupied; then, the contribution is

≈ − 2t2

(2Ep + 4Vp)
[n1n3〈1 − n4〉〈1 − n5〉

+ n1(1 − n3)〈n4〉〈1 − n5〉 + n1(1 − n3)〈1 − n4〉〈n5〉]

≈ − 2t2

(2Ep + 4Vp)

[
n1n3

(
1

2
− m

)2

+ 2n1(1 − n3)

(
1

4
− m2

)]
. (B6)

(ii) The particle hops from site 1 to site 7 and comes back. The
situation is similar to (i) and hence the contribution is given
by Eq. (B6). (iii) The particle hops from site 3 to site 2 and
comes back. The resulting contribution is

≈ − 2t2

(2Ep + 4Vp)
[n3n1〈1 − n4〉〈1 − n5〉

+ n3(1 − n1)〈n5〉〈1 − n4〉 + n3(1 − n1)〈n4〉〈1 − n5〉]

≈ − 2t2

(2Ep + 4Vp)

[
n1n3

(
1

2
− m

)2

+ 2n3(1 − n1)

(
1

4
− m2

)]
. (B7)

(iv) The particle hops from site 3 to site 7 and returns
back. Since the situation is similar to (iii), the contribution
is expressed by Eq. (B7). (v) The particle hops from site 4 to
site 2 and comes back. The contribution is

≈ − 2t2

(2Ep + 4Vp)
[〈n4〉(1 − n1)n3〈1 − n5〉

+ 〈n4〉n1(1 − n3)〈1 − n5〉 + 〈n4〉(1 − n1)(1 − n3)〈n5〉]

≈ − 2t2

(2Ep + 4Vp)

[
n1(1 − n3)

(
1

4
− m2

)

+ n3(1 − n1)

(
1

4
− m2

)
+ (1 − n1)(1 − n3)

(
1

2
+ m

)2]
.

(B8)

(vi) The particle hops from site 5 to site 2 and comes back.
The situation being similar to (v) leads to the contribution
being given by Eq. (B8). (vii) The particle hops from site 6
to site 7 and comes back; this circumstance is also similar
to (v) and hence contribution same as in Eq. (B8). (viii) The
particle hops from site 8 to site 7 and comes back. Here too
the contribution is given by Eq. (B8) since the circumstance
is again similar to (v). Therefore, for case 2, the sum total
of the above contributions yields the coefficient of n1n3

to be

2t2

(2Ep + 4Vp)

[
16

(
1

4
− m2

)
− 4

(
1

2
− m

)2

− 4

(
1

2
+ m

)2]
. (B9)

Case 3. Contribution to NNN interaction when the inter-
mediate site has any two of the three NN sites occupied
with the other being empty. Then, compared to case 2, the
coefficient has an extra repulsion term 2Vp in the denominator;
consequently, NNN interaction involves the following. (i) The
particle hops from site 1 to site 2 and comes back; the resulting
contribution is

≈ − 2t2

(2Ep + 6Vp)
[n1n3〈n4〉〈1 − n5〉

+ n1n3〈1 − n4〉〈n5〉 + n1(1 − n3)〈n4〉〈n5〉]

≈ − 2t2

(2Ep + 6Vp)

[
2n1n3

(
1

4
− m2

)

+ n1(1 − n3)

(
1

2
+ m

)2]
. (B10)

(ii) The particle hops from site 1 to site 7 and comes back. This
situation is similar to (i) with the contribution being expressed
by Eq. (B10). (iii) The particle hops from site 3 to site 2 and
returns; the ensuing contribution is

≈ − 2t2

(2Ep + 6Vp)
[n3n1〈1 − n4〉〈n5〉

+ n3n1〈n4〉〈1 − n5〉 + n3(1 − n1)〈n4〉〈n5〉]

≈ − 2t2

(2Ep + 6Vp)

[
2n1n3

(
1

4
− m2

)

+ n3(1 − n1)

(
1

2
+ m

)2]
. (B11)

(iv) The particle hops from site 3 to site 7 and comes back.
The situation is similar to (iii) with the contribution being
given by Eq. (B11). (v) The particle hops from site 4 to site 2
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and returns. This produces the contribution

≈ − 2t2

(2Ep + 6Vp)
[〈n4〉n1n3〈1 − n5〉

+ 〈n4〉(1 − n1)n3〈n5〉 + 〈n4〉n1(1 − n3)〈n5〉]

≈ − 2t2

(2Ep + 6Vp)

[
n1n3

(
1

4
− m2

)

+ n1(1 − n3)

(
1

2
+ m

)2

+ n3(1 − n1)

(
1

2
+ m

)2]
. (B12)

(vi) The particle hops from site 5 to site 2 and comes back.
The circumstance, being similar to (v), yields the contribution
expressed in Eq. (B12). (vii) The particle hops from site 6
to site 7 and comes back. The situation is also similar to (v)
with the contribution being also given by Eq. (B12). (viii)
The particle hops from site 8 to site 7 and returns. Again the
situation is similar to (v) with the contribution being again
given by Eq. (B12). Therefore, on adding all the various
contributions for case 3, we get the coefficient of n1n3 to be

2t2

(2Ep + 6Vp)

[
12

(
1

2
+ m

)2

− 12

(
1

4
− m2

)]
. (B13)

Case 4. Contribution to NNN interaction when all of the
three neighboring sites of the intermediate site are occupied.
Here, compared to case 3, the coefficient has an extra repulsion
term 2Vp in the denominator. Then, NNN interaction involves
the following. (i) The particle hops from site 1 to site 2 and
comes back. Consequently, the contribution is

≈ − 2t2

(2Ep + 8Vp)
n1n3〈n4〉〈n5〉

≈ − 2t2

(2Ep + 8Vp)
n1n3

(
1

2
+ m

)2

. (B14)

For all the following also the contribution is expressed by
Eq. (B14) because the situation is similar to (i). (ii) The particle
hops from site 1 to site 7 and comes back. (iii) The particle
hops from site 3 to site 2 and returns. (iv) The particle hops
from site 3 to site 7 and comes back. (v) The particle hops from
site 4 to site 2 and comes back. (vi) The particle hops from
site 5 to site 2 and returns. (vii) The particle hops from site 6
to site 7 and comes back. (viii) The particle hops from site 8
to site 7 and returns. Therefore, for case 4, the coefficient of
n1n3 is given by

− 2t2

(2Ep + 8Vp)
× 8

(
1

2
+ m

)2

. (B15)

Combining Eqs. (B5), (B9), (B13), and (B15), we finally
get the coefficient of NNN repulsion (which acts along the
diagonals) to be

V2 = 2t2

[(
1

2
− m

)2 2Vp

(Ep + Vp)(Ep + 2Vp)

+
(

1

4
− m2

)
4EpVp

(Ep + Vp)(Ep + 2Vp)(Ep + 3Vp)

+
(

1

2
+ m

)2 2EpVp

(Ep + 2Vp)(Ep + 3Vp)(Ep + 4Vp)

]
.

(B16)

To calculate the NNNN repulsion along the x axis (y
axis), we have to consider all the processes from which a
term n1n4 (n1n8) can appear. Adding all those terms, we can
see that the coefficient of NNNN repulsion is just half of the
coefficient of NNN repulsion. The reason for this is that the
relevant contributions are from only half of the eight situations
considered in each of the above four occupancy cases (i.e, the
four cases involving different number of occupied neighbors
for the intermediate site).

APPENDIX C: NNN HOPPING AND NNNN HOPPING

There are two possible hopping paths for a particle to arrive
at a NNN site along the diagonals of the square lattice. For
example, in Fig. 13, consider a particle hopping from site 1 to
site 3. It can either hop to site 2 first and then to site 3 or it can
hop to site 4 followed by a hop to site 3. Now, the coefficient of
this process gets modified by the occupancy of the neighboring
sites of the intermediate site. Without taking into account this
effect, the process along any one path [on using Eq. (A1)] is
given exactly by

− t2e−2(Ep+Vp)/ω0

ω0
G5(2,2,1,1,γ 2)

∑
〈〈i,j〉〉

(d†
i dj + H.c.),

where 〈〈i,j 〉〉 denotes NNN pairs of sites along the diagonals.
For large values of g2, we have the following simplification
for the coefficient in the above expression:

t2e−2(Ep+Vp)/ω0

ω0
G5(2,2,1,1,γ 2) ≈ t2e−Ep/ω0

Ep + 2Vp

.

Path 1. The particle hops from site 1 to site 3 via site 2.
The coefficient of this process depends on the occupancy of
the sites 5 and 6, which are the two neighboring sites of the
intermediate site 2.

FIG. 13. Pictorial depiction of the process where a particle at
site 1 hops to site 3, which is its NNN site along diagonal. The two
possible paths for this process are indicated: hopping to site 3 via site
2 and site 4.
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Case 1. Contribution to NNN hopping when both the
neighboring sites are empty:

− t2e−Ep/ω0

Ep + 2Vp

d
†
3d1(1 − n5)(1 − n6)

≈ − t2e−Ep/ω0

Ep + 2Vp

d
†
3d1〈1 − n5〉〈1 − n6〉

≈ − t2e−Ep/ω0

Ep + 2Vp

(
1

2
− m

)2

d
†
3d1. (C1)

Case 2. Contribution when any one of the neighboring sites
is occupied (giving an extra repulsion 2Vp in the denominator)
and the other site is empty:

≈ − t2e−Ep/ω0

Ep + 4Vp

d
†
3d1[〈n5〉〈1 − n6〉 + 〈1 − n5〉〈n6〉]

≈ −2t2e−Ep/ω0

Ep + 4Vp

(
1

4
− m2

)
d
†
3d1. (C2)

Case 3. Contribution when both the NN sites are occupied:

≈ − t2e−Ep/ω0

Ep + 6Vp

d
†
3d1〈n5〉〈n6〉

≈ − t2e−Ep/ω0

Ep + 6Vp

(
1

2
+ m

)2

d
†
3d1. (C3)

Therefore, for path 1, we get the coefficient of d
†
3d1 to be

−t2e−Ep/ω0

[(
1

2
− m

)2 1

Ep + 2Vp

+
(

1

4
− m2

)
2

Ep + 4Vp

+
(

1

2
+ m

)2 1

Ep + 6Vp

]
. (C4)

Path 2. The particle hops from site 1 to site 4 first and then to
site 3. The coefficient of this process gets modified depending
on whether the sites 7 and 8 (NN to the intermediate site 4)
are occupied or not.

Case 1. Contribution when both the neighboring sites are
empty. This situation is similar to case 1 of path 1; hence the
contribution is given by Eq. (C1).

Case 2. Contribution when any one of the neighboring sites
is occupied and the other one is empty. This is similar to

case 2 of path 1; consequently, the contribution is expressed
by Eq. (C2).

Case 3. Contribution when both the NN sites are occupied.
This circumstance is similar to case 3 of path 1; thus, the
contribution is given by Eq. (C3).

Thus we see that path 2 yields the same coefficient [given
by Eq. (C4)] for d

†
3d1 as path 1. Combining the contributions

from both the paths, a particle hopping to its NNN along
diagonals can be expressed as −t2

∑
〈〈i,j〉〉(d

†
i dj + H.c.), where

the coefficient t2 is given by

t2 = 2t2e−Ep/ω0

[(
1

2
− m

)2 1

Ep + 2Vp

+
(

1

4
− m2

)
2

Ep + 4Vp

+
(

1

2
+ m

)2 1

Ep + 6Vp

]
.

(C5)

For the case of NNNN hopping (which occurs along the
axes), there is only one possible path. Hence, the relevant
coefficient t3 for NNNN hopping is half of the coefficient for
NNN hopping, i.e., t3 = t2

2 .

APPENDIX D: SSE BOND HAMILTONIAN

Our effective Hamiltonian for HCBs, written in units of 2t1,
can be expressed in terms of bond operators as follows:

H = −
3∑

i=1

∑
Bi

HBi
, (D1)

where B1, B2, and B3 represent NN, NNN, and NNNN bonds
in our system, respectively. In the above expression HBi

can
further be written as a sum of diagonal (H1,Bi

) and off-diagonal
(H2,Bi

) parts, i.e., HBi
= H1,Bi

+ H2,Bi
. The expressions for

the diagonal and off-diagonal parts are given as

H1,Bi
= Ci − �iS

z
j (Bi )

Sz
k(Bi )

+ hB

(
Sz

j (Bi )
+ Sz

k(Bi )

)
,

H2,Bi
= Ji

2

(
S+

j (Bi )
S−

k(Bi )
+ H.c.

)
, (D2)

where J1 = 1, Ci ≡ �i/4 + hB + εi, εi � 0, and hB = h/Z;
the coordination number Z = 12 for our problem. Further-
more, j (Bi) and k(Bi) refer to sites connecting the bond Bi .
The parameter εi is introduced to ensure that the two-spin
matrix elements always stay positive.
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265601 (2011).
[47] A. Ghosh and S. Yarlagadda (unpublished).
[48] In one dimension, it has been shown in Ref. [34] that t2 − V1

model yields a cSS. In 2D, it has been demonstrated in Ref. [21]
that t2 − t3 − V1 model generates a cSS; using similar logic, it
can be shown that t2 − V1 model also manifests cSS.

[49] P. B. Allen and V. Perebeinos, Phys. Rev. B 60, 10747 (1999).
[50] I. G. Lang and Yu. A. Firsov, Zh. Eksp. Teor. Fiz. 43, 1843

(1962) [Sov. Phys. JETP 16, 1301 (1963)].
[51] R. Pankaj and S. Yarlagadda, Phys. Rev. B 86, 035453 (2012).
[52] S. Reja, S. Yarlagadda, and P. B. Littlewood, Phys. Rev. B 84,

085127 (2011).
[53] S. Reja, S. Yarlagadda, and P. B. Littlewood, Phys. Rev. B 86,

045110 (2012).
[54] A. Dey, M. Q. Lone, and S. Yarlagadda, Phys. Rev. B 92, 094302

(2015).
[55] A. W. Sandvik, Phys. Rev. B 56, 11678 (1997).
[56] A. W. Sandvik, AIP Conf. Proc. 1297, 135 (2010).
[57] O. F. Syljuasen and A. W. Sandvik, Phys. Rev. E 66, 046701

(2002).
[58] O. F. Syljuåsen, Phys. Rev. E 67, 046701 (2003).
[59] G. G. Batrouni, R. T. Scalettar, G. T. Zimanyi, and A. P. Kampf,

Phys. Rev. Lett. 74, 2527 (1995).
[60] O. Nguyen and L. Dang, Eur. Phys. J. B 90, 71 (2017).
[61] A. Kuklov, N. Prokofev, and B. Svistunov, Phys. Rev. Lett. 93,

230402 (2004).
[62] S. Wessel, Phys. Rev. B 86, 140501(R) (2012).
[63] The nature of the special points (i.e., whether they represent

triple points, etc.) needs further investigation.
[64] R. J. Cava, B. Batlogg, T. T. Palstra, J. J. Krajewski, W. F. Peck,

Jr., A. P. Ramirez, and L. W. Rupp, Jr., Phys. Rev. B 43, 1229(R)
(1991).

[65] T. Katsufuji, T. Tanabe, T. Ishikawa, S. Yamanouchi, Y. Tokura,
T. Kakeshita, R. Kajimoto, and H. Yoshizawa, Phys. Rev. B 60,
R5097(R) (1999).

[66] I. A. Zaliznyak, J. P. Hill, J. M. Tranquada, R. Erwin, and Y.
Moritomo, Phys. Rev. Lett. 85, 4353 (2000).

[67] M. Cwik, M. Benomar, T. Finger, Y. Sidis, D. Senff, M. Reuther,
T. Lorenz, and M. Braden, Phys. Rev. Lett. 102, 057201 (2009).

[68] A. T. Boothroyd, P. Babkevich, D. Prabhakaran, and P. G.
Freeman, Nature (London) 471, 341 (2011).

[69] E. C. Andrade and M. Vojta, Phys. Rev. Lett. 109, 147201
(2012).

[70] T. Lancaster, S. R. Giblin, G. Allodi, S. Bordignon, M. Mazzani,
R. De Renzi, P. G. Freeman, P. J. Baker, F. L. Pratt, P. Babkevich,
S. J. Blundell, A. T. Boothroyd, J. S. Möller, and D. Prabhakaran,
Phys. Rev. B 89, 020405(R) (2014).

[71] N. Hollmann, M. W. Haverkort, M. Cwik, M. Benomar, M.
Reuther, A. Tanaka, and T. Lorenz, New J. Phys. 10, 023018
(2008).

125108-17

https://doi.org/10.1142/S0217979296000362
https://doi.org/10.1142/S0217979296000362
https://doi.org/10.1142/S0217979296000362
https://doi.org/10.1142/S0217979296000362
https://doi.org/10.1038/nature09120
https://doi.org/10.1038/nature09120
https://doi.org/10.1038/nature09120
https://doi.org/10.1038/nature09120
https://doi.org/10.1103/RevModPhys.81.943
https://doi.org/10.1103/RevModPhys.81.943
https://doi.org/10.1103/RevModPhys.81.943
https://doi.org/10.1103/RevModPhys.81.943
https://doi.org/10.1103/RevModPhys.69.575
https://doi.org/10.1103/RevModPhys.69.575
https://doi.org/10.1103/RevModPhys.69.575
https://doi.org/10.1103/RevModPhys.69.575
https://doi.org/10.1103/PhysRevLett.61.2713
https://doi.org/10.1103/PhysRevLett.61.2713
https://doi.org/10.1103/PhysRevLett.61.2713
https://doi.org/10.1103/PhysRevLett.61.2713
https://doi.org/10.1038/nature17409
https://doi.org/10.1038/nature17409
https://doi.org/10.1038/nature17409
https://doi.org/10.1038/nature17409
https://doi.org/10.1103/PhysRevLett.84.1599
https://doi.org/10.1103/PhysRevLett.84.1599
https://doi.org/10.1103/PhysRevLett.84.1599
https://doi.org/10.1103/PhysRevLett.84.1599
https://doi.org/10.1103/PhysRevB.65.014513
https://doi.org/10.1103/PhysRevB.65.014513
https://doi.org/10.1103/PhysRevB.65.014513
https://doi.org/10.1103/PhysRevB.65.014513
https://doi.org/10.1103/PhysRevB.78.132512
https://doi.org/10.1103/PhysRevB.78.132512
https://doi.org/10.1103/PhysRevB.78.132512
https://doi.org/10.1103/PhysRevB.78.132512
https://doi.org/10.1103/PhysRevLett.104.125301
https://doi.org/10.1103/PhysRevLett.104.125301
https://doi.org/10.1103/PhysRevLett.104.125301
https://doi.org/10.1103/PhysRevLett.104.125301
https://doi.org/10.1103/PhysRevB.77.014524
https://doi.org/10.1103/PhysRevB.77.014524
https://doi.org/10.1103/PhysRevB.77.014524
https://doi.org/10.1103/PhysRevB.77.014524
https://doi.org/10.1103/PhysRevLett.94.207202
https://doi.org/10.1103/PhysRevLett.94.207202
https://doi.org/10.1103/PhysRevLett.94.207202
https://doi.org/10.1103/PhysRevLett.94.207202
https://doi.org/10.1103/PhysRevLett.93.067003
https://doi.org/10.1103/PhysRevLett.93.067003
https://doi.org/10.1103/PhysRevLett.93.067003
https://doi.org/10.1103/PhysRevLett.93.067003
https://doi.org/10.1016/j.aop.2016.10.001
https://doi.org/10.1016/j.aop.2016.10.001
https://doi.org/10.1016/j.aop.2016.10.001
https://doi.org/10.1016/j.aop.2016.10.001
https://doi.org/10.1016/j.ssc.2010.08.009
https://doi.org/10.1016/j.ssc.2010.08.009
https://doi.org/10.1016/j.ssc.2010.08.009
https://doi.org/10.1016/j.ssc.2010.08.009
https://doi.org/10.1103/PhysRevA.95.023613
https://doi.org/10.1103/PhysRevA.95.023613
https://doi.org/10.1103/PhysRevA.95.023613
https://doi.org/10.1103/PhysRevA.95.023613
https://doi.org/10.1103/PhysRevLett.95.127205
https://doi.org/10.1103/PhysRevLett.95.127205
https://doi.org/10.1103/PhysRevLett.95.127205
https://doi.org/10.1103/PhysRevLett.95.127205
https://doi.org/10.1103/PhysRevLett.95.127206
https://doi.org/10.1103/PhysRevLett.95.127206
https://doi.org/10.1103/PhysRevLett.95.127206
https://doi.org/10.1103/PhysRevLett.95.127206
https://doi.org/10.1103/PhysRevLett.100.147204
https://doi.org/10.1103/PhysRevLett.100.147204
https://doi.org/10.1103/PhysRevLett.100.147204
https://doi.org/10.1103/PhysRevLett.100.147204
https://doi.org/10.1103/PhysRevLett.95.127207
https://doi.org/10.1103/PhysRevLett.95.127207
https://doi.org/10.1103/PhysRevLett.95.127207
https://doi.org/10.1103/PhysRevLett.95.127207
https://doi.org/10.1103/PhysRevLett.95.237204
https://doi.org/10.1103/PhysRevLett.95.237204
https://doi.org/10.1103/PhysRevLett.95.237204
https://doi.org/10.1103/PhysRevLett.95.237204
https://doi.org/10.1103/PhysRevB.74.214517
https://doi.org/10.1103/PhysRevB.74.214517
https://doi.org/10.1103/PhysRevB.74.214517
https://doi.org/10.1103/PhysRevB.74.214517
https://doi.org/10.1103/PhysRevLett.104.125302
https://doi.org/10.1103/PhysRevLett.104.125302
https://doi.org/10.1103/PhysRevLett.104.125302
https://doi.org/10.1103/PhysRevLett.104.125302
https://doi.org/10.1103/PhysRevB.75.174301
https://doi.org/10.1103/PhysRevB.75.174301
https://doi.org/10.1103/PhysRevB.75.174301
https://doi.org/10.1103/PhysRevB.75.174301
https://doi.org/10.1103/PhysRevB.75.214509
https://doi.org/10.1103/PhysRevB.75.214509
https://doi.org/10.1103/PhysRevB.75.214509
https://doi.org/10.1103/PhysRevB.75.214509
https://doi.org/10.1103/PhysRevA.89.013615
https://doi.org/10.1103/PhysRevA.89.013615
https://doi.org/10.1103/PhysRevA.89.013615
https://doi.org/10.1103/PhysRevA.89.013615
https://doi.org/10.1103/PhysRevB.90.045140
https://doi.org/10.1103/PhysRevB.90.045140
https://doi.org/10.1103/PhysRevB.90.045140
https://doi.org/10.1103/PhysRevB.90.045140
https://doi.org/10.1103/PhysRevA.94.023630
https://doi.org/10.1103/PhysRevA.94.023630
https://doi.org/10.1103/PhysRevA.94.023630
https://doi.org/10.1103/PhysRevA.94.023630
https://doi.org/10.1016/j.physc.2012.04.039
https://doi.org/10.1016/j.physc.2012.04.039
https://doi.org/10.1016/j.physc.2012.04.039
https://doi.org/10.1016/j.physc.2012.04.039
https://doi.org/10.1103/PhysRevLett.71.2461
https://doi.org/10.1103/PhysRevLett.71.2461
https://doi.org/10.1103/PhysRevLett.71.2461
https://doi.org/10.1103/PhysRevLett.71.2461
https://doi.org/10.1103/PhysRevB.49.7088
https://doi.org/10.1103/PhysRevB.49.7088
https://doi.org/10.1103/PhysRevB.49.7088
https://doi.org/10.1103/PhysRevB.49.7088
https://doi.org/10.1103/PhysRevB.67.184418
https://doi.org/10.1103/PhysRevB.67.184418
https://doi.org/10.1103/PhysRevB.67.184418
https://doi.org/10.1103/PhysRevB.67.184418
https://doi.org/10.1103/PhysRevB.64.144432
https://doi.org/10.1103/PhysRevB.64.144432
https://doi.org/10.1103/PhysRevB.64.144432
https://doi.org/10.1103/PhysRevB.64.144432
https://doi.org/10.1103/PhysRevB.61.R854
https://doi.org/10.1103/PhysRevB.61.R854
https://doi.org/10.1103/PhysRevB.61.R854
https://doi.org/10.1103/PhysRevB.61.R854
https://doi.org/10.1103/PhysRevB.70.024413
https://doi.org/10.1103/PhysRevB.70.024413
https://doi.org/10.1103/PhysRevB.70.024413
https://doi.org/10.1103/PhysRevB.70.024413
https://doi.org/10.1103/PhysRevE.88.032121
https://doi.org/10.1103/PhysRevE.88.032121
https://doi.org/10.1103/PhysRevE.88.032121
https://doi.org/10.1103/PhysRevE.88.032121
https://doi.org/10.1103/PhysRevLett.92.227201
https://doi.org/10.1103/PhysRevLett.92.227201
https://doi.org/10.1103/PhysRevLett.92.227201
https://doi.org/10.1103/PhysRevLett.92.227201
https://doi.org/10.1103/PhysRevB.76.165114
https://doi.org/10.1103/PhysRevB.76.165114
https://doi.org/10.1103/PhysRevB.76.165114
https://doi.org/10.1103/PhysRevB.76.165114
https://doi.org/10.1088/0953-8984/23/26/265601
https://doi.org/10.1088/0953-8984/23/26/265601
https://doi.org/10.1088/0953-8984/23/26/265601
https://doi.org/10.1088/0953-8984/23/26/265601
https://doi.org/10.1103/PhysRevB.60.10747
https://doi.org/10.1103/PhysRevB.60.10747
https://doi.org/10.1103/PhysRevB.60.10747
https://doi.org/10.1103/PhysRevB.60.10747
https://doi.org/10.1103/PhysRevB.86.035453
https://doi.org/10.1103/PhysRevB.86.035453
https://doi.org/10.1103/PhysRevB.86.035453
https://doi.org/10.1103/PhysRevB.86.035453
https://doi.org/10.1103/PhysRevB.84.085127
https://doi.org/10.1103/PhysRevB.84.085127
https://doi.org/10.1103/PhysRevB.84.085127
https://doi.org/10.1103/PhysRevB.84.085127
https://doi.org/10.1103/PhysRevB.86.045110
https://doi.org/10.1103/PhysRevB.86.045110
https://doi.org/10.1103/PhysRevB.86.045110
https://doi.org/10.1103/PhysRevB.86.045110
https://doi.org/10.1103/PhysRevB.92.094302
https://doi.org/10.1103/PhysRevB.92.094302
https://doi.org/10.1103/PhysRevB.92.094302
https://doi.org/10.1103/PhysRevB.92.094302
https://doi.org/10.1103/PhysRevB.56.11678
https://doi.org/10.1103/PhysRevB.56.11678
https://doi.org/10.1103/PhysRevB.56.11678
https://doi.org/10.1103/PhysRevB.56.11678
https://doi.org/10.1063/1.3518900
https://doi.org/10.1063/1.3518900
https://doi.org/10.1063/1.3518900
https://doi.org/10.1063/1.3518900
https://doi.org/10.1103/PhysRevE.66.046701
https://doi.org/10.1103/PhysRevE.66.046701
https://doi.org/10.1103/PhysRevE.66.046701
https://doi.org/10.1103/PhysRevE.66.046701
https://doi.org/10.1103/PhysRevE.67.046701
https://doi.org/10.1103/PhysRevE.67.046701
https://doi.org/10.1103/PhysRevE.67.046701
https://doi.org/10.1103/PhysRevE.67.046701
https://doi.org/10.1103/PhysRevLett.74.2527
https://doi.org/10.1103/PhysRevLett.74.2527
https://doi.org/10.1103/PhysRevLett.74.2527
https://doi.org/10.1103/PhysRevLett.74.2527
https://doi.org/10.1140/epjb/e2017-70527-8
https://doi.org/10.1140/epjb/e2017-70527-8
https://doi.org/10.1140/epjb/e2017-70527-8
https://doi.org/10.1140/epjb/e2017-70527-8
https://doi.org/10.1103/PhysRevLett.93.230402
https://doi.org/10.1103/PhysRevLett.93.230402
https://doi.org/10.1103/PhysRevLett.93.230402
https://doi.org/10.1103/PhysRevLett.93.230402
https://doi.org/10.1103/PhysRevB.86.140501
https://doi.org/10.1103/PhysRevB.86.140501
https://doi.org/10.1103/PhysRevB.86.140501
https://doi.org/10.1103/PhysRevB.86.140501
https://doi.org/10.1103/PhysRevB.43.1229
https://doi.org/10.1103/PhysRevB.43.1229
https://doi.org/10.1103/PhysRevB.43.1229
https://doi.org/10.1103/PhysRevB.43.1229
https://doi.org/10.1103/PhysRevB.60.R5097
https://doi.org/10.1103/PhysRevB.60.R5097
https://doi.org/10.1103/PhysRevB.60.R5097
https://doi.org/10.1103/PhysRevB.60.R5097
https://doi.org/10.1103/PhysRevLett.85.4353
https://doi.org/10.1103/PhysRevLett.85.4353
https://doi.org/10.1103/PhysRevLett.85.4353
https://doi.org/10.1103/PhysRevLett.85.4353
https://doi.org/10.1103/PhysRevLett.102.057201
https://doi.org/10.1103/PhysRevLett.102.057201
https://doi.org/10.1103/PhysRevLett.102.057201
https://doi.org/10.1103/PhysRevLett.102.057201
https://doi.org/10.1038/nature09902
https://doi.org/10.1038/nature09902
https://doi.org/10.1038/nature09902
https://doi.org/10.1038/nature09902
https://doi.org/10.1103/PhysRevLett.109.147201
https://doi.org/10.1103/PhysRevLett.109.147201
https://doi.org/10.1103/PhysRevLett.109.147201
https://doi.org/10.1103/PhysRevLett.109.147201
https://doi.org/10.1103/PhysRevB.89.020405
https://doi.org/10.1103/PhysRevB.89.020405
https://doi.org/10.1103/PhysRevB.89.020405
https://doi.org/10.1103/PhysRevB.89.020405
https://doi.org/10.1088/1367-2630/10/2/023018
https://doi.org/10.1088/1367-2630/10/2/023018
https://doi.org/10.1088/1367-2630/10/2/023018
https://doi.org/10.1088/1367-2630/10/2/023018



