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Boundary conformal field theory and symmetry-protected topological phases in 2 + 1 dimensions
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We propose a diagnostic tool for detecting nontrivial symmetry-protected topological (SPT) phases protected
by a symmetry group G in 2 + 1 dimensions. Our method is based on directly studying the 1 + 1-dimensional
anomalous edge conformal field theory (CFT) of SPT phases. We claim that if the CFT is the edge theory of an
SPT phase, then there must be an obstruction to cutting it open. This obstruction manifests as the in-existence
of boundary states in the CFT that preserves both the conformal symmetry and the global symmetry G. We
discuss the relation between edgeability, i.e., the ability to find a consistent boundary state, and gappability, i.e.,
the ability to gap out a CFT, in the presence of G. We study several cases including time-reversal symmetric
topological insulators, ZN symmetric bosonic SPT phases, and Z2 × Z2 symmetric topological superconductors.
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I. INTRODUCTION

A. SPT phases and quantum anomalies

Symmetry-protected topological (SPT) phases are quantum
states of matter with a global symmetry G, which can be
either an internal or a space-time symmetry [1–8]. This
symmetry prevents one from adiabatically connecting an SPT
state to a topologically trivial state, namely, a product state.
More precisely, this means that one cannot find a symmetry-
preserving quasilocal unitary transformation that maps an SPT
state to a product state [1]. In fact, as long as the symmetry is
unbroken (either explicitly or spontaneously), the phase space
of gapped systems is partitioned into topologically distinct
sectors that cannot be adiabatically connected to each other.
The trivial state lies in the trivial (in the topological sense)
sector of this classification. We will henceforth refer to it as
the trivial SPT phase.

The existence of SPT phases has a close connection with
quantum anomalies which are purely quantum phenomena
without any classical analog. Crudely speaking, it is expected
that on the d-dimensional boundary of an SPT phase in
d + 1-dimensional space-time lives an interesting phase of
matter which is anomalous in the sense that it cannot exist on
a pure d-dimensional space-time manifold, but must always
be realized on the boundary of a d + 1 manifold under the
condition that the symmetry is realized in the same way as in
the bulk [9–13].

Put differently, consistency conditions of a conformal field
theory (CFT) at the boundary and topological properties of
a bulk phase are closely related. Basically, a consistent CFT,
when realized at the edge of a bulk system, implies that the bulk
is trivial, namely, continuously deformable to a trivial state. On
the other hand, if a bulk supports a CFT that is inconsistent as
its boundary theory, the bulk cannot be deformed into a trivial
state. This leads us to the question: What are the criteria for a
CFT to be consistent?

For a (2 + 1)d SPT phase, modular (non)invariance of its
(1 + 1)d edge theory has been used as a diagnostic for the
(non)trivial bulk [14,15]. For a nontrivial SPT phase protected
by symmetry G, there is a conflict between G and modular
invariance of the edge CFT; more precisely, the edge theory
orbifolded by G is not modular invariant [14,15]. A similar

argument can be applied to boundary theories of SPT phases
in space dimensions higher than 2 [16,17].

B. Edgeability

In this paper, we will give further thought on consistency
conditions of CFTs. We will rely on the simple geometrical
identity, ∂2 = 0, which essentially says there is no boundary to
a boundary of a bulk system. This would mean, in the context
of SPT phases and their boundaries, that boundary theories of
SPT phases are not allowed to have boundaries. Conversely, it
is likely that any “healthy” (conformal) field theories should
be possible to have boundaries—this may be a consistency
condition of the (conformal) field theories.

In studies of surface topological orders of (3 + 1)d SPT
phases, such a consistency condition was called “edgeability”
[18,19]. (2 + 1)-dimensional surface theories are said to be
“nonedgeable”, meaning that it is not possible to create an
edge between the theory in question and the vacuum. The only
boundary that one can possibly create is a domain wall. In
contrast, any consistent (2 + 1)d theory should be edgeable
to the trivial vacuum. Here edgeability may be also called
“cuttability”, meaning that the original theory defined on a
closed space-time can be cut open.

We will follow this idea but focus on one lower dimension.
In (1 + 1)d CFTs, in addition to modular invariance, it is
often claimed that a consistent conformal field theory with
boundaries must have a complete set of boundary states. (See,
for example, Refs. [20,21].) This reminds us of edgeability. In
fact, the construction of modular invariant partition functions
are closely related to boundary conformal field theories
(BCFTs). The perspective from SPT phases gives us some
insight about why BCFT is crucial for consistency, which
may look a little puzzling from other viewpoints. In order
for a CFT to exist as a pure (1 + 1)d system, both edgeability
and modular invariance must be satisfied. (Once again, here
edgeability may be also called cuttability, meaning that the
original closed (1 + 1)d CFT can be cut open into a well-
defined BCFT.) In many known cases, these two conditions
are actually equivalent.

The simplest examples of (non)edgeability can be provided
by chiral edge theories of topologically ordered phases, in

2469-9950/2017/96(12)/125105(15) 125105-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.96.125105


HAN, TIWARI, HSIEH, AND RYU PHYSICAL REVIEW B 96, 125105 (2017)

which the chiral central charge is nonzero. In these edge
theories, it is not possible to find conformally invariant
boundary conditions or boundary states. These conformal field
theories are hence nonedgeable and must be realized at the
boundary of a (topological) phase in one higher dimensions.

In the context of SPT phases, Ref. [22], gives an explicit
lattice construction of an (1 + 1)d CFT, which is the edge
theory of (2 + 1)d bosonic SPT phases protected by ZN

on-site unitary symmetry. In this construction, while the CFT
is successfully put on a one-dimensional lattice, the ZN

symmetry is not realized in a purely local way—the action
of the ZN transformation is non-on-site, and it involves links
of the lattice. It was claimed that its non-on-site symmetry has
been gauged, which is equivalent to orbifolding ZN symmetry.
As we will clarify, within this CFT with the non-on-site action
of the ZN symmetry (and its lattice realization), it is not
possible to make a boundary which is consistent with the ZN

symmetry. Hence, this theory is nonedgeable.

C. Gappability

Let us now also give a slightly different perspective from the
correspondence between (1 + 1)d gapped states and boundary
states in CFTs. In Refs. [23,24], (1 + 1)d conformal field
theories perturbed by some operators are considered. If the
perturbation is such that it fully gaps out the theory, we
flow from the CFT to a massive phase. It was claimed
that the ground state of the massive phase is described,
with the Hilbert space of the CFT, by a boundary state. In
particular, in Ref. [23] this claim is explicitly verified for
various symmetry-protected topological phases in (1 + 1)d,
which are obtained by perturbing CFTs. These phases are
fully gapped (1 + 1)d phases protected by a certain set of
symmetries. In particular, topological invariants, for instance,
the group cocycle ε ∈ H 2(G,U(1)) of the group cohomology
classification of (1 + 1)d SPT phases [10,11], can be fully
extracted from boundary states that describe SPT phases.

In this paper, instead of (1 + 1)d SPT phases, we are
concerned with (2 + 1)d SPT phases, and in particular their
edge theories. In various examples, we establish a claim
similar to the above claim for the bulk (1 + 1) dimensions;
we again establish a connection between gapped ground states
in the edge theories and conformal boundary states. The
relation between edgeability and gappability is schematically
illustrated in Fig. 1. In particular, for the edge theories
described by the K-matrix theory, we establish the connection
between Haldane’s null vector criterion for gapping potentials
[25] and the boundary states.

FIG. 1. Edgeability and gappability of conformal field theories
are closely related—they both diagnose if they must be realized as a
boundary of (topological) systems in one higher dimensions. Hence,
edgeability and gappability are both related to quantum anomalies.

More precisely, the main question we ask is which boundary
conditions (including symmetry projections) can be imposed
on conformal field theories that are defined on the edge of
(2 + 1)d systems with boundaries. We show the equivalence
between our BCFT formalism and the K-matrix formalism
used in Ref. [9] and show that those CFTs that admit a
consistent boundary state correspond to edge theories of trivial
SPTs and those that do not admit a consistent boundary state
correspond to edges of nontrivial SPTs.

This criterion is very similar to that imposed by the modular
invariance of CFTs field theories on the torus. Putting a theory
on a torus in this context implies that it can be realized on
a strictly (1 + 1)d manifold and need not be realized on the
boundary of an SPT phase [14,15,26,27].

D. Working principles

Following these motivations, let us now describe our
strategy to detect and diagnose nontrivial SPT phases. We
claim that one cannot construct a symmetry invariant Cardy
state (conformal boundary state) for a CFT corresponding
to the edge of a nontrivial SPT. As mentioned in the above
example, this is due to the fact that although one may be able
to put the edge theory of an SPT on a lattice, G symmetry
cannot be implemented in an on-site way—this shows up as
nonedgeablity.

A Cardy state in conformal field theory is a coherent state
in the Hilbert space of the closed sector of the CFT which
satisfies an open-closed consistency relation, namely the Cardy
condition [28,29]. We show that in the case of nontrivial SPT
phases, it is not possible to implement the symmetry and
simultaneously satisfy the Cardy condition.

We list our procedure for diagnosis of SPT phases as follows
(see Fig. 2 for an illustration):

(i) First, cut the 1d circle and impose appropriate boundary
conditions on the two ends.

(ii) Second, solve for Ishibashi states [30] of this open
system, which correspond to solutions to the boundary
conditions imposed.

(iii) Third, try to construct a boundary state that is a linear
combination of Ishibashi states, which satisfies the Cardy
condition and is also symmetry invariant. If such a state exists,
then there is no nontrivial SPT phase in a (2 + 1)d bulk system;
if such a state does not exist, then the corresponding (2 + 1)d
bulk is a nontrivial SPT phase.

FIG. 2. We claim that one cannot “cut” or “make a boundary”
while preserving G symmetry for certain CFTs and certain symmetry
implementations. These symmetry implementations correspond pre-
cisely to (2 + 1)d G-symmetric SPT phases and the corresponding
CFTs are their edge theories.
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(iv) Fourth, once we have detected nontrivial SPT phases,
we can obtain its classification from the transformation of the
Cardy state under symmetry operation, which will be explained
in detail in later sections.

Using this technique, we can study SPT phases protected
by space-time and/or some internal symmetries. Examples
include the time-reversal symmetric topological insulators,
bosonic SPT phases with ZN symmetry, and topological
superconductors protected by Z2 × Z2 symmetries. These
examples have been also analyzed in the literature by different
methods [31–35].

The organization of the rest of the paper is as follows. In
Sec. II, a brief introduction to BCFT is provided. In Sec. III, we
study (2 + 1)d time-reversal symmetric topological insulators
from the edge theories and the corresponding symmetric Cardy
boundary states. Edge theories of more general (2 + 1)d SPT
phases described by the K-matrix theories are considered
in Sec. IV, where a connection between the Cardy states
and gapped phases in (1 + 1) dimensions is shown explicitly.
Then we apply our approach to topological superconductors
in Sec. V. Discussions and conclusions are given in Sec. VI.

II. AN INTRODUCTION TO BCFT

A boundary condition in a CFT defines a relation between
the holomorphic and antiholomorphic sectors. In other words,
the two sectors are related to one another on the boundary via
an automorphism of the form

S(z) = ρβ(S̄(z̄)), (1)

where S belongs to some symmetry algebra, ρβ denotes an
automorphism of the algebra of fields, and β is a constant that
parametrizes the boundary condition. S(z) and S̄(z̄) are fields
which have the following expansion in terms of modes:

S(z) =
∑
n∈Z

Snz
−n−h, S̄(z̄) =

∑
n∈Z

S̄nz̄
−n−h̄, (2)

where h and h̄ are the conformal weights of S and S̄

respectively. In most general situations, S and S̄ are the
holomorphic and antiholomorphic components of the stress-
energy tensor with h = 2. For CFTs with current algebra
symmetries, S and S̄ are taken to be the currents with h = 1.

In the closed picture, a boundary condition is represented
by a state in the Hilbert space of a CFT defined on a circle.
According to Cardy, such a boundary state must transform
consistently under the S-modular transformation, namely, a
π/2 rotation of the space-time manifold (worldsheet) illus-
trated in Fig. 3. To construct physical boundary states obeying
this consistency condition (the Cardy condition), one first
constructs a set of states, the so-called Ishibashi states, |i,β〉〉,
which are annihilated by the boundary conditions (known as
gluing conditions) in the operator form after the π/2 rotation,

[Sn − ρβ(S̄n)]
worldsheet rotation−−−−−−−−−→ [Sn − (−1)hρβ(S̄n)], namely,

[Sn − (−1)hρ(S̄n)]|i,β〉〉 = 0. (3)

A Cardy state is a suitable superposition of the Ishibashi states
that satisfy the Cardy condition, which is an implementation
of open-closed channel consistency:

Zαβ(−1/τ ) = 〈Bα|e2πiτHclosed |Bβ〉, (4)

FIG. 3. An illustration of the Cardy condition; a consistency
condition for conformal boundary states. For boundary states that
preserve conformal symmetry, the open channel partition function
Zopen := TrHopen [e−(2πi/τ )Hopen ] must equal the amplitude for a “Cardy”
state A = 〈B|e2πiτHclosed |B〉.

where Zαβ is the partition function computed in the open-
channel picture, and given as a trace over the open Hilbert
space with boundary conditions α,β on the two ends, and
τ is parametrized by the size of the system [36]. The states
|Bα〉 and |Bβ〉 which satisfy the above condition are the bona
fide boundary states, the Cardy states. For a more detailed
introduction to boundary conformal field theory, see, for
example, Refs. [28,29,36–39].

Symmetry invariant Cardy states and the obstruction. A
generic Cardy boundary state |B〉 (here we are suppressing the
label α,β specifying boundary conditions) lies in the subspace
of the closed Hilbert space and satisfies

(T − T̄ )|B〉 = 0 (on a boundary), (5)

where T and T̄ are the holomorphic and antiholomorphic parts
of the energy density operator, respectively. In terms of the
Virasoro generators, this condition can be written as

(Ln − L̄−n)|B〉 = 0. (6)

Equation (6) implies (c − c̄)|B〉 = 0, where c and c̄

represent the central charges for the holomorphic and an-
tiholomorphic sectors, respectively. Thus, as expected, one
cannot construct (conformally invariant) boundary states when
c �= c̄ since in this case, the (1 + 1)d CFT suffers from the
(infinitesimal) gravitational anomaly, and hence it must be
realized as the boundary theory of an appropriate bulk system
living in one higher dimension.

For the rest of the paper, we will deal with systems with the
vanishing chiral central charge, c − c̄ = 0, and hence there is
no infinitesimal gravitational anomaly. We will also focus on
(1 + 1)d CFTs for which one can construct a modular invari-
ant, if one is willing not to impose any additional symmetry.
Hence, in the absence of symmetries, the (1 + 1)d CFT can
be safely gapped by adding a suitable perturbation. However,
if we impose some symmetry, e.g., if we consider (1 + 1)d
CFTs realized potentially on the boundary of (2 + 1)d SPT
phases, there may be a conflict between the symmetry and
modular invariance. Once symmetry is gauged (orbifold), the
modular invariance may be spoiled. Conversely, if the modular
invariance is enforced, the symmetry must be broken.

At the level of BCFT, this would mean that one may not
be able to construct boundary states which are invariant under
the symmetry. More precisely, we consider a symmetry that
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preserves T and T̄ , respectively, or exchanges them. Classi-
cally, such a symmetry preserves the conformally invariant
boundary condition T = T̄ along the boundary. However,
once the theory is quantized, there may be an obstruction
to construct the corresponding a boundary state. A symmetry
of a CFT (on a closed space-time manifold) is anomalous if
one cannot make a boundary that preserves this symmetry
both classically and quantum mechanically. Typically, this
happens when there is a conflict between the Cardy condition
(4) and the symmetry, so a symmetric Cardy state does not
exist. In this situation, the theory itself, together with the
symmetry, cannot be consistently defined and must appear as a
boundary theory of a SPT phase with the same symmetry in one
higher dimensions. Nevertheless, by “stacking” copies of such
SPT phases, the number of degrees of freedom at boundaries
increase, and the solution space of Eq. (5) is enlarged—it may
be possible to find a symmetric Cardy state if the number of the
copies is large enough. When this occurs, the corresponding
CFT is anomaly free with respect to such a symmetry and can
exist alone in its own dimension.

III. EDGE THEORIES OF (2 + 1)d TIME-REVERSAL
SYMMETRIC TOPOLOGICAL INSULATORS

Let us begin with a simple example. Consider the edge
theory of a (2 + 1)d time-reversal symmetric topological
insulator, which is described by (1 + 1)d massless Dirac
fermions on a closed two-manifold 	:

S = 1

2π

∫
	

dtdx(iψ̄R∂+ψR + iψ̄L∂−ψL), (7)

where ∂± = ∂t ± ∂x . The system is invariant under both charge
U(1)C and time-reversal symmetries, which are defined as

U(1)C : ψR → e−iθψR, ψL → e−iθψL,

Tη : ψR → ψL, ψL → ηψR, η = ±1. (8)

Here in principle we have two choices for time-reversal
symmetry (characterized by η): T 2

1 = 1 and T 2
−1 = (−1)F ,

where F is the total fermion number operator. By analyzing
the stability (gappability) of the theory (7), at least at the
quadratic level (namely, by considering adding symmetry-
respecting fermion mass bilinears to the action), we know that
η = 1 (η = −1) corresponds to the edge of the topologically
trivial (nontrivial) phase. It can also be shown the nontrivial
topological phases form a Z2 class.

Now let us study the same problem (classification of
topological insulators) by the BCFT approach. Consider
putting the theory (7) on a cylinder 	 with boundary at
x = 0,π . Then we would like to know, based on the discussion
in the previous sections, if there exists a Cardy boundary
state, which satisfies the conditions (4) and (5), invariant
under U(1)C and Tη. If such a Cardy state does not exist,
the corresponding theory must be the edge of a (2 + 1)d
topological insulator.

One obtains the boundary conditions by varying the action
(7) on the cylinder 	,

[ψ̄RδψR + ψRδψ̄R − ψ̄LδψL − ψLδψ̄L]|∂	 = 0. (9)

This boundary condition can be solved by the following set of
gluing conditions [40]:

Bβ type : ψL = e−iβψR, ψ̄L = eiβψ̄R,

Aα type : ψL = e−iαψ̄R, ψ̄L = eiαψR. (10)

The two kinds of boundary conditions have been labeled Bβ

and Aα , respectively. Note that, as the bulk theory respects all
symmetries, the presence of boundary might in general break
(some of) the symmetries. To be specific, the Bβ boundary
condition (with arbitrary β) preserves both U(1)C andT1, while
either the Bβ or the Aα boundary condition cannot preserve
both U(1)C and T−1. Therefore, it is impossible to, at least
for a single copy of theory (7), find a symmetric Cardy state
with respect to both U(1)C and T−1, because there is no such
symmetry invariant boundary condition.

Let us first focus on the case of the symmetry group U(1)C �

ZT1
2 , where ZT1

2 is generated by T1. Although the Bβ boundary
condition preserves U(1)C � ZT1

2 , we still have to check that
the corresponding Cardy state is also symmetry invariant.

We impose boundary conditions B0,Bβ at x = 0,π , respec-
tively. In order to satisfy the boundary conditions, we define a
mode expansion

ψL =
∑

r∈Z+β/2π

ψr (t)eirx, ψ̄L =
∑

r ′′∈Z−β/2π

ψ̄r ′ (t)eir ′x,

ψR =
∑

r∈Z+β/2π

ψr (t)e−irx, ψ̄R =
∑

r ′∈Z−β/2π

ψ̄r ′ (t)e−ir ′x.

(11)

The mode operators satisfy the following algebra:

{ψr (t),ψ†
r ′(t)} = 2πδr+r ′,0,

{ψr (t),ψr ′(t)} = {ψ†
r (t),ψ†

r ′(t)} = 0. (12)

We define the normal ordering with respect to a vacuum |0,β〉
which is annihilated by ψr (�0) and ψ̄r ′ (�0):

: ψ̄−rψr :=
{
ψ̄−rψr if r � 0,

−ψrψ̄−r if r < 0.
(13)

The Hamiltonian and U(1)C charge operator F take the form

Ho =
∑

r∈Z+ β

2π

r : ψ̄−rψr : +1

2

(
β

2π
−

[
β

2π

]
− 1

2

)2

− 1

24
,

F =
∑

r∈Z+ β

2π

: ψ̄−rψr : + β

2π
−

[
β

2π

]
− 1

2
. (14)

The open-channel partition function with insertion of sym-
metry flux e−2πi(a−1/2)F on the cylinder with (�space,βtime) =
(π,2πT ) is

Za
0β(T ) = TrHo

[e−2πi(a−1/2)F e−2πT Ho ]

=
ϑ

[
β/2π − 1/2
−(a − 1/2)

]
(0,iT )

η(iT )
. (15)

To construct the Cardy states, we work in Euclidean
signature, by performing the Wick rotation t = −iτ , and
consider boundary conditions in the closed channel [after
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the space-time cylinder has been rotated by π/2, namely,
(x ′,τ ′) = (τ, − x)]:

ψ ′
L = e−iβe−iπ/2ψ ′

R, ψ̄ ′
L = eiβe−iπ/2ψ̄ ′

R, (16)

where we have introduced the notation

ψ ′
R = eiπ/4ψR, ψ̄ ′

R = eiπ/4ψ̄R,

ψ ′
L = e−iπ/4ψL, ψ̄ ′

L = e−iπ/4ψ̄L, (17)

for the fields with respect to the coordinate system after the
π/2 space-time rotation.

In Euclidean signature, the original time-reversal symmetry
Tη, which is an antiunitary operator in the Lorentz signature,
becomes the unitary (CP)η symmetry, the product of charge
conjugation and spatial reflection that flips τ to −τ . From the
relation (17), this (CP)η is further translated to (CP)′−η, which
acts on the fermions as

(CP)′−η : ψ ′
R(x ′,τ ′) → eiπ/2ψ̄ ′

L(−x ′,τ ′),

ψ ′
L(x ′,τ ′) → ηe−iπ/2ψ̄ ′

R(−x ′,τ ′). (18)

Therefore, under the π/2 space-time rotation (together with an
analytic continuation from the Lorentz to Euclidean signature),
we have the following correspondence:

T 2
η = ηF ←→ (CP)′2−η = (−η)F , η = ±1. (19)

One can check that (CP)′−1 preserves the boundary condition
(16) as T1 preserves the Bβ-type boundary condition in (10).

Now, since we inserted a U(1)C charge operator in the
trace when evaluating the open-channel partition function, the
corresponding boundary states in the closed channel must lie
in the subspace of the Hilbert space of the twisted fields that
satisfy

ψ ′
R(x ′ + 2π,τ ′) = e2πiaψ ′

R(x ′,τ ′),

ψ ′
L(x ′ + 2π,τ ′) = e2πiaψ ′

L(x ′,τ ′). (20)

(Here we compactify the space direction as x ′ ≡ x ′ + 2π .)
Hence, we get the following mode expansions:

ψ ′
R =

∑
r∈Z+a

ψ ′
re

irw′
, ψ̄ ′

R =
∑

r ′∈Z−a

ψ̄ ′
r ′e

ir ′w′
,

ψ ′
L =

∑
r̃∈Z−a

ψ̃ ′
r̃ e

−ir̃w′
, ψ̄ ′

L =
∑

r̃ ′∈Z+a

¯̃ψ ′
r̃ ′e

−ir̃ ′w′
, (21)

where ω′ = x ′ + iτ ′. The Hamiltonian is

Hc =
∑

r∈Z+a

r : ψ̄ ′
−rψ

′
r : +

∑
r̃∈Z−a

r̃ : ψ̄ ′
−r̃ψ

′
r̃ :

+ 1

2

(
a − [a] − 1

2

)2

+ 1

2

(
a + [−a] + 1

2

)2

− 1

12
.

(22)

The ground state |0〉a,−a is defined to be the state annihilated
by ψ ′

r (r � 0), ψ̄ ′
r ′ (r ′ > 0), ψ̃ ′

r̃ (r̃ � 0), ¯̃ψ ′
r̃ ′ (r̃ ′ > 0).

The gluing condition (16) for the mode operators takes the
form

ψ ′
r = ieiβψ̃ ′

−r ∀r ∈ Z + a,

ψ̄ ′
r ′ = ie−iβ ¯̃ψ ′

−r ′ ∀r ′ ∈ Z − a. (23)

An incoming boundary state that solves the above gluing
condition is

|Bβ〉a

= exp

⎛
⎝ie−iβ

∑
r ′�0

ψ ′
−r ′

¯̃ψ ′
−r ′ + ieiβ

∑
r>0

ψ̄ ′
−r

˜ψ ′−r

⎞
⎠|0〉a,−a,

(24)

while the outgoing boundary state is

a〈Bβ |

=a,−a 〈0| exp

⎛
⎝ieiβ

∑
r ′�0

ψ̃ ′
r ′ψ̄

′
r ′ + ie−iβ

∑
r>0

¯̃ψ ′
rψ

′
r

⎞
⎠. (25)

Then the closed-channel partition function on the cylinder with
(βspace,�time) = (2π,πL) is given by

a〈B0|e−πLHc |Bβ〉a =
ϑ

[
β/2π − 1/2
−(a − 1/2)

]
(0,iL−1)

η(iL−1)
. (26)

Identifying T = L−1, we find that |Bβ〉a is indeed a Cardy
state that satisfies the Cardy condition

Za
0β (T ) =a 〈B0|e−πLHc |Bβ〉a. (27)

It is clear that the state |Bβ〉a is invariant under both U(1)C
and (CP)′−1 (corresponding to T1). This is verified by looking
at the symmetry action on the modes (deduced from (18) and
(21) at τ ′ = 0):

U (1)C : ψ ′
r → e−iθψ ′

r , ψ̃ ′
r → e−iθ ψ̃ ′

r

(CP)′−η : ψ ′
r → eiπ/2 ¯̃ψ ′

r , ψ̃ ′
r → −ηeiπ/2ψ̄ ′

r , η = ±1.

(28)

Note that we have assumed the ground state |0〉a,−a is also
invariant under all symmetries. On the other hand, the state
|Bβ〉a is only invariant under U(1)C ; it is not invariant under
(CP)′+1 (corresponding to T−1).

Let us now consider two copies of complex fermions
{ψ1,R,ψ1,L,ψ2,R,ψ2,L}. One can show that it is now possible
to construct a U(1)C � ZT−1

2 symmetric Cardy state. One
considers the following boundary conditions (before π/2
space-time rotation):

ψ1,L = e−iβ1ψ2,R, ψ̄1,L = eiβ1ψ̄2,R,

ψ2,L = e−iβ2ψ1,R, ψ̄2,L = eiβ2ψ̄1,R, (29)

which preserve U(1)C � ZT−1
2 if β1 = β2 ± π . The corre-

sponding (total) Cardy state is the tensor product of the
outgoing boundary states associated with these two boundary
conditions, ∣∣Bβ1,β2

〉
a

= ∣∣Bβ1

〉
a
⊗ ∣∣Bβ2

〉
a
, (30)

which is invariant under both U(1)C and (CP)′1 (corresponding
to T−1).

In summary, a single copy (two copies), or in general, any
number of copies (an even number of copies) of the theory (7)
can be consistently formulated, in the presence of U(1)C and
T1 (T−1) symmetries, on a cylinder 	. Therefore, the BCFT

125105-5



HAN, TIWARI, HSIEH, AND RYU PHYSICAL REVIEW B 96, 125105 (2017)

approach agrees with the classification of (2 + 1)d fermionic
SPT phases with U(1)C and time-reversal symmetries given
by the gappability argument. In fact, there is a correspondence
between the form of Cardy boundary states and gapped phases
in (1 + 1) dimensions. In the following section, we study
theories of multicomponent bosons, which describe (the edges
of) more general SPT phases in (2 + 1) dimensions, and will
see such correspondence explicitly.

IV. MORE GENERAL SPT PHASES IN (2 + 1)d

A. Canonical quantization

Let us consider the edge of a (2 + 1)d Abelian SPT phase
(either fermionic or bosonic ones) described by the K-matrix
theory of multicomponent compactified boson fields [9],

S = 1

4π

∫
d2x[KIJ ∂tφ

I ∂xφ
J − VIJ ∂xφ

I ∂xφ
J ], (31)

where K is a 2N × 2N integer-valued symmetric matrix and
I,J = 1, . . . ,2N . We are interested in studying SPT phases,
namely, those that have no topological order, hence we will
restrict ourselves to theories with det K = 1. Moreover, since
SPT phases can be adiabatically connected to trivial phases
in the absence of symmetry, their edge theories are always
nonchiral. VIJ in Eq. (31) is a nonuniversal positive definite
matrix, which does not affect the topological properties of
the theory; φI are compact U(1) bosons that satisfy the
compactification condition φI ≡ φI + 2πnI ,nI ∈ Z. When
put on a cylinder of circumference 2π , they satisfy the
commutation relations

[∂xφ
I (x),∂xφ

J (x ′)] =
∑
m∈Z

2πi(K−1)IJ ∂xδ(x − x ′ + 2πm).

It is more convenient to carry out the quantization in the
redefined basis ϕI which we define by diagonalizing the K

matrix as [27]

Aφ = ϕ, AT ηA = K, (32)

where A ∈ O(2N ) and η is a diagonal matrix with ±1 on
the diagonal. To have a nonchiral theory, we assume η has
equal number of +1 and −1 in its diagonal. Without loss of
generality we assume η = diag(1, . . . ,1, − 1, . . . , − 1). The
theory has N copies of nonchiral bosons. The action in the ϕ

basis takes the form

S = 1

4π

∫
d2x[(∂tϕ)T η(∂xϕ) − (∂xϕ)T (∂xϕ)], (33)

where we have chosen V such that AV AT = I2N . The
Hamiltonian and momentum operators are obtained from the
action (33) as

H = 1

4π

∫
dx[(∂xϕ)T (∂xϕ)],

P = 1

4π

∫
dx[(∂xϕ)T η(∂xϕ)]. (34)

After basis transformation, the redefined bosons satisfy the
compactification condition

ϕI ∼ ϕI + 2π (An)I , nI ∈ Z, (35)

and the canonical commutation relation

[∂xϕ
I (x),∂xϕ

J (x ′)] = 2πi(η−1)IJ ∂x

∑
m∈Z

δ(x − x ′ + 2πm).

The mode expansion compatible with the equations of mo-
tion, ∂tϕ

I ηII − ∂xϕI = 0, and the compactification conditions
takes the form

ϕI = ϕI
0 + 2π

L
[t + sgn(ηII )x]aI

0

+ 1√
2

∑
r �=0

aI
r e

−(2πri/L)[t+sgn(ηII )x]. (36)

Since [ϕI
0 ,aJ

0 ] = 2πiηIJ and ϕI
0 ∼ ϕI

0 + 2π (An)I ,

vI ∈ (Am)IZ, mI ∈ Z, (37)

where vI is the eigenvalue of aI
0 . The mode operators obey the

following canonical commutation relation:[
aI

n,a
J
m

] = nδIJ δn+m,0, n,m �= 0. (38)

B. Ishibashi states

States that represent a conformal invariant boundary con-
dition are called Ishibashi states. They satisfy

[Lr − L̄−r ]|I 〉〉 = 0, (39)

where Lr and L̄r are the holomorphic and antiholomorphic
Virasoro generators, respectively. For the K-matrix theory
defined in Eq. (33), they are given by

Lr = 1

2

∑
n∈Z

: (ar−n,L)T an,L : ,

L̄r = 1

2

∑
n∈Z

: (ar−n,R)T an,R : , (40)

where

aT
r =(ar,L,ar,R)T := (

a1
r , . . . ,a

N
r ,aN+1

r , . . . ,a2N
r

)T
(41)

are operators that appear in the mode expansion (36). While
the general solution of (39) is not known, a sufficient condition
for it is given by [41]

(ar,L − Ra−r,R)|v〉〉 = 0, ∀r ∈ Z, (42)

where the matrix R ∈ O(N ) does not depend on r . Solutions
to Eq. (42) have the form

|v〉〉 := exp

( ∞∑
r=1

1

r
(a−r,L)T Ra−r,R

)
|v〉, (43)

where |v〉 are eigenstates of aI
0 with eigenvalues vI that are

characterized by Eq. (37). The Ishibashi condition in Eq. (42)
can be further simplified by a basis transformation, after which
R is rotated to be ±1. Let us clarify this point. The Ishibashi
condition in Eq. (42) is equivalent to

ϕL = RϕR. (44)

Now we can choose a B ∈ O(2N ) to be

B =
(

1 0
0 R

)
. (45)
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If we redefine the boson fields(
ϕ′

L

ϕ′
R

)
= ± B

(
ϕL

ϕR

)
, (46)

then Eq. (44) becomes

ϕ′
L/R = ±ϕ′

L/R. (47)

In terms of the mode operators, we have the Ishibashi condition

(a′
r,L ∓ a′

−r,R)|v〉〉 = 0, ∀r ∈ Z. (48)

This basis rotation and Eq. (32) can be simultaneously done
if we define A′ = BA. In the following discussion, we assume
this has been done. To lighten the notation, we drop the prime
on the field and mode operators.

C. Equivalence between the Ishibashi condition and Haldane’s
null vector condition

Haldane’s null vector condition of N copies of nonchiral
compactified massless bosons states: if there is a set of
N linearly independent integer vectors {li} satisfying the
condition

lTi K−1lj = 0, ∀i,j = 1, . . . ,N, (49)

then we can find a potential which can gap out the N -
component boson theory completely [9]. This condition comes
from the locality requirement such that all the bosons can
be pinned at the minimum values in the gapping potentials
simultaneously. When Haldane’s null vector condition is met,
one can find the gapping potential

Sgapping =
∑
{l}

cl

∫
dt dx cos (l · φ + αl), (50)

where {l} is a set of independent gapping vectors.

In this section, we discuss the equivalence between the
Ishibashi condition and Haldane’s null condition. We will
establish their equivalence at the level of Cardy states, from
which the correspondence between Cardy states and gapped
phases (from condensation of independent elementary bosons
in the language of Ref. [9]) is manifest.

We start from the total Cardy state for the N -copy boson
system

|B,{αi}〉 = ⊗N
i=1 |B,αi〉, (51)

where [36]

|B,αi〉 = 1

21/4

∑
ni∈Z

einiαi |vi〉〉ni
(52)

(the repeated indices i are not summed over) is the Cardy state
for the ith copy of the system and

|vi〉〉ni
= e− ∑

r>0 (1/r)(vi,L·a−r,L)(vi,R ·a−r,R )|nivi〉, ni ∈ Z (53)

is an Ishibashi state satisfying the Ishibashi condition (48).
Here {vi = (vi,L,vi,R) | i = 1, . . . ,N and vi,L = −vi,R} is a set
of linearly independent 2N -component vectors that generates,
with integer coefficients, all the solutions satisfying both
Eqs. (37) and (48).

Note that the Cardy state (51) satisfies the Cardy condition
automatically, since it is the direct product of decoupled Cardy
states, each one satisfying Cardy condition separately. Now
we want to rewrite Eq. (51) in another form in which the
connection to the gapping potentials satisfying Haldane’s null
condition is manifest. First, let us write the ground state in a
coherent state, namely,

|nivi〉 = einivi ·ϕ0 |0〉i = einiei ·φ0 |0〉i , (54)

where |0〉i = |0〉i,L ⊗ |0〉i,R is the true vacuum associated with
the new zero modes vi,L/R · a0,L/R and {ei := A−1vi} is a set of
linearly independent integer vectors [by the definition of {vi}
defined in Eq. (37)]. Plugging Eqs. (52)–(54) into Eq. (51), we
obtain

|B,{αi}〉 = ⊗N
i=1

⎛
⎝ 1

21/4

∑
ni∈Z

einiαi e− ∑
r>0 (1/r)(vi,L·a−r,L)(vi,R ·a−r,R )einiei ·φ0 |0〉i

⎞
⎠

= 1

2N/4−1
e− ∑N

i=1

∑
r>0 (1/r)(vi,L·a−r,L)(vi,R ·a−r,R )

∑
{ni∈Z}

cos [ni(ei · φ0 + αi)]|0〉1 ⊗ · · · ⊗ |0〉N . (55)

Note that the cosine term in the last line of Eq. (55) is
nothing but a gapping potential, and the summation is over
all the lattice constructed from the elementary or primitive
lattice vectors introduced in Ref. [9]. Then we conclude that in
the N -boson system, once we have a Cardy state satisfying
the Ishibashi condition, Haldane’s null vector condition is
also implied, since gapping vectors satisfy Haldane’s null
condition.

Conversely, given a set of N vectors satisfying Haldane’s
null vector condition, we can always find the set of primitive
lattice vectors. Let us assume this is done. Then we can
construct the Cardy state by following Eq. (55) backward,

from the bottom to the top line. This state satisfies the Ishibashi
condition and Cardy condition manifestly.

D. Symmetry analysis

In the following subsections, in order to facilitate the
discussion, we use different bases interchangeably. One can
easily see their relations from Eqs. (32) and (46).

We consider an on-site discrete Abelian symmetry group G

with the group action of the form

ĝ : φ → φ + δφg, ∀g ∈ G, (56)
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where we assume that δφg is constant. From the mode
expansion of φ, we can read off that ĝ only acts on the zero
mode φ0,

ĝ : φ0 → φ0 + δφg, ∀g ∈ G. (57)

Hence a complete set of symmetry invariant gapping poten-
tials, related by boundary conditions, is described by

ĝ : (lT φ0 + α) → (lT φ0 + α) mod 2πZ. (58)

From the discussion in Sec. IV C, if we have a set of
symmetry invariant Haldane vectors, we can find a set of
decoupled symmetry invariant Ishibashi states, with which we
can construct a symmetry invariant Cardy state. We will show
it in the following discussion with two examples.

E. Example: Z2 symmetric bosonic SPT

Let us consider the simple case of Z2 symmetric bosonic
SPT phases. The edge theory is described by

L = 1

4π
[(∂xφ)T K(∂tφ) − v(∂xφ)T (∂xφ)], (59)

where K = σx . The Z2 symmetry, Z2 = {e,g}, acts on the φ

fields as

ĝ :

(
φ1

φ2

)
→

(
φ1

φ2

)
+ π

(
1
q

)
. (60)

The theory describes a trivial and a nontrivial SPT phases for
q = 0,1 respectively.

As claimed above, for a trivial SPT phase, that is, for
which one can find a symmetric gapping potential, there exists
a symmetry invariant boundary state. The conditions to be
satisfied by a set of symmetric gapping vectors {li} are

lTi K−1lj = 0,

ĝ
(
lTi φ + α

)
ĝ−1 = (

lTi φ + α
)

mod 2π ∀i,j. (61)

Since for the present case we only consider a single nonchiral
boson, we need to find a single gapping vector l. In the case for
q = 0 the above conditions are satisfied by l = (0,1)T . Hence
the symmetric gapping term is cos(φ2 + α). In the chiral basis,
this corresponds to cos ((ϕL − ϕR)/

√
2).

On the other hand, this gapping potential corresponds to the
Dirichlet boundary state that has the gluing condition a0,L −
a0,R = 0. The Ishibashi state takes the form

|v〉〉 =e
∑∞

r>0 (1/r)a−r ā−r |a0,L = a0,R〉, (62)

and the Cardy state is

|B,φ0〉 = 1

ND

∑
n∈Z

einφ0e
∑∞

r>0 (1/r)a−r ā−r |a0,L = a0,R = n〉,

(63)

where φ0 specifies the position of the Cardy state with the
Dirichlet boundary condition.

On the other hand, in the nontrivial case, namely, for q = 1,
one cannot find a nontrivial symmetric gapping vector as the
conditions (61) imply that l1l2 = 0 and l1 + l2 = 0 mod 2.
These cannot be satisfied simultaneously for any nontrivial l.

However, we expect [9–11] a Z2 classification so that two
copies of the above theory must be trivial. This double copy

is described by φ := (φ1,φ2,φ3,φ4)T and K = σx ⊕ σx . The
symmetry action on the two copies is taken to be identical. In
order to be Z2 symmetric the two gapping vectors must satisfy

l1
i l

2
j + l2

i l
1
j + l3

i l
4
j + l4

i l
3
j = 0,

2∑
n=1

lni = 0 mod 2, (64)

which comes from Eq. (61). These conditions can be satisfied
simultaneously by the following two gapping vectors:

l1 =

⎛
⎜⎝

1
0
0
1

⎞
⎟⎠, l2 =

⎛
⎜⎝

0
1

−1
0

⎞
⎟⎠. (65)

This choice is not unique, for example an alternate choice of
gapping vectors could be

l̃1 =

⎛
⎜⎝

0
1
1
0

⎞
⎟⎠, l̃2 =

⎛
⎜⎝

1
0
0

−1

⎞
⎟⎠. (66)

For the set {l}, the gapping terms are

Lgapping

= λ cos(φ1 + φ4 + α) + λ′ cos(φ2 − φ3 + α′)

= λ cos

(
1√
2

(ϕ1,L + ϕ1,R + ϕ2,L − ϕ2,R) + α

)

+ λ′ cos

(
1√
2

(ϕ1,L − ϕ1,R − ϕ2,L − ϕ2,R) + α′
)

= λ cos (�1,L + �1,R + α) + λ′ cos (�2,L + �2,R + α′),

(67)

where we define basis transformed bosons

�1,L := 1√
2

(ϕ1,L + ϕ2,L),

�1,R := 1√
2

(ϕ1,R − ϕ2,R),

�2,L := 1√
2

(ϕ1,L − ϕ2,L),

�2,R := − 1√
2

(ϕ1,R + ϕ2,R). (68)

The mode expansion of �i is

�i,L = �i,0,L + 2π

L
(t + x)bi,0 + 1√

2

∑
r �=0

bi,re
−(2πir/L)(t+x),

�i,R = �i,0,R + 2π

L
(t − x)b̄i,0 + 1√

2

∑
r �=0

b̄i,r e
−(2πir/L)(t−x),

(69)

where b1,0 = 1√
2
(a1,0,L + a2,0,L), b̄1,0 = 1√

2
(a1,0,R − a2,0,R),

b2,0 = 1√
2
(a1,0,L − a2,0,L), and b̄2,0 = − 1√

2
(a1,0,R + a2,0,R).

The oscillator modes bi,r for the redefined bosons can be
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written in terms of mode operators in the original basis based
on Eq. (68).

The redefined mode operators satisfy the following com-
mutation relation:

[bi,m,bj,n] = mδm+n,0δij , (70)

and there is a similar relation for the right-moving mode
operators.

Hence the symmetry invariant Ishibashi states correspond-
ing to gapping vectors l1 and l2 can now be written in terms of
symmetric bosons �i,L + �i,R ,

|vi〉〉n = e− ∑
r>0 (1/r)bi,−r b̄i,−r |bi,0 = −b̄i,0 = n〉. (71)

We note that these Ishibashi states which are essentially
Neumann states for �i are manifestly symmetric as the bosons
�i,L + �i,R are symmetric. The Cardy state constructed from
the Ishibashi states is

|B,{αi}〉 =
⎛
⎝ 1

21/4

∑
n1∈Z

ein1α1 |v1〉〉n1

⎞
⎠

⊗
⎛
⎝ 1

21/4

∑
n2∈Z

ein2α2 |v2〉〉n2

⎞
⎠. (72)

To show that this satisfies the Cardy condition, we first compute
the amplitude. The closed sector Hamiltonian factorizes in bi

basis as

Hc =
∑
i=1,2

[
1

2

(
bi

0

)2 +
∑
r>0

bi
−rb

i
r +

∑
r>0

b̄i
−r b̄

i
r − c + c̄

24

]
.

(73)

Note that this Hamiltonian is not the physical Hamiltonian that
we started with for the boson system with boundaries, but the
Hamiltonian obtained after we perform the S transformation
between space and time. The amplitude decomposes as

A = 〈B,{αi}|qHc |B,{αi}〉
= ⊗i=1,2

[〈B,αi |qHi |B,αi〉
]
, (74)

where q = exp(−2πL) and we have used the decomposition
of the Hamiltonian. Both the decomposed parts give rise to the
following modular function [38]:

〈B,αi |qHi |B,αi〉 = 1

N 2
N

1

η(2iL)
, (75)

which transforms to the open channel partition function
under modular S transformation and hence satisfies the Cardy
condition. The subscript “N” stands for Neumann boundary
conditions.

F. Generalization to ZN cases

The discussion on Z2 symmetric bosonic SPT phases can
be generalized to case of ZN symmetry. As before [9] the edge
of a ZN symmetric SPT is described by a K-matrix Luttinger
liquid with K = σx in Eq. (31). The symmetry acts as

ĝ :

(
φ1

φ2

)
→

(
φ1

φ2

)
+ 2π

N

(
1
q

)
, (76)

where ĝ is the generator of ZN group. When q = 0, this
corresponds to a trivial SPT phase and q = 1, . . . ,N − 1
corresponds to nontrivial SPT phases. In analogy to the
analysis for the Z2 case, one cannot find a symmetric gapping
vector when q �= 0. This further implies the inability to find
a symmetry invariant Cardy state. However, N copies of a
nontrivial ZN SPT phase can be deformed to a trivial phase,
hence we expect to construct a symmetric boundary state for
this enlarged theory.

We consider K = ⊕N
i=1σ

x , namely, N copies of nonchiral
bosons. In this case, theZN symmetry transformation is simply
copies of the above transformation, namely

ĝ :

(
φ1

i

φ2
i

)
→

(
φ1

i

φ2
i

)
+ 2π

N

(
1
q

)
, i = 1, . . . ,N. (77)

To completely gap out the system, we need N l vectors that
satisfy

lTi K−1lj = 0,

ĝ lTi φ ĝ−1 = lTi φ mod 2π ∀i,j. (78)

Equation (78) is equivalent to

N∑
α=1

(
l2α
i l2α−1

j + l2α−1
i l2α

j

) = 0,

N∑
α=1

l2α−1
i + ql2α

i = 0 mod N ∀i,j. (79)

Here we choose a simple set of l vectors,

{l} : l1 = (1,0,1,0, . . . ,1,0)T

l2 = (0,1,0, − 1,0,0, . . . ,0,0)T

l3 = (0,0,0,1,0, − 1,0,0, . . . ,0,0)T

...

lN = (0,0, . . . ,0,1,0, − 1)T . (80)

We can check that in this set, the l vectors are linearly
independent. Then following what is done from Eq. (67), we
can write down the gapping potential term,

L{l}
gapping = λ1 cos

(
φ1

1 + φ1
3 + · · · + φ1

N + α1
) + · · ·

= λ1 cos (�1 + α1) + · · · ,

where the redefinitions are

�1 = 1√
N

(
φ1

1 + φ1
3 + · · · + φ1

N

)
�2 = 1√

2

(
φ2

1 − φ2
2

)
...

�N = 1√
2

(
φ2

N−1 − φ2
N

)
, (81)

based on the gapping vectors in Eq. (80). Then the �i fields
can be expanded in terms of b fields like those in Eq. (69).
Then the analysis of Cardy states and the amplitude between
boundary states follow that of the Z2 case.
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We work in the “�i-bosonic” basis. In this basis, the
Ishibashi states are taken as Neumann free boson states and
are manifestly ZN symmetric. They take the form

|vi〉〉n = 1

N i
N

exp

{
−

∑
r>0

1

r
bi,−r b̄i,−r

}
|bi,0 = −b̄i,0 = n〉,

(82)

where bi,r and b̄i,r are left and right mode operators corre-
sponding to the boson �i and bi,0,b̄i,0 are defined similarly as
those in Eq. (71). The Cardy state for �i takes the form

|B,αi〉 = 1

21/4

∑
n∈Z

einαi |vi〉〉n. (83)

The complete boundary state is a tensor product of individual
boundary states corresponding to vectors in {l},

|B,{αi}〉 = ⊗N
i=1 |B,αi〉. (84)

G. General symmetry groups

Finally, let us consider a more generic symmetry group G

acting on the boson fields:

ĝ : ϕ → Ugϕ + δϕg, ∀g ∈ G. (85)

The mode operators transform under g ∈ G as

ĝ : ar → Ugar, ϕ0 → Ugϕ0 + δϕg. (86)

In this case, we need to consider both the zero mode part and the
oscillator part in Eq. (55). In the previous discussion, we had
Ug = I. Thus we could focus on the zero mode part, namely,
the gapping potential of Eq. (55). To simplify the discussion,
we take one copy of compactified boson fields. In this case,
η = σ z and the mass matrix coupling the left and right moving
mode operators can be taken as M = σx from Eq. (48). Then
the invariance of the Hamiltonian or the action of the theory
gives the constraints

UT
g Ug = I2, UT

g σ zUg = ±σ z. (87)

Then we have the following general solutions: Ug =
σx,iσ y,σ z. When Ug = σx , we have UT

g MUg = M , which
means that the oscillator part in Eq. (55) is invariant. However,
when Ug = iσ y or σ z, we have UT

g MUg = −M , meaning that
the oscillator part would flip sign. Physically, it means that the
boundary state changes into a Dirichlet boundary state from
the Neumann boundary state. It is reminiscent of T duality
in string theory. In this case, the zero mode part is usually
not invariant. Therefore, for general symmetry groups, we can
focus on the zero mode part, which is equivalent to the gapping
potential analysis in Ref. [9]. We will have more discussions
on duality in Sec. VI.

V. (2 + 1)d TOPOLOGICAL SUPERCONDUCTOR
PROTECTED BY Z2 × Z2 SYMMETRY

From the discussion in the last section, we have seen that the
construction of a symmetric boundary state is closely related to
finding a gapping potential to gap a given (edge) CFT without
spontaneous symmetry breaking. In this section, we show that
there is another way to construct a symmetric Cardy boundary

state by considering only the fundamental boundary conditions
of the free fermions.

An example is the class of (2 + 1)d topological super-
conductors protected by a Z2 × Z2 unitary on-site symmetry.
The classification of these topological superconductors is Z8

[14,42]. Again, we consider the edge theories, which can be
described by the Nf copies of real fermion fields in 1 + 1
dimensions. For Nf = 1, they are described by the action

S = 1

2π

∫
d2xi�̄γ μ∂μ�. (88)

Upon picking a Clifford basis where γ 0 = σx and γ 1 = iσ y

and writing � = (ψL,ψR), one can decompose a Majorana
fermion into two Majorana-Weyl fermions. This action is
invariant under a Z2 × Z2 symmetry group that is generated
by the fermion number parity for each chirality.

A. Quantization and boundary states

Due to the fermionic nature of the fields, there are two
sectors depending on the periodicity of the fields under
rotations by 2π . The real fermion could have Ramond sector
(R) or antiperiodic, Neveu-Schwarz (NS) sector, boundary
conditions along the spatial direction. For the closed system,
the left and right moving fermion fields are decoupled. We
can choose boundary conditions independently for them.
Therefore, there are four sectors corresponding to the boundary
conditions:

(L,R) = (R,R),(R,NS),(NS,R),(NS,NS). (89)

The fermionic mode expansion takes the form

ψL(x,t) =
√

2π

L

∑
r

ψre
−2πir(t+x)/L,

ψR(x,t) =
√

2π

L

∑
r

ψ̃re
−2πir(t−x)/L, (90)

where the mode operators satisfy {ψr,ψr ′ } = δr+r ′,0,
{ψ̃r ,ψ̃r ′ } = δr+r ′,0, and {ψr,ψ̃r ′ } = 0 and r ∈ Z(+1/2) for the
Ramond and Neveu-Schwarz sectors respectively.

1. Boundary state

By varying the action (88) and requiring the boundary
variation to vanish, one can read off the suitable boundary
conditions to be {ψL ± ψR}|x=0 = 0. In order to construct the
Cardy state, we rotate the space-time cylinder by π/2 such that
the manifold has a temporal boundary. Upon space-time rota-
tion the boundary conditions transform to {ψL ± iψR}|t=0 = 0
These are the relevant boundary conditions for constructing
the Ishibashi and Cardy states. The Ishibashi states satisfy the
following gluing conditions:

(ψk + iηψ̃−k)|η〉〉 = 0, (91)

where η = ±1. Since this is a free theory, the solutions to the
above gluing condition are known. There are two solutions for
each η corresponding to the NS-NS and R-R sectors. These
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Ishibashi states are [36]

|η〉〉NS-NS = e−iη
∑

r>0 ψ−r ψ̃−r |0〉NS-NS,

|η〉〉R-R = e−iη
∑

r>0 ψ−r ψ̃−r |η〉R-R, (92)

where |0〉NS-NS and |η〉R-R denote the nondegenerate vacuum
in the NS-NS sector and the degenerate ground state associated
with the η boundary condition in the R-R sector, respectively.

Before moving onto the discussion of topological supercon-
ductors we note the crucial fact that unless we can construct
a Cardy state with only a single boundary condition (namely,
η = +1 or −1) in the NS sector, it is impossible to satisfy
the Cardy condition without including both sectors. This can
be seen by considering the overlap of real-fermion Ishibashi
states [43],

NS〈〈η|e−2πLHc |η〉〉NS = ϑ3(2iL)

η(2iL)
,

NS〈〈η|e−2πLHc | − η〉〉NS = ϑ4(2iL)

η(2iL)
,

R〈〈η|e−2πLHc |η〉〉R = ϑ2(2iL)

η(2iL)
,

R〈〈η|e−2πLHc | − η〉〉R = 0, (93)

where ϑ2,3,4 are the Jacobi θ functions. Under modular S

transformation, these modular functions transform as

ϑ3

η(2iL)
L=1/2t−−−−→ ϑ3(it)

η(it)
,

ϑ4

η(2iL)
L=1/2t−−−−→ ϑ2(it)

η(it)
,

ϑ2

η(2iL)
L=1/2t−−−−→ ϑ4(it)

η(it)
. (94)

One can see that unless one can construct a Cardy state
with a single Ishibashi state (either η = +1 or −1), the S

transformation mixes the R-R and NS-NS sectors.
We define the fermion number parity operators, (−1)F and

(−1)F̃ , for the left and right moving fermions, respectively,
which generateZ2 × Z2 symmetry. By construction, these sat-
isfy the following (anti)commutation relations: {(−1)F ,ψr} =
{(−1)F̃ ,ψ̃r} = 0, and [(−1)F ,ψ̃r ] = [(−1)F̃ ,ψr ] = 0.

2. NS-NS sector

It is straightforward to check that the Z2 × Z2 invariant
boundary state in the NS-NS sector is

|B〉NS-NS = 1√
2

[|+〉〉NS-NS − |−〉〉NS-NS], (95)

since we have

(−1)F |η〉〉NS-NS = (−1)F̃ |η〉〉NS-NS = −| − η〉〉NS-NS, (96)

as the vacuum |0〉NS-NS is the eigenstate of both (−1)F and
(−1)F̃ with the eigenvalue −1. It can be seen that both η =
±1 Ishibashi states are needed to construct a fermion parity
invariant boundary state in the NS-NS sector. We need to
include the R-R sector in order to construct a symmetric Cardy
state.

3. R-R sector

The R-R sector is a bit more subtle because of the presence
of zero modes. Let us define

�± := 1√
2

(ψ0 ± iψ̃0), (97)

which satisfies the anticommutation relations {�+,�−} = 1
and {�+,�+} = {�−,�−} = 0. In terms of the zero mode
operators, the fermion parity operators take the following form:

(−1)F =
√

2ψ0 = �+ + �−,

(−1)F̃ = i
√

2ψ̃0 = �+ − �−. (98)

The vacuum in the two sectors η = ± can be defined as

|η = +〉 = ei�+|0〉,
|η = −〉 = ei�−�−|0〉, (99)

where �± are arbitrary phase factors. It can be shown that
a fermion parity invariant Ishibashi state does not exist for a
single fermion flavor in the R-R sector and consequently we
cannot construct a fermion parity invariant boundary state.

B. Boundary states and the Z8 classification

Having found out that, for a single copy of fermions, it
is not possible to construct a Cardy state that preserves the
fermion number parity, we now proceed to analyze multiple
copies of real fermions. We will show that for 8n copies of
fermions, there exists a fermion number parity conserving
Cardy state. This implies a Z8 classification of topological
superconductors. This agrees with results in Refs. [14,42].

The boundary condition for Nf copies of fermions is

ψM + iηψ̃M = 0, M = 1, . . . ,Nf . (100)

More generally, we may take ηM to be different for different
copies. But since later we will take direct a product of Ishibashi
states with the same η value, it is always possible to transform
such boundary conditions to the identical η case. There could
be mixing between different copies, which is the most general
case. We do not discuss it here. Since one can already construct
an NS-NS Ishibashi state for a single flavor of real fermions,
we will focus our discussion on the R-R sector. We follow the
convention in Ref. [44].

We first assume that Nf is even, namely, Nf = 2n,n ∈ Z.
It is convenient to define

�a± := 1√
2

(
ψ2a−1

0 ± iψ2a
0

)
, a = 1, . . . ,n, (101)

which satisfy the algebra {�a+,�b−} = δab, {�a+,�b+} =
{�a−,�b−} = 0. Then the Ishibashi vacua |η〉0

RR must satisfy

(�b− + iη�̃b−)|η〉0
RR = 0. (102)

The solution to this constraint is given by

|η〉0
RR = e−iη

∑
b �b+�̃b−|0〉RR, (103)

where the Fock vacuum is defined as �a−|0〉RR = �̃a+|0〉RR =
0. Finally, the Ishibashi state in the R-R sector can be
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written as

|η〉〉RR = e−iη
∑

r>0

∑Nf

M=1 ψM
−r ψ̃

M
−r |η〉0

RR. (104)

By construction, (−1)F anticommutes with left-moving
fermionic modes, but commutes with all other modes, while
(−1)F̃ anticommutes with all right-moving fermionic modes,
but commutes with all other modes. From the expressions
(103) and (104), we thus have

(−1)F (F̃ )|η〉〉RR = | − η〉〉RR, (105)

provided (−1)F |0〉RR = (−1)F̃ |0〉RR = |0〉RR .
On the other hand, the fermion number parity operators can

also be represented, in the space of the ground states in the
R-R sector, in terms of the zero mode operators as

(−1)F =
(

1

i

)n n∏
a=1

(1 − 2�a+�a−),

(−1)F̃ =
(

1

i

)n n∏
a=1

(1 − 2�̃a+�̃a−). (106)

Using the above relations, one can show

(−1)F |η〉0
RR = (−i)n| − η〉0

RR, (−1)F̃ |η〉0
RR = in| − η〉0

RR,

(107)

which implies, as the action of (−1)F (F̃ ) on the nonzero modes
is as before,

(−1)F |η〉〉RR = (−i)n| − η〉〉RR, (−1)F̃ |η〉〉RR = in| − η〉〉RR.

(108)

Now, it seems there are two different ways of how (−1)F (F̃ )

acts on the Ishibashi states, namely, Eqs (105) and (108). To
avoid this ambiguity, we must require n = 0 mod 4 or Nf =
0 mod 8 to have a well-defined fermion number parity for
each chirality.

Therefore, the symmetry invariant boundary state in the
R-R sector takes the form

|B〉RR = 1√
2
{|+〉〉RR + |−〉〉RR}, Nf = 0 mod 8. (109)

The total Cardy states are now the combination of both the
NS-NS and R-R parts,

|B〉± = 1

N (|B〉NSNS ± i|B〉RR), Nf = 0 mod 8. (110)

The factor ±i between the NS-NS and the R-R components
are both allowed to satisfy the Cardy condition, which also
fixes the normalization factor N .

Finally for odd number of flavors of real fermion, there
would always be one singlet, which is not paired up. Thus it
is impossible to construct a fermion parity invariant boundary
state. Therefore the classification is indeed Z8.

C. Boundary conditions, gapping potentials, and triality

So far, we have only discussed the transformation of
boundary states under symmetry operation. But what would
happen to the gapping potential? Is it also invariant under
symmetry operation? Here we would like to clarify two

points: (1) if we can find a symmetry invariant boundary
state, then there should exist a set of boundary conditions
that is also invariant under the symmetry transformation; (2)
symmetry invariant gapping potentials do not guarantee that
the corresponding boundary state is also symmetry invariant.

1. The case of N f = 8

As we have shown before, for eight copies of Majorana
fermions, we can construct a fermion parity invariant boundary
state, which also satisfies the Cardy condition. We will now try
to identify the corresponding boundary conditions following
the triality used in Ref. [45].

The boundary conditions and the fermion representation
we are using in the notes are given in the vector representation
of SO(8) algebra. For this algebra, we know that it has an
important property—the triality. In the vector representation,
we can bosonize the (complex) fermions as

ψαj = e−iφαj , ψ†αj = eiφαj , (111)

where α,j = 1,2. Then under the fermion parity operator
(−1)F , the boson fields change as

(−1)F φαj (−1)F = φαj + π. (112)

Thus for each individual complex fermion, the boundary
condition is not invariant under this Z2 symmetry. Now
let us use triality to write the fermions in the spinor (c)
representation. In this representation, we use a new set of
boson fields to bosonize the (complex) fermions:

φch = 1

2

∑
α,j=1,2

φαj ,

φsp = 1

2

∑
α,j=1,2

(σ z)ααφαj ,

φfl = 1

2

∑
α,j=1,2

(τ z)jjφαj ,

φX = 1

2

∑
α,j=1,2

(σ z)αα (τ z)jjφαj . (113)

In this basis, with the transformation (112), we can easily
check that

(−1)F φi(−1)F = φi mod 2π, i = ch,sp,fl,X. (114)

A similar analysis can be used for the (−1)F̃ operator.
Then, by adding gapping potentials, φi defined in Eq. (113)
can be pinned at their ground state values simultaneously.
Furthermore, by fermionizing these bosons to define new
fermion operators, Ci,i = ch,sp,fl,X via

Ci = e−iφi

, (115)

the boundary conditions can be expressed in terms of Ci ,
namely,

CL,ch = CR,ch, CL,fl = CR,fl,

CL,sp = −CR,sp, CL,X = C
†
R,X at the boundary. (116)

Then it is manifest that these boundary conditions are invariant
under the transformations defined in Eq. (112).
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2. The case of N f = 4

Let us make the relation between boundary conditions,
boundary states, and gapping potentials clear. Given a bound-
ary condition, we can obtain a boundary state as the solution
to the boundary condition. In this sense, there is a one-to-one
correspondence between boundary conditions and boundary
states. On the other hand, different gapping potentials can
correspond to the same boundary condition. In terms of
gapping vectors, it means that primitive and nonprimitive
lattice vectors can represent the same boundary condition.
In this sense, the correspondence between gapping vectors
and boundary conditions or boundary states is many to one.
Therefore, the symmetry invariance of a specific set of gapping
potentials does not imply the symmetry invariance of the
boundary condition or the boundary state. Let us take an
example to clarify this point. In Ref. [46], the authors show
that for two copies of Dirac fermions, which is equivalent
to four copies of Majorana fermions, there exists a set of
symmetry invariant gapping potential, which is equivalent to
the boundary condition. Specifically, in their language of Dirac
fermions, the gapping potentials

V1 ∝ ψ
†
1Rψ

†
2Rψ2Lψ1L + H.c. = cos (2θ1 + 2θ2),

V2 ∝ ψ
†
1Rψ

†
2Lψ1Lψ2R + H.c. = cos (2θ1 − 2θ2) (117)

are invariant under fermion parity projection. Here θa =
1
2 (φa,R − φa,L),a = 1,2 where ψ

†
a,R ∝ eiφa,R and ψ

†
a,L ∝

eiφa,L . However, the Z2 × Z2 symmetry is spontaneously
broken, namely, the single-particle backscattering terms do not
have vanishing vacuum expectation values (vev), 〈ψ†

1Rψ1L〉 �=
0, 〈ψ†

2Rψ2L〉 �= 0. In their language, the boundary condition
corresponds to the vev. Even if the gapping potential is
symmetry invariant, the vev is not invariant. This is consistent
with our analysis that there is no fermion parity invariant
boundary state for four copies of Majorana fermions.

VI. DISCUSSION AND OUTLOOK

We have discussed the (1 + 1)d edge theories of (2 + 1)d
SPT phases from the perspective of boundary CFT. We argue
that, if a (1 + 1)d CFT is realized as an edge theory of a
(2 + 1)d SPT phase, it is not possible to find a Cardy boundary
state preserving the symmetry of the SPT phase. And vice
versa: when it is not possible to find a symmetry-preserving
Cardy boundary state in a (1 + 1)d CFT, the CFT must be
realized as an edge theory of a (2 + 1)d SPT phase. In short,
boundaries of SPT phases are not “edgeable”, and, conversely,
“nonedgeable” CFTs must be realized as an edge theory of a
bulk theory in one higher dimension.

We also observed that the edgeablity condition in CFTs
are naturally related to the gappability condition. This can be
seen most straightforwardly if one invokes the identification
between boundary states and gapped ground states (states
obtained from a CFT by adding a massive perturbation). Thus,
(in)ability to find a symmetry-preserving boundary state means
(in)ability to find a symmetry-preserving gapped state. In turn,
this also provides an alternative point of view on the relation
between BCFT and the modular invariance. It should be

noted that, in higher-dimensional SPT phases, the gappability
condition is replaced by a “weaker” condition; (2 + 1)d
boundaries of (3 + 1)d nontrivial SPT phases are either
ingappable or topologically ordered, if the symmetry of SPT
phases is preserved. Nevertheless, the edgeablity condition
is still valid even for boundaries of higher-dimensional SPT
phases. Thus, the edgeablity condition has some precedence
over the gappability condition in general, although they seem
equivalent in (1 + 1)d edges of bulk (2 + 1) SPT phases.

In the following, let us make a few more comments before
closing.

A. Symmetry actions on boundary states

First, let us summarize the way symmetries act on boundary
states in CFTs. In particular, we contrast physics of (2 + 1)d
and (1 + 1)d SPT phases. Let us consider a CFT with a global
unitary symmetry G (spatial and time-reversal symmetries
may be discussed in a similar fashion). We consider confor-
mally invariant boundary states {|Ba〉} realized in the CFT,
where a labels the boundary states. Then, for a symmetry
operation g ∈ G, one expects the following possible behaviors
of {|Ba〉} under g: In the first case, the action of g on boundary
states is given by

g|Ba〉h = εa(g|h)|Ba〉h. (118)

Here, |Ba〉h is a boundary state in the sector twisted by h ∈ G,
and εa(g|h) is a phase factor. namely, boundary states are
invariant under the symmetry, up to a phase factor. As claimed
in Ref. [23], this case is relevant to the physics of boundaries
of (1 + 1)d SPT phases. In Ref. [23], the correspondence
between gapped ground states of (1 + 1)d SPT phases and
boundary states in CFTs was made. These boundary states are
anomalous in the sense that when acted with symmetry they
give rise to anomalous U(1) phases, Eq. (118). Furthermore,
the anomalous phase ε(g|h) is related to the two cocycles in
H 2(G,U(1)), which gives the classification of (1 + 1)d SPT
phases protected by G. (These phases, however, only appear
in boundary states in twisted sectors, namely, the sectors with
twisted boundary conditions by a group element in G.)

On the other hand, there are cases in which a boundary state
|Ba〉 is mapped to another boundary state |Ba′ 〉, which can be
different from the original one:

g|Ba〉 = |Ba′ 〉. (119)

We further distinguish the following two cases: (a) There is
subset of boundary states which are mapped to themselves for
all symmetry operations g ∈ G. (b) None of the boundary
states remain invariant under g ∈ G. Case (a) is a typical
situation when the (1 + 1)d CFT can be realized on its own
right, without referring to higher-dimensional bulk systems.
On the other hand, Case (b) is relevant to (2 + 1)d SPT phases,
as we have discussed for the bulk of the paper.

B. Boundary states and locality

In Eq. (119), it should be noted that the right-hand side
is not given by a superposition of |Ba〉, but by a single
boundary state. In fact, superpositions of |Ba〉 in general do not
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satisfy the Cardy condition, and are disqualified as a physical
boundary state. [In this respect, the symmetry transformation
law in Eq. (119) is analogous to anyonic symmetry which
acts on (2 + 1)d topologically ordered phases by permuting
anyons.] In the present context, this is in perfect agreement
with the standard theory of spontaneous symmetry breaking.
When spontaneous symmetry breaking happens, ground states
having different expectation values of an order parameter
should not be superposed in the thermodynamic limit. (These
states are “superselected”.) The overlap of these states vanishes
in the thermodynamic limit, and hence a given ground state
with a definite value of the order parameter cannot be mixed by
any physical (local) operation. (However, the overlap between
different boundary states may not be zero, and defines the
Affleck-Ludwig g function.)

In some sense, one can think of Cardy states setting the
notion of locality. It should be noted that there are multiple
sets of solution to the Cardy equations, which correspond to
different modular invariant bulk partition functions.

Let us further illustrate the notion of locality set by the
Cardy states: As we demonstrated through various examples,
when none of the boundary states are invariant under symmetry
G, the CFT must be realized as an edge theory of a bulk
nontrivial SPT phase protected by on-site unitary symmetry
G. In the edge theory, the criticality (gapless spectrum) is
enforced by the symmetry G. This is quite different from
criticalities (conformal field theories) that occur in isolated
(1 + 1)d systems; there are typically perturbations at a critical
point which are G symmetric. By perturbing the critical point
by such perturbation, it may be possible to flow into a gapped
phase where the G symmetry is preserved. This suggests that
the symmetry G acting within the edge theory of a nontrivial
SPT phase is not an ordinary symmetry. In fact, as noted in
Ref. [22], the symmetry G is realized nonlocally or as a non-
on-site symmetry within the edge theory.

C. Duality and triality

Another canonical example is provided by the Z2 symmet-
ric topological superconductor discussed in Sec. V. The edge
theory in this case is described by the action (88). Here, the Z2

symmetry flips the sign of the mass term, and hence enforces
the criticality. In the language of the (1 + 1)d transverse-field
quantum Ising model (or the 2d Ising model), this is nothing
but the Kramers-Wannier duality. It is a nonlocal operation
which exchanges the Ising spin operator σ and the disorder
operator μ.

Let us have a look at how this Z2 symmetry acts on
boundary states. In the critical Ising model, there are three
physical conformal boundary conditions: the free condition
|f 〉, and the fixed ones |+〉 and |−〉. The periodic (R) sector
contains three scalar fields: the identity, the spin field σ , and
the energy density ε, of chiral conformal weight 0, 1/16,
and 1/2 respectively. They lead to three Ishibashi states |0〉〉R,
| 1

16 〉〉R, and | 1
2 〉〉R. The second, antiperiodic (NS) sector contains

a single scalar field, the disorder field μ, with the same
conformal weight 1/16 as the spin field, and gives rise to one
Ishibashi state | 1

16 〉〉NS. The Cardy boundary states are given in

terms of these Ishibashi states as

|±〉 = 1√
2

[
|0〉〉R ±

√
2

4
∣∣∣∣ 1

16

〉〉
R

+
∣∣∣∣1

2

〉〉
R

]
,

|f 〉 = |0〉〉R +
√

2
4
∣∣∣∣ 1

16

〉〉
NS

−
∣∣∣∣1

2

〉〉
R

, (120)

which, in terms of the Ising spin variables, correspond to the
fixed boundary condition with spin pointing up/down at the
boundary, and the free boundary condition. The Kramers-
Wannier duality exchanges the free boundary condition |f 〉
and one of the fixed boundary conditions (|+〉). This is so
since the duality transformation exchanges σ and μ, and
hence the Ishibashi states |1/16〉〉R and |1/16〉〉NS. (In fact,
Ref. [47] proposed a method to diagnose the existence of the
Kramers-Wannier duality, for a given CFT, by using boundary
states.)

Let us next consider Nf copies of (2 + 1)d topological
superconductors protected by Z2 symmetry, as discussed. We
will focus on the cases where Nf is even. In these cases, spin
operators (analog of σ and μ in the critical Ising model) in the
edge theory are given by

�s
R = ei

∑
a saφ

a
R , sa = ± 1

2 (121)

in the bosonized language (in the right-moving sector). These
operators are an intertwining (vertex) operator that maps the
untwisted sector to the twisted sectors specified by s. By state-
operator correspondence, these operators are identified with a
state in the corresponding twisted sector. (Note that there is
ground-state degeneracy for the R sectors.) Thus, we have a set
of states {|0〉NS,|s〉R}. These states appear when one constructs
boundary states, and are exchanged under the action of the
unitary Z2 symmetry. (Here, this is not the Zf

2 symmetry.)
The spin operators satisfy

�s
R(z)�s′

R(w) = e2πis·s′sgn(x−x ′)�s′
R(w)�s

R(z), (122)

where s · s′ = (1/4)
∑

a(±1). This phase can be made an
integer when the number of complex fermions is a multiple
of 4 (namely, the number of real fermions is a multiple of 8,
Nf = 8n) and if we choose

s = (1/2,1/2, . . . ) or s′ = (−1/2, − 1/2, . . . ). (123)

The unitary Z2 symmetry can exchange spin operators �s
R ,

as the Kramers-Wannier duality of the critical Ising model
exchanges σ and μ. However when Nf = 8n, the spin
operators are mutually local. Hence in this case, the Z2

symmetry is not a duality (or nonlocal) symmetry. Rather,
it is a (part of) triality symmetry.

Finally, recall that the presence of boundary breaks the
Kramers-Wannier duality. This is another indication that the
Kramers-Wannier duality is nonlocal.
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