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We study ’t Hooft anomalies of discrete groups in the framework of (1+1)-dimensional multiscale entanglement
renormalization ansatz states on the lattice. Using matrix product operators, general topological restrictions on
conformal data are derived. An ansatz class allowing for optimization of MERA with an anomalous symmetry
is introduced. We utilize this class to numerically study a family of Hamiltonians with a symmetric critical line.
Conformal data is obtained for all irreducible projective representations of each anomalous symmetry twist,
corresponding to definite topological sectors. It is numerically demonstrated that this line is a protected gapless
phase. Finally, we implement a duality transformation between a pair of critical lines using our subclass of
MERA.
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I. INTRODUCTION

Quantum many-body models of strongly interacting spins
display surprisingly complex emergent physics. Understand-
ing general classes of collective behaviors corresponds to
understanding which phases of matter can be realized through
local interactions. The universal behavior of phases, and
their transitions, is determined by the fixed points under
renormalization group (RG) flows [1,2].

Symmetries play a fundamental role in the understanding
of phases due to constraints they impose on RG. Indeed,
the conventional classification of phases describes how a
symmetry can be broken [3]. Distinct quantum phases emerge
even without a broken symmetry [4–8]. In the absence
of intrinsic topological order, these phases are known as
symmetry-protected topological (SPT) phases [9–12]. Despite
having no topological order and no local order parameter, SPT
phases are resources for quantum computation [13–17].

On the lattice, symmetries are usually assumed to act
independently on each site. More exotic symmetries, which
cannot be made on-site, have recently been studied in chains
of anyons [18–22] and at the boundary of SPT phases
[23–32]. In fact, a classification of SPTs can be obtained
by considering possible boundary actions of the symmetry.
Equivalence classes of such symmetries are labeled by the
’t Hooft anomalies [33] of a discrete group. Such anomaly
labels are preserved by symmetric RG transformations, and so
restrict the possible fixed points [34].

Tensor network methods [35–37] allow anomalous sym-
metries to be realized directly on the lattice. In (1 + 1)
dimensions, matrix product operators (MPOs) capture all
’t Hooft anomalies of discrete groups [23–26]. Within the
framework of tensor networks, phases are classified at the
level of states. For example, matrix product states (MPSs)
have proven particularly successful for the study of gapped
spin chains [38–47]. Despite substantial complications arising
for tensor networks in higher dimensions, significant progress
has been made, particularly in the study of topological states
[48–57].

Imposing on-site symmetries on tensor network represen-
tations of quantum states is well understood [58–60]. Far less
effort has been made to study the effect of anomalous group

actions on these states. Such group actions naturally arise as
the effective edge symmetries of (d + 1)D SPTs [28–30]. In
(2 + 1)D, the edge theory must either spontaneously break
this symmetry or be gapless. Since all MPSs break the
symmetry [23], to study gapless, symmetric edge theories we
turn to another class of tensor networks known as multiscale
entanglement renormalization ansatz (MERA) [61]. These
networks draw on ideas from RG to represent the low-energy
states of gapless Hamiltonians [61–63].

In this work we define a variational subclass of MERA
which can be used to simulate SPT edge physics in a manifestly
symmetric way. This subclass allows us to investigate the
interplay between RG and anomalies in the framework of
tensor networks. We use tensor network methods to derive
general consequences of an anomalous symmetry on the
conformal field theory (CFT) data of an RG fixed point. For
a family of Hamiltonians, corresponding to a line of fixed
points, we numerically optimize within our variational class
to find the lowest energy states and extract conformal data
[64,65]. We observe the effects of the anomaly in these results.
Furthermore, we demonstrate that as a consequence of the
anomaly these Hamiltonians admit no relevant, symmetric
perturbations. The Hamiltonians therefore support a gapless
phase which is protected by an anomalous symmetry.

More generally, RG fixed points may transform nontrivially
under an anomalous group action. Our variational class
accommodates this possibility and hence permits the study
of gapless models which are not symmetric. We utilize this in
a numerical simulation of two critical lines that are related by
a duality transformation, which we implement at the level of
a single tensor.

This paper is organized as follows: In Sec. II, we introduce
background material on anomalies, symmetries, and tensor
networks. In particular, we introduce the ’t Hooft anomaly
of a discrete symmetry. We then briefly review the MERA
and what it means for it to be symmetric under an on-site
group action. The difficulties in enforcing anomalous MPO
symmetries locally are then discussed. In Sec. III, we derive
general consequences of an anomalous symmetry on a MERA,
which are later utilized in the numerical simulations. We study
anomalous symmetry twists and the projective representa-
tions under which they transform. From these ingredients,
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projectors onto definite topological sectors are constructed.
Consequences for fields within a sector are discussed. In
Sec. IV, we define a variational subclass of MERA which
is later used for manifestly symmetric simulations. We present
a disentangling unitary capable of decoupling a local piece of
an anomalous Z3

N group action. This allows the unconstrained
variational parameters of any symmetric MERA scheme to
be isolated and therefore optimized over. In Sec. V, we
bring together tools developed in the preceding sections to
simulate a family of Hamiltonians with three critical lines.
One of these lines possesses an anomalous symmetry, while
the other two are dual under the anomalous group action.
We present conformal data for these critical lines obtained
from a numerically optimized MERA, including two nontrivial
topological sectors for the symmetric line. Additionally, we
demonstrate that the symmetric line is in fact a protected
gapless phase. In Sec. V D we summarize the results and
suggest several possible extensions of this work.

We have included several Appendices for completeness.
In Appendix A we provide conformal data obtained from a
symmetric MERA in all topological sectors for the symmetric
line of our example model. Additionally, we present fusion
rules for these topological sectors computed using a symmetric
MERA. In Appendix B we review the notion of a third
cohomology for an MPO representation of a finite group.
In Appendix C we provide details of our ansatz for MPO
symmetric MERA, including sample tensors for two MERA
schemes. In Appendix D we describe a generalization of the
CZX model [23] to arbitrary finite groups G such that the bulk
symmetry acts as an MPO duality of G-SPT phases on the
boundary.

II. SYMMETRIES AND ANOMALIES IN MERA

This section introduces the main tools and concepts utilized
in the remainder of this manuscript. We begin by discussing
’t Hooft anomalies of group actions, including some historical
context. Lattice realizations of these anomalies, and their
influence on tensor network states, are our primary objects
of study. Readers unfamiliar with this terminology may skip
to Sec. II A for the definition of anomaly used throughout this
work. We then review the MERA, the tensor network designed
for critical behavior, and define what it means for it to be
symmetric under a unitary group action. We briefly explain
how one enforces an on-site symmetry via a local constraint
before moving on to discuss the difficulties in enforcing an
anomalous symmetry in a similar fashion.

Recently anomalies have played an important role in
the classification and study of topological phases of matter
[27,66,67]. Particularly relevant are ’t Hooft anomalies, which
describe obstructions to gauging a global symmetry [33]. SPT
phases, and their higher symmetry generalizations [68–70],
can be classified by the possible ’t Hooft anomalies on their
boundaries [28–31]. Conversely, one can think of the possible
’t Hooft anomalies as being classified by what is known as
anomaly inflow from one dimension higher [27–29,31,32].

A global symmetry with an ’t Hooft anomaly has an
interesting interplay with the renormalization group. For a
connected Lie group symmetry, an ’t Hooft anomaly restricts
the possible RG fixed points, even if the symmetry is

spontaneously broken [71,72]. In the case of a broken discrete
symmetry, this is no longer true. For a symmetry respecting
RG flow, however, the ’t Hooft anomaly cannot change and
hence constrains the possible fixed points [28].

Symmetry actions which can be realized independently on
each site have a trivial ’t Hooft anomaly because they can
be gauged directly on the lattice [26,73,74]. Conversely, this
gauging procedure cannot be applied directly to symmetries
which cannot be made on-site. Therefore, we treat the ’t Hooft
anomaly as an obstruction to making a symmetry action on-site
[25,27,32].

For a discrete symmetry group G in (1 + 1)D, all ’t Hooft
anomalies of bosonic unitary representations occur on the
boundaries of (2 + 1)D SPT phases, in other words, they
arise from anomaly inflow. The anomalies can therefore be
classified by H3(G,U(1)), the same set of labels as the SPT
phases [23,29,30]. In the next section, we describe how matrix
product operators can be utilized to represent these anomalous
actions.

A. Symmetries on the lattice

In this work, we consider unitary representations of finite
groups on the lattice. We say a state |ψ〉 is symmetric under
a group G if Ug|ψ〉 = |ψ〉 for all g ∈ G, where Ug is some
unitary representation of the group.

The symmetry is on-site if the representation can be
decomposed as Ug = ⊗N

j=1(ug)j , where each (ug)j is a (local)
unitary representation.

Although group actions are usually considered to be on-site,
this is not the most general way a symmetry can be represented.
A more general class of group actions can be represented
by matrix product operators. Using the conventional tensor
network notation [35–37], these are denoted

Ug = g , (1)

where g next to the MPO indicates which group element
it represents. We refer to the dimension of the horizontal
indices as the bond dimension of the MPO. The on-site
case corresponds to bond dimension 1, while arbitrary bond
dimension allows representation of any unitary. We consider
the case of a constant bond dimension in the length of the
MPO.

To form a representation, the MPOs must obey

g
h = gh , (2)

for all lengths. In contrast to on-site representations, for bond
dimensions larger than 1 this does not hold at the level of the
local tensors. Rather there is a tensor X(g,h) referred to as the
reduction tensor [23,42,44] (Appendix B) such that

gh

X(g, h)†X(g, h)

g

h

X(g, h)X †
= g

h

X)

gh

.
g, h( )

(3)

The reduction procedure need not be associative. When
reducing three tensors, there are two distinct orders of
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FIG. 1. The MERA represents a quantum state using layers of
isometric tensors. Together, these tensors define a quantum circuit
of logarithmic depth which can be used to prepare an entangled
state from a product state. If the tensors are chosen appropriately,
the network is thought to be able to accurately represent the
ground state of gapless one-dimensional Hamiltonians. Throughout
the paper we use a convention such that tensor network diagrams
read bottom-to-top, corresponding to matrix multiplication read
left-to-right.

reduction which may differ by a phase φ

f

g

h X(g, h)

X(f, gh)

= φ(f, g, h)

h

g

f

X(f, g)

X(fg, h)

. (4)

As discussed in Appendix B, φ is a 3-cocycle with
[φ] ∈ H3(G,U(1)). Since on-site representations are locally
associative they have a trivial cocycle. Hence a nontrivial
[φ] indicates an obstruction to making the symmetry action
on-site. We can therefore regard a nontrivial [φ] as a nontrivial
’t Hooft anomaly for G in (1 + 1)D. We remark that each class
of ’t Hooft anomaly can be realized using MPOs in this way
[26,53].

B. MERA and symmetry

In its most general form [61,62], the MERA can be thought
of as a series of locality-preserving isometric maps,

L(i) : (Cdi+1 )⊗Ni+1 → (Cdi )⊗Ni , (5)

where d
Ni+1
i+1 � d

Ni

i . Since the size of the lattice decreases
at each step, these maps can be thought of as enacting a
renormalization group on the real-space lattice. At the base
(layer 0), the high-energy, short-wavelength, lattice scale
Hamiltonian H (0) is defined, with subsequent layers defining
increasingly low-energy, long-wavelength effective theories

H (i+1) := L†
(i)H

(i)L(i). (6)

To correctly describe the physical RG fixed points, the MERA
layers must be chosen to preserve the low-energy physics
of H (0).

For concreteness, in this discussion we specialize to the
MERA depicted in Fig. 1, which we refer to as the 4:2 MERA.
This MERA is built from a single kind of tensor, an isometry
from four sites to two sites. In general, these tensors may all
contain distinct coefficients, although space-time symmetries
such as scale invariance can be imposed by, for example,
forcing the tensors on each layer to be identical. We remark
that our results are not specific to this choice, rather, they
work for all MERA schemes. In particular, in Appendix C we
describe how the results apply to the commonly used ternary
MERA [62,63].

In the MERA the fundamental constraint that a symmetry is
preserved under renormalization is that each coarse-graining

circuit acts as an intertwiner of G representations. That is, the
renormalized symmetry

U (i+1)
g := L†

(i)U
(i)
g L(i) (7)

is again a representation of G. When this condition is satisfied,
the third cohomology anomaly label of the symmetry does not
change along the renormalization group flow [28,31]. Hence
the presence of an anomaly does not introduce any additional
constraints on the renormalization process (which is to be
expected for a discrete group).

For both practical and physically motivated reasons it is
common to require further restrictions on the form of a
symmetry throughout renormalization. For example, at a scale-
invariant renormalization group fixed point, the symmetry is
also required to be scale invariant [63]. Furthermore, along an
RG flow one may require that the bond dimension of an MPO
symmetry remain constant, or grow subexponentially with the
renormalization step. An extreme case is that of an on-site
symmetry where the bond dimension is always required to be
1, such that the symmetry remains strictly on-site.

C. On-site symmetry

In the case of a trivial ’t Hooft anomaly, a physical symmetry
can be realized by an on-site representation. For a MERA
satisfying Eq. (7), the ’t Hooft anomaly is preserved and
hence it should remain possible to realize the symmetry
in an on-site fashion at each RG step. This additional
constraint is imposed by insisting that U (i+1)

g remains an on-site
representation. Therefore the symmetry constraint becomes
completely local [59].

The symmetry can then be enforced on a MERA state
by ensuring that the local tensors are locality-preserving
intertwiners for the group action,

ug ug ug ug

vg vg

=
ug ug ug ug

vg vg

, (8)

where the representation on each bond may be distinct.
Standard results in representation theory allow one to impose
the conditions Eq. (8).

D. Anomalous MPO symmetries

Generally (2 + 1)D SPT states are gapped in the bulk
(on a closed manifold), but, on a manifold with a boundary
they either spontaneously break the “protecting” symmetry
or possess gapless excitations in the vicinity of the boundary
[23]. Since the low-energy physics is confined to the edge, it is
interesting to consider the low-energy, effective edge theory.
When restricting the on-site bulk symmetry to the edge, it
becomes anomalous with the anomaly label [φ] ∈ H3(G,U(1))
matching the bulk SPT [23,25,30]. An on-site representation of
the bulk symmetry cannot be recovered by any local operations
on the edge.

Since anomalous symmetries cannot be made on-site,
the condition in Eq. (7) is no longer strictly local. If the
bond dimension of an MPO is allowed to grow at each
renormalization step, the only constraint in Eq. (7) is that
the symmetry remains a global representation.
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So long as this constraint is satisfied, the nontrivial anomaly
label [φ] ∈ H3(G,U(1)) of an MPO representation, discussed
in Appendix B, is invariant under renormalization [28].

For anomalous symmetries the natural analog to Eq. (8) is

g

g

=
g

g

, (9)

which is a sufficient condition for a symmetric MERA but is
not necessarily implied by Eq. (7).

We remark that this condition does not correspond to
a local group action unless further assumptions are made.
Consequently, conventional techniques from representation
theory do not suffice to enforce the constraint. Despite this,
in Sec. IV we define a class of MERA which allows Eq. (9) to
be imposed via a strictly local condition.

Although Eq. (9) generically allows the MPO to change,
one may wish to insist that the MPO is fixed under the RG, for
instance, at an RG fixed point where identical tensors are used
at each layer of the MERA.

Unlike an on-site symmetry, an MPO can act as a duality
transformation between a pair of critical models. This can be
realized in MERA by allowing the MERA tensors themselves
to change in Eq. (9). We demonstrate such an action in
Sec. V C. One can also use the MPO to create a domain
wall between the two critical theories by applying the MPO
to a half-infinite chain. In the case where the dual theories
coincide (i.e., the MPO acts as a symmetry), this corresponds
to a symmetry twist (topological defect) or twisted boundary
condition. This will be the subject of Sec. III.

E. Physical data from MERA

Once a MERA has been obtained, a variety of physical
data can be extracted. The most straightforward of these is
the energy of the MERA, which simply requires evaluation of
〈ψ |H |ψ〉.

For a MERA representing the ground state of a gapless
Hamiltonian, one can also extract a variety of data about
the associated conformal field theory (CFT) [64,65]. One can
compute the central charge as discussed in Refs. [63] and [75]
using the scaling of entanglement entropy in the state. One
can also obtain the scaling dimensions of the associated CFT
[63,75] by seeking eigenoperators of the scaling superoperator

S1( ) = = λ . (10)

The scaling dimensions describe the decay of correlations
in the theory. We will refer to � = − log2(λ) as the scaling
dimension corresponding to a particular scaling field.

The scaling fields obtained from the scaling superoperator
correspond to local fields in the CFT. Given a symmetric
MERA, one can also obtain nonlocal scaling fields by
constructing the “symmetry-twisted” scaling superoperators

Sg( ) = = λ , (11)

where is the symmetry MPO for the group element g.
These fields correspond to a half-infinite symmetry twist, as

FIG. 2. By applying the MPO to a half-infinite chain, one can
insert a domain wall between two dual theories. If the MPO acts
as a symmetry, this corresponds to putting the theory on boundary
conditions which have been twisted by the group element.

in Fig. 2, terminated by a local tensor. Previously, nonlocal
scaling operators with a tensor product structure have been
obtained in the same way [76], but this more general class
involving an anomalous symmetry was not investigated.

III. SYMMETRY TWISTS AND TOPOLOGICAL SECTORS

Once a symmetric MERA is optimized to represent the
ground state of a critical model, conformal data can be obtained
as discussed in Sec. II E. In this section, we investigate the
impact that an anomalous symmetry has on such conformal
data. In particular, we use the properties of MPO group
representations to obtain possible topological corrections to
the conformal spins when a symmetry twist is applied.
We observe these corrections in our example model, as
shown in Table I. Additionally, we construct the projective
representations under which the nonlocal scaling fields [as
defined in Eq. (11)] transform. These allow us to construct
projectors onto irreducible topological sectors, extending the
usual decomposition into symmetry sectors. We discuss the
constraints that this decomposition imposes on the operator
product expansion of the CFT. For our example model, we
observe these constraints in Table II.

Throughout this section, for simplicity of presentation, we
treat the case of scale-invariant MERA with scale-invariant
MPO symmetry. Furthermore, we assume the technical
condition that the MPO representation satisfies the zipper
condition [26]

g

h
gh

X(g, h)†X(g, h)
=

g

X

g

h

. (12)

These assumptions imply that the MPOs can be deformed
freely through a symmetric MERA network. We remark that
representative MPOs satisfying the zipper condition have
been given for all anomalous discrete symmetries in (1 + 1)D
[26]. Additionally, we have suppressed possible orientation
dependencies of the MPOs, although this effect is accounted
for in our results. For a full treatment of the intricacies that
arise due to orientation dependence, see Ref. [26]. We note
that similar reasoning applies to MPOs not satisfying these
simplifying assumptions.

A. Symmetry twist and topological correction to conformal spin

For a model described by symmetric Hamiltonian H , a
symmetry twist can be created by acting with an element of
the group on a half-infinite chain. Hamiltonian terms far away
from the end of the twist are left invariant, and the only remnant
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is a single twisted Hamiltonian term crossing the end. This is
captured by the MERA in Fig. 2 with uniform tensors.

The twisted Hamiltonian term can be used to close a chain
into a ring of length L. In the case of a trivial (identity) twist
this yields periodic boundary conditions. For a nontrivial group
element this corresponds to a flux insertion through the ring,
as there is now a nontrivial monodromy around the ring given
by the group element.

The introduction of an MPO twist by group element g leads
to a twisted translation operator

τg = · · · · · ·
g , (13)

which translates the system by one site without moving the
end of the twist (previously noted in Refs. [77] and [78]). We
will see that this leads to corrections to the conformal spin.

The untwisted translation operator for periodic boundary
conditions satisfies τL

1 = 1, which implies that local fields have
integer conformal spin [79]. The twisted translation operator
satisfies τL

g = Tg , where

Tg = g
· · · · · · (14)

is the Dehn twist operator. For a faithful on-site representation
of g, the order of Tg is simply the order of g, denoted ng . Hence
the conformal spins of g-twisted fields may have a topological
correction leading them to take values [79] in 1

ng
Z.

We now consider anomalous representations and show that
the order of Tg is 2ng in some cases, reflecting a further
correction due to the anomaly. We observe this additional
correction in our numerical example, as shown in Table I.

First we define

M
(g)
h = h

X(h, g)

X(g, h)†
, (15)

which corresponds to the action of h on the g twisted MERA
shown in Fig. 2. It was shown in Ref. [26] that

TgM
(g)
h = φ(g,h,g)M (g)

gh , (16)

where φ is the 3-cocycle of the MPO representation. Applying
the Dehn twist ng times results in a phase

T
ng

g M
(g)
1 =

ng−1∏
i=1

φ(g,gi,g)M (g)
1 , (17)

where again ng denotes the order of g, since g generates a
subgroup Zng

� G and

φg(i,j,k) := φ(gi,gj ,gk) (18)

defines a 3-cocycle of Zng
. Denote the relevant cohomology

class by [φg] ∈ H3(Zng
,U(1)) ∼= Zng

. For simplicity, assume
it has been brought into the normal form [80]

φg(i,j,k) = ω[φg ]i(j+k−j⊕k)/ng , (19)

where ω is a primitive nth
g root of unity and ⊕ denotes addition

modulo ng . Hence

ng−1∏
i=1

φ(g,gi,g) = ω[φg ] (20)

and

T
ng

g = ω[φg ]1. (21)

Consequently, an anomaly [φ] for g-twisted fields may induce
a further topological correction to their conformal spins.
In particular, the correction to the conformal spins takes
values in

1

ng

Zng
+ [φg]

n2
g

. (22)

To make this argument we fixed a particular representative of
φ; however, the topological correction to conformal spin is a
gauge-invariant quantity and should not depend on this choice.
For the case of G = Z3

2, we observe this anomalous correction
in our numerical example, where we see quarter- and three-
quarter-integer conformal spins (displayed in Table I).

B. Projective representations and topological sectors

We proceed to construct topological sectors that have a
definite topological correction to the conformal spin. These
topological sectors are an extension of the usual symmetry
sectors used to block diagonalize a Hamiltonian.

Topological sectors are labeled by a conjugacy class C ⊂ G,
indicating twist symmetry twist, and a (projective) irreducible
representation (irrep) χ

μ
g of the centralizer of a representative

element g ∈ C. The topological sectors are mathematically
described by Dφ(G), the quantum double of the symmetry
group G twisted by the 3-cocycle anomaly φ. This category
determines all topological properties of the sectors.

Since the MPO symmetry commutes with the MERA
tensors, one can simultaneously diagonalize the twisted scaling
superoperator Sg(·) and the action of the symmetry. The
vector space spanned by g-twisted scaling fields [see Eq. (11)]
transforms under a projective representation V

(g)
h of the

centralizer Zg . This projective representation has 2-cocycle
φ(g) defined by

φ(g)(h,k) = φ(g,h,k)φ(h,k,g)

φ(h,g,k)
, (23)

which is the slant product of φ. The action is explicitly given
by [26]

V
(g)
h =

h
X(h, h−1gh)

X(g, h)†

, (24)

where h−1gh = g for h ∈ Zg .
The g-twisted scaling superoperator commutes with the

projective representation

Sg

(
V

(g)
h (·)) = V

(g)
h (Sg(·)), (25)

and hence can be block diagonalized into projective irreps.
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Topological sectors that contribute a definite correction to
the conformal spin can be constructed following the approach
of Ref. [55]. The first step is to form projectors Pg,μ onto the
projective irreps of Zg . For a twist g and projective irrep μ

with 2-cocycle φ(g),

Pg,μ := dμ

|Zg|
∑
h∈Zg

χ̄μ
g (h)V (g)

h , (26)

where dμ is its dimension, χ
μ
g its character, and ·̄ denotes

complex conjugation.
The full scaling superoperator, taking into account all

sectors, is given by

SG(·) :=
⊕

g

Sg(·). (27)

This commutes with the full |G|2-dimensional algebra spanned
by V

(g)
h (note V

(k)
l V

(g)
h = 0 unless k = h−1gh). This is a C∗

algebra [55] and can be diagonalized into blocks. The simple
central idempotents that project onto each irreducible block
are given by

PCg,μ :=
∑
k∈Cg

Pk,μ, (28)

where Cg is the conjugacy class of g in G. These projectors
block diagonalize SG(·) into irreducible topological sectors.
For the numerical example in Appendix A, all conformal data
is decomposed into these sectors.

The topological sectors thus constructed have definite
topological spin [55] (correction to conformal spin), which we
observe in our example in Table I. Additionally, these sectors
obey a set of fusion rules and support a notion of braiding
monodromy and exchange statistics. The full set of topological
data can be extracted from the idempotents constructed in
Eq. (28) via the procedure outlined in Ref. [55].

In the MERA, with an MPO symmetry, the operator
product expansion (OPE) [64,65] for scaling fields a and
b in topological sectors labeled (C0,μ0) and (C1,μ1) can be
computed using [63,76]

a × b =
∑

g∈C0
h∈C1

a
bX(g, h)†

=
∑

c

Cc
abc, (29)

where the sum is over scaling fields c. Equation (29) is a
tensor network realization of a pair of pants topology, with
a and b at the feet and c at the waist. The fusion rules
imply topological restrictions on the OPE of scaling fields,
generalizing symmetry constraints on the local fields. In
particular, Cc

ab = 0 unless the sector labeling c appears in the
fusion product

(C0,μ0) × (C1,μ1) =
∑

(C2,μ2)

N
(C2,μ2)
(C0,μ0)(C1,μ1)(C2,μ2). (30)

We observe the constraints directly in the numerical MERA in
Table II.

Technically the symmetry twists and their fusion structure
are described by the unitary fusion category (UFC) Vecφ

G

while the topological sectors are given by its Drinfeld center
Z(Vecφ

G) — equivalently the twisted quantum double Dφ(G)
— which is a modular tensor category (MTC) [81–86].
The mathematical structure of this MTC determines all
topological properties of the fields in each sector, including the
topological correction to their conformal spin (equivalently the
exchange statistics), topological restriction on the OPE, and
monodromies (braiding) [87–91].

Interestingly, the fusion rules for the topological sectors can
be non-Abelian, even when the symmetry group is Abelian.
This requires a nontrivial anomaly φ. This occurs in our
numerical example as discussed in Sec. V and Table II.

IV. A CLASS OF MPO SYMMETRIC MERA

To enforce a constraint on a MERA state requires an
identification of the remaining variational parameters in such
a way that it is possible to optimize over them. In this section
we describe an approach that relies on a property of the
MPO symmetry: the existence of a local unitary capable of
disentangling a contiguous region of each MPO into an inner
part that forms a local representation of the symmetry and
is decoupled from the original MPO on the outer section.
Given such a local representation, conventional techniques
can be used to ensure the MERA is symmetric. We construct
a large class of MPOs with this property and find the resulting
constraints on the form of symmetric MERA tensors.

A. Disentangling an MPO

For scale-invariant MERA, where the MPO symmetry is
required to be identical at all layers, the goal is to identify
a family of MERA circuits which locally coarse grains each
MPO to itself. If the MPOs form an on-site symmetry, standard
techniques of representation theory allow this to be achieved.
For MPOs with bond dimension greater than 1 it is unclear how
to apply these techniques. Our approach involves disentangling
a local piece out of each MPO. We can then use representation
theory to coarse grain this piece, allowing us to identify the
desired family of MERA circuits.

This approach may seem counterintuitive, since no local
constant depth circuit is capable of disentangling an MPO
representation with a nontrivial third cohomology label into
an on-site representation. This does not rule out the possibility
of disentangling a contiguous region without decoupling the
tensors in its complement. More precisely, there may exist
constants b,k ∈ Z+ such that for all n ∈ kZ+ (where k

accounts for possible blocking of sites) and MPOs of arbitrary
length N , sufficiently larger than n, there exists some unitary
Dn+2b acting on n + 2b sites (where b is a buffer depending
on the correlation length of the MPO) such that

D†
n+2b

Dn+2b

=
ug

, (31)

for a local representation u(n)
g acting on n sites.
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This leads to a special form for a MERA tensor that coarse
grains i sites into j sites, given by

D†
i

Dj

. (32)

In this form the MPO symmetry condition in Eq. (9) becomes

u(i−2b)
g

=
u(j−2b)

g
, (33)

which can be handled using standard techniques from repre-
sentation theory.

B. A class of anomalous Z3
N MPO symmetries

We now define a class of anomalous symmetries for the
groups Z3

N . These symmetries exemplify the role played
by an anomalous symmetry, both at the boundary of a
two-dimensional SPT phase and as a duality of distinct one-
dimensional SPT phases [92–95]. They occur as the boundary
symmetry actions of Z3

N SPTs labeled by a “type-III” anomaly
in two spatial dimensions [80]. In addition, they can be seen to
act transitively on the set of one-dimensional SPT phases with
Z2

N symmetry. This particular example is an instance of a more
general relation between a two-dimensional G × H2(G,U(1))
SPT and the set of dualities of one-dimensional G SPTs.
Further details about the specifics of the Z3

N models, including
a fixed-point bulk model, bulk-to-boundary mapping, and
boundary Hamiltonian, as well as the more general case, are
contained in Appendix D.

We consider a spin chain with a pair of N -dimensional spins
at each site. For this discussion, we label the first spin in red
and the second in blue. Let ω = exp(2iπ/N ) and define the
generalized Pauli operators via ZX = ωXZ. Below we work
in the basis where Z is the diagonal clock matrix and X is
the shift matrix. We define the generalized controlled X and
Z operators as

(34)

(35)

respectively.
Using the notation (α1,α2,α3) for an element of Z3

N , the
group action is defined by the generators

(1,0,0) →
⊗

j

Xj (36a)

(0,1,0) →
⊗

j

X̃j (36b)

(0,0,1) → C, (36c)

where C is defined by the (periodic) circuit

C =

site

. (37)

The symmetry operators can be realized using a transla-
tionally invariant MPO with on-site tensor defined by

(α1, α2, α3)

i j

i + α1 j + α2

=
N−1∑

k=0

ωjα3(k−i) |i〉〈k| , (38)

with all other elements being zero. The reduction tensor
(defined in Appendix B) associated to these MPOs is given
by

(39)

From this, one can verify that this MPO representation has
cocycle φ(α,β,γ ) = ωα1β2γ3 which is a representative of the
root type-III anomaly [80].

C. Symmetric MERA tensors

The disentangling circuit, as defined in Eq. (31), for this
representation is given by

D2K =
K−1∏
j=1

CX1,2j+1CX2K,2j , (40)

and the residual local symmetry is given by

u
(2K−2)
(α1,α2,α3) =

⎛
⎝

K−1∏
j=1

CZ2j,2j+1

K−1∏
j=2

CZ
†
2j−1,2j

⎞
⎠

α3

. (41)

For further details see Appendix C. This leads to the ansatz for
MERA tensors

= , (42)

which allows the symmetry to be enforced by a local condition
on each tensor.

The symmetry can then be enforced by ensuring the residual
tensors obey the local conditions

= , (43)

which can be achieved using standard techniques of repre-
sentation theory. We remark that the on-site Z2

N symmetry is
automatically enforced, without any further constraints.

Since the action can be applied locally, this ansatz class can
also be used to investigate how the group acts on numerically
optimized states which have not been constrained to be
invariant. This allows investigation of theories which are dual
under anomalous group actions.

The constraint in Eq. (42) was used in an exact renor-
malization scheme introduced in Ref. [96] for the case of
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a Z2 × Z2 symmetry [97]. The form of the information
transmitted to the next scale of renormalization is extremely
restricted in this case. By considering more spins per site
we find a less restrictive ansatz, described in Appendix C,
capable of attaining accurate results as demonstrated in Sec. V.
The scheme described in Ref. [96] does not see similar
improvement at larger blocking on a model which is unitarily
equivalent to the one considered here [97]. After blocking at
least two spins per site, our ansatz cannot be captured by the
approach of Ref. [96].

Analogous circuits exist for all MERA such that the
number of ingoing/outgoing N -dimensional indices is even.
This leads to a family of symmetric MERA with increasing
bond dimension and a larger number of variational parameters.
Equation (42) can also be generalized to other MERA schemes,
such as the ternary MERA as discussed in Appendix C.

V. EXAMPLE: A Z3
2 SYMMETRIC MODEL

In this section we focus on the N = 2 case of the ansatz
described in the previous section. We consider a particular
Hamiltonian which transforms under the type-III anomalous
Z3

2 group action. This Hamiltonian has three critical lines, one
is symmetric and the other two are dual under the group action.
We numerically optimize over the ansatz class presented in the
previous section along these three lines. We present resulting
conformal data for the local fields along each line and for
two nontrivial topological sectors along the symmetric line.
Furthermore, we numerically implement the duality on the
remaining pair of lines. Finally, we demonstrate that the
symmetric line is a gapless phase protected by the anomalous
symmetry and translation.

For a MERA with bond dimension 8 corresponding to three
qubits per site, the ansatz for the tensors is

= , (44)

with symmetry constraint

= . (45)

This tensor contains all degrees of freedom which are not
fixed by the symmetry and so can be optimized over.

A. Family of Hamiltonians

The Hamiltonian we study is

H = − a
∑

(Xj + X̃j ) − b
∑

(ZjZj+1 + Z̃j Z̃j+1)

− c
∑

(ZjX̃jZj+1 + Z̃jXj+1Z̃j+1), (46)

for positive values of (a,b,c). Here Xj (Zj ) and X̃j (Z̃j ) are
the qubit Pauli operators action on the first and second qubit

a = 3 b = 3

c = 3

a = 0b = 0

c = 0

Para SB

SPT

ISING

MPO KT

FIG. 3. Phase diagram of the abc model where
a + b + c = 3. SB = Symmetry breaking, ferromagnetic
phase. SPT =Z2 × Z2 symmetry-protected topological phase.
Para = Paramagnetic/disordered phase. RG fixed points are indicated
in red, and the dashed blue lines indicate the unitary mappings
between the phases. ISING = Ising duality map, KT = (Generalized)
Kennedy-Tasaki transformation [98,99], MPO = action of (1,1,1)
defined in Eq. (36).

on-site j . This model, which we refer to as the abc model,
has a rich phase diagram as depicted in Fig. 3, possessing
fully symmetric disordered and SPT phases, in addition to a
fully symmetry breaking phase. For all values of (a,b,c), this
Hamiltonian has an on-site Z2 × Z2 symmetry corresponding
to Eqs. (36a) and (36b), while the anomalous action exchanges
the terms with strength a and c, and so is only a symmetry when
a = c. The SPT phase is protected by the on-site symmetry.

We note that unitarily equivalent models have previously
been studied [100–105]. The critical lines in this model can all
be exchanged by (nonlocal) unitary transformations, so all are
known to be described by a conformal field theory (CFT) with
central charge 1. Additionally, the ground-state energy along
each of these lines is known [103–105].

In Fig. 4 we study the model with a = c (referred to as the b

line) using a MERA with full anomalous symmetry enforced.
For convenience, we allow a single transitional layer followed
by a scale-invariant portion. This leaves a pair of tensors which
completely specify the state. After optimizing these residual
degrees of freedom (2 × 16 376 real parameters) within this
symmetric manifold, we obtain a good approximation to the
ground state for all values of b, as evidenced by the ground-
state energy in Fig. 4(a) [relative error O(10−4)]. When the
symmetry operator is applied to the state, we see that the state
is unchanged (a property which was explicitly enforced). The
central charge remains within 4.2% of the analytic value for
all values of b, comparable to that found in Ref. [105].

B. Scaling dimensions and topological sectors

From our optimized MERA tensors, we have obtained the
scaling dimensions of the associated CFT in each symmetry
sector using Eq. (10). The data is shown in Fig. 4(b). As
expected, the scaling dimensions vary continuously with the
parameter b.

The local fields are those of the compactified boson CFT at
a radius

R2 = π

2 cos−1
(

2b
b−3

) . (47)
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FIG. 4. MERA data for the abc model along the b line. This
line is symmetric under the full Z3

2. CFT data, including averaging
process, is discussed in more detail in Appendix A. (a) The energy
of the optimized MERA state. The state remains a ground state when
the anomalous symmetry operator is applied. (b) Scaling dimensions
of the associated CFT. These vary continuously with the parameter
b. Points are averaged MERA data, while black lines correspond to
Eq. (48a) for integers e and m. Distinct colors/markers indicate under
which irrep the fields transform. (c) Scaling dimensions of nonlocal
operators corresponding to applying an anomalous symmetry [for
group element (1,1,1) defined in Eq. (36)] twist to half of the chain.
Points are averaged MERA data, while black lines correspond to
Eq. (48a) for e,m ∈ Z + 1/2. Distinct colors/markers indicate under
which projective irrep the fields transform.

The fields can be labeled by a pair of integers and have scaling
dimension � and conformal spin s given by [64,65]

�e,m = e2

R2
+ m2R2

4
, (48a)

se,m = em,

e,m ∈ Z. (48b)

Finally, we investigate the effect of (1,1,1) symmetry
twist in Fig. 4(c). By applying the symmetry to half of the
infinite chain we create the twist, and a set of nonlocal (with
respect to the original theory) twisted fields can be obtained
[76]. These operators correspond to eigenoperators of the
“symmetry-twisted” scaling superoperator [Eq. (11)]. Since
the symmetry acts projectively on the twisted fields, they can
be decomposed into projective irreps corresponding to definite
topological sectors. We can then diagonalize Sg(·) within each
sector, allowing us to label the twisted fields by the projective
irrep under which they transform.

Again, we can compare the numerically calculated twisted
scaling dimensions to the analytic results to identify conformal
spins of the twisted fields. As displayed in Table I, within
each topological sector, all conformal spins receive the same
correction.

From the MERA data, we can identify the fields with a
(1,1,1) twist as carrying scaling dimension and conformal spin
given by Eqs. (48a) and (48b), respectively, but with e,m ∈
Z + 1

2 , leading to quarter- and three-quarter-integer spins in
this sector.

To examine the effect of the anomalous symmetry on the
OPE, we computed fusion rules for the topological sectors
using Eq. (29) for a symmetric MERA tensor. Despite the fact
that the symmetry group is Abelian, we observe non-Abelian
fusion for all sectors with nontrivial twist. For example, fusion
of sectors with twist (1,1,1) results in only half of the trivial
twist sectors. The full set of fusion rules is given in Table II
(Appendix A).

In this example, the modular tensor category describing the
topological sectors is Dφ(Z3

2). This category is known to be
equivalent to D(D4), where D4 is the symmetry group of a
square. The fusion table obtained from MERA matches that of
Dφ(Z3

2) ∼= D(D4) [80,106–109].
The data for all topological sectors is displayed in full in

Appendix A.

C. Duality and domain walls

We have also studied the a and c lines which are not
symmetric under the anomalous Z2 but are exchanged by its
action. We optimize over tensors of the form Eq. (44) but do
not enforce the symmetry constraint on the residual degrees
of freedom.

The ground-state energy obtained after optimization along
the b = c line is shown in Fig. 5(a). If the symmetry MPO
corresponding to group element (1,1,1) is applied to the
optimized state [via local application of Eq. (45)], the result is
an excited state. If the energy of this state is measured using
the Hamiltonian with parameters a and c switched, we see that
it is a ground state. This confirms that the state is transforming
as expected under the anomalous action, that is, the MPO is
acting as a duality transformation of the a and c critical lines.

We also show the scaling dimensions of the CFTs corre-
sponding to the two dual lines [Fig. 5(b)]. We observe that the
local field content is identical, indicating that the same CFT
describes these two lines. This CFT is distinct (in its local
content) from that describing the b line, although it still has
central charge 1.
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FIG. 5. MERA data for the abc model along the a and c lines.
These are exchanged by the symmetry action. (a) Ground-state energy
of the optimized MERA. By applying the symmetry operator to a state
optimized for the Hamiltonian with (a,b,b), we obtain a state which
is the ground state of the Hamiltonian with parameters (b,b,a). This
demonstrates that the states are transforming properly. (b) The local
fields in the CFTs describing these two lines as identical but distinct
from those on the b line.

D. An anomaly-protected gapless phase

In Ref. [23] it was shown that a phase with anomalous
MPO symmetry can either be gapped and spontaneous break
the symmetry or be gapless. Furthermore, it is known from
Refs. [18–20,110,111] that a topological symmetry, together
with translation, can protect a gapless phase. An anomalous
MPO symmetry is in fact an example of a topological
symmetry. Hence one may suspect that there exist gapless
phases protected by such a symmetry.

Here we demonstrate that under an anomalous Z3
2 symme-

try, along with translations, the gaplessness of the Hamiltonian
along the b line is protected. That is, there are no translation
invariant terms which are both symmetric under the full
anomalous symmetry and are relevant in the renormalization
group sense, and would therefore gap the Hamiltonian.

Since the effect of translations cannot be tested in the
MERA framework, we performed a finite-size scaling analysis
[79] to test this. Using the ALPS MPS library [112,113], the
lowest 40 eigenstates of the Hamiltonian [Eq. (46)] along
the b line were obtained. Bond dimensions were capped at
100 and lengths of between 6 and 55 sites (12–110 qubits)
were considered. Scaling dimensions are obtained by first
normalizing the Hamiltonian such that the ground state has
energy 0 and the first excited state has energy corresponding
to the smallest nonzero scaling dimension of the CFT [114].
The energy levels are then fitted as a function of 1/N and
extrapolated to N = ∞. This is shown in Fig. 6(a) for b = 0.6.
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Symmetric states
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Thermodynamic
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b
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D

Symmetric states

CFT

(b)

FIG. 6. Finite-size scaling data for the fully symmetric sector
of the model. (a) After rescaling the spectrum so that the lowest
excitation is consistent with the lowest nontrivial primary of the
CFT, the fully symmetric states can be extracted. Fitting the data and
extrapolating to the thermodynamic limit gives the scaling dimension.
(b) For almost the whole b line, we observe that there are no fully
symmetric states with scaling dimension less than 2 (RG relevant).
This implies that no local, symmetric, translationally invariant terms
can be added to the Hamiltonian to gap it out; thus the gapless phase
is protected.

The Hamiltonian and symmetry operators were then
simultaneously diagonalized within this subspace. In the fully
symmetric sector (all symmetries acting as +1), the translation
operator was diagonalized, allowing the momentum to be
extracted.

Under the combined action of the anomalous symmetry
group and translations by a single spin, there are no fully
symmetric states with scaling dimension less than 2 [Fig. 6(b)].
This implies there are no local symmetric terms which can gap
the Hamiltonian, and thus the gapless phase is protected. We
remark that under the operator which translates by a full site;
an RG-relevant, fully symmetric state with momentum zero
does exist and therefore the Hamiltonian can be gapped by a
staggered term. A similar effect was observed in Ref. [18].

VI. CONCLUSIONS

We have studied anomalous MPO symmetries in the frame-
work of MERA. Following Ref. [28], the third cohomology
class of an MPO representation of a finite group was identified
with an ’t Hooft anomaly.

The properties of a fully MPO symmetric MERA were
derived, including anomalous symmetry twists and the projec-
tive representations they carry. These were used to construct
all topological sectors. This construction allows the complete
set of topological data to be extracted, including a definite
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FIG. 7. MERA scaling dimensions for the trivial twist of the abc model along the b line. This line is symmetric under the anomalous action
of Z3

2. Figure titles label: (twist label; irreducible representation label). Gray points are the raw data extracted from the MERA. Red points
correspond to averaged data as discussed in Appendix A. Black lines correspond to local fields of the compactified free boson CFT.

topological correction to the conformal spins of the fields in
each sector and topological restrictions on the OPE.

A local condition to enforce the symmetry in the MERA
was formulated, which allows for optimization of states
with an anomalous symmetry. This ansatz works by locally
disentangling the symmetry action, decoupling degrees of
freedom on which the action can be expressed locally.

By way of an example, MERA states were optimized
for a Hamiltonian with an anomalous Z3

2 symmetry. We
have obtained accurate energy and conformal data for states
optimized over our ansatz class and demonstrated that the
states transform as expected. All topological sectors were
constructed and the resultant topological data was extracted.
The conformal data was computed within each topological
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sector, and the projective action of the symmetry on the scaling
fields was found. Furthermore, a correction to the conformal
spin was identified and shown to match the topological
spin.

We applied the ansatz to study a duality of two critical
lines. By extracting conformal data from optimized MERA
the local content of the dual CFTs was shown to match. It
was demonstrated that the action of the MPO-mapped MERA
ground states optimized for Hamiltonians along one line to
ground states of the dual Hamiltonians. This required the
ability to apply the MPO in a local fashion, which our ansatz
permits.

We performed a finite-size scaling analysis of the anoma-
lous Z3

2 symmetric line for large system sizes. It was
numerically demonstrated that the anomalous MPO symmetry,
together with translation, protects a gapless phase.

There are several extensions of this work which suggest
themselves. Our restricted MERA ansatz was only constructed
for a particular class of anomalous group actions. It would be
interesting to extend this to other MPOs, such as non-Abelian
group representations with different cocycle anomalies, the
Ising duality map, or the translation operator.

The most general extension conceivable is to a set of MPOs
described by a unitary fusion category [55,115,116]. While
the construction of topological sectors is known in this general
case [55,83,84,115–119], an ansatz which allows the symme-
try to be enforced locally in the MERA remains to be found.

It would be interesting to determine which of these general
symmetries protects a gapless phase such as the one observed
in this work and those in Refs. [18–20,110,111].

One could adapt these results to the recent tensor network
renormalization (TNR) [120–123] scheme, constraining the
RG flow to remain MPO symmetric. We remark that the
Ising duality has previously been studied both numerically,

using TNR but without manifestly enforcing the symmetry, in
Ref. [77] and theoretically in Ref. [78].

It would also be interesting to consider the influence of
an MPO symmetry on the entanglement entropy. We remark
that by considering MPO symmetries of topologically ordered
tensor network states in (2 + 1)D one recovers the topological
entanglement entropy [54,55,124–126].

A particularly interesting future direction is to generalize
our MPO symmetric MERA ansatz to a (2 + 1)D MERA
describing a topologically ordered state that is symmetric
under an anomalous PEPO symmetry.1
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APPENDIX A: CONFORMAL DATA IN ALL TOPOLOGICAL SECTORS

In this Appendix, we present the full set of scaling dimensions extracted from the bond dimension 8 MERA with full anomalous
symmetry enforced. The data is shown in Fig. 7 for the trivial twist, and Figs. 8 and 9 for the nontrivial twists. Each subplot in
these figures corresponds to a distinct topological sector.

When examining the gray points, one notices a broken degeneracy. This was previously noted in Ref. [105]. We conjecture that
this occurs via coupling of states which, in the field theoretic limit, would be forbidden from coupling due to the full conformal
symmetry. As such, we conjecture that the scaling dimensions corresponding to degenerate fields obtained from the MERA
experience a splitting �MERA = �CFT ± ε, where the size of the splitting ε decreases with increased bond dimension as the full
conformal symmetry is effectively recovered.

To combat this splitting, we average the MERA scaling dimensions in an attempt to recover the CFT values. When choosing
which lines should be averaged together, we have taken all lines of similar gradient and position on the plot. The result of this
procedure is indicated in red and closely matches the CFT values. The scaling dimensions and conformal spins in each topological
sector are given in Table I. Table II shows the fusion rules for the sectors, computed using the symmetric MERA.

The irreps are given explicitly in Eqs. (A1). Those below the line are nontrivial projective representations:

χ1
±(100) = +1 χ1

±(010) = +1 χ1
±(001) = ±1 (A1a)

χ2
±(100) = −1 χ2

±(010) = +1 χ2
±(001) = ±1 (A1b)

χ3
±(100) = +1 χ3

±(010) = −1 χ3
±(001) = ±1 (A1c)

χ4
±(100) = −1 χ4

±(010) = −1 χ4
±(001) = ±1 (A1d)

α1
±(100) = ±1 α1

±(010) = X α1
±(001) = Z (A1e)

α2
±(100) = Z α2

±(010) = ±1 α2
±(001) = X (A1f)
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TABLE I. Primary fields in each topological sector labeled by a twist (an element of G = Z3
2) and an irreducible (projective) representation.

These sectors are the simple objects of Dφ(Z3
2) ∼= D(D4). Note that the choices of e and m allowed for each representation under the trivial

twist corresponds to (−1)e = χ (001) and (−1)m = χ (110), where χ is the representation being considered. Projective representations in each
topological sector are indicated in Eq. (A1), reproduced from Ref. [80]. The fusion table, computed using the symmetric MERA, for these
sectors is explicitly presented in Table II. All sectors with a nontrivial twist have quantum dimension 2, and so are non-Abelian.

Topological sector
Topological spin Scaling dimension Conformal spin Parameters

Twist Proj. Irrep.

(000)

χ1
+ 0 e2

R2 + m2R2

4
em e, m ∈ 2Z

χ4
+ 0 { e2

R2 + m2R2

4
, 1} em e, m ∈ 2Z, em �= 0

χ2
+ 0

e2

R2 + m2R2

4
em

e ∈ 2Z, m ∈ 2Z + 1

χ3
+ 0 e ∈ 2Z, m ∈ 2Z + 1

χ1
− 0 e ∈ 2Z + 1, m ∈ 2Z

χ2
− 0 e ∈ 2Z + 1, m ∈ 2Z + 1

χ3
− 0 e ∈ 2Z + 1, m ∈ 2Z + 1

χ4
− 0 e ∈ 2Z + 1, m ∈ 2Z

(100)
α1

+ 0
h + h̄ h − h̄ h, h̄ ∈ { 1

16 , 9
16}

h − h̄ ∈ Z

α1
−

1
2

h − h̄ ∈ Z + 1
2

(010)
α2

+ 0
h + h̄ h − h̄ h, h̄ ∈ { 1

16 , 9
16}

h − h̄ ∈ Z

α2
−

1
2

h − h̄ ∈ Z + 1
2

(110)
β3

+ 0
e2

R2 + m2R2

4
em e ∈ Z + 1

2 , m ∈ Z
em ∈ Z

β3
−

1
2

em ∈ Z + 1
2

(001)
α3

+ 0
e2

R2 + m2R2

4
em e ∈ Z, m ∈ Z + 1

2

em ∈ Z

α3
−

1
2

em ∈ Z + 1
2

(101)
β2

+ 0
h + h̄ h − h̄ h, h̄ ∈ { 1

16
, 9

16
} h − h̄ ∈ Z

β2
−

1
2

h − h̄ ∈ Z + 1
2

(011)
β1

+ 0
h + h̄ h − h̄ h, h̄ ∈ { 1

16
, 9

16
} h − h̄ ∈ Z

β1
−

1
2

h − h̄ ∈ Z + 1
2

(111)
γ+

3
4 e2

R2 + m2R2

4
em e, m ∈ Z + 1

2

em ∈ Z + 3
4

γ− 1
4

em ∈ Z + 1
4

α3
±(100) = X α3

±(010) = Z α3
±(001) = ±1 (A1g)

β1
±(100) = Z β1

±(010) = X β1
±(001) = ±X (A1h)

β2
±(100) = ±X β2

±(010) = Z β2
±(001) = X (A1i)

β3
±(100) = X β3

±(010) = ±X β3
±(001) = Z (A1j)

γ±(100) = ±X γ±(010) = ±Y γ±(001) = ±Z. (A1k)

APPENDIX B: MPO GROUP REPRESENTATIONS
AND THIRD COHOMOLOGY

In this Appendix we recount the definition of the third cohomology class of an injective MPO representation of a finite group
G, as first introduced in Ref. [23]. MPO representations appear in the study of (2 + 1)D SPT tensor network states, and it was
shown in Ref. [26] that they are always injective. The presence of such an MPO symmetry has an important physical consequence:
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FIG. 8. Scaling dimensions for topological sectors with twists of the form (x,y,0). Figure titles label: (twist label; irreducible projective
representation label). Gray points are the raw data extracted from the MERA. Red points correspond to averaged data as discussed in Appendix A.
Black lines correspond to equations in Table I.

all short-range entangled states must break the symmetry, either explicitly or spontaneously. For details about group cohomology
theory in the context of SPT order we refer the reader to Ref. [12].

In an MPO representation of G, multiplying a pair of MPOs labeled by the group elements g0 and g1 is equal to the
MPO labeled by g0g1 for every length. For injective MPOs there exists a gauge transformation on the virtual indices that
brings both representations into the same canonical form [42,44,47]. This implies that there exists an operator (the reduction
tensor) X(g0,g1) : (Cχ )⊗2 → Cχ such that

g1

g0

X(g0, g1)X†(g0, g1)
= g0g1 , (B1)

where X(g0,g1) is only defined up to multiplication by a complex phase β(g0,g1).
If we now multiply three MPOs labeled by g0, g1, and g2 there are two ways to reduce the multiplied MPOs to the MPO

labeled by g0g1g2. When only acting on the right virtual indices these two reductions are equivalent up to a complex phase

g0

g1

g2 X(g1, g2)

X(g0, g1g2)
= φ(g0, g1, g2)

g2

g1

g0 X(g0, g1)

X(g0g1, g2)

. (B2)
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FIG. 9. Scaling dimensions for topological sectors with twists of the form (x,y,1). Figure titles label: (twist label; irreducible projective
representation label). Gray points are the raw data extracted from the MERA. Red points correspond to averaged data as discussed in Appendix A.
Black lines correspond to equations in Table I.
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When multiplying four MPOs, one observes that φ has to obey certain consistency conditions. By performing a series of
moves (changing order of reduction), one can achieve the same reduction

g3

g2

g1

g0

= φ(g1, g2, g3)

g3

g2

g1

g0

= φ(g1, g2, g3)φ(g0, g1g2, g3)

g3

g2

g1

g0

= φ(g1, g2, g3)φ(g0, g1g2, g3)φ(g0, g1, g2)

g3

g2

g1

g0

=
φ(g1, g2, g3)φ(g0, g1g2, g3)φ(g0, g1, g2)

φ(g0g1, g2, g3)

g3

g2

g1

g0

=
φ(g1, g2, g3)φ(g0, g1g2, g3)φ(g0, g1, g2)

φ(g0g1, g2, g3)φ(g0, g1, g2g3)

g3

g2

g1

g0

,

(B3)

implying that

φ(g0,g1,g2)φ(g0,g1g2,g3)φ(g1,g2,g3)

φ(g0g1,g2,g3)φ(g0,g1,g2g3)
= 1. (B4)

This condition is known as the 3-cocycle condition and identifies φ as a 3-cocycle. As mentioned above, X(g0,g1) is only defined
up to a complex phase β(g0,g1). This freedom can change the φ, giving the equivalence relation

φ′(g0,g1,g2) = φ(g0,g1,g2)
β(g1,g2)β(g0,g1g2)

β(g0,g1)β(g0g1,g2)
, (B5)

so φ is only defined up to a 3-coboundary. For this reason the single-block MPO group representation is endowed with the label
[φ] from the third cohomology group H3(G,U(1)). One can check that multiplying any larger number of MPOs does not give
additional conditions/equivalences on φ.

One can use a similar argument to demonstrate that no injective MPS can possess an anomalous symmetry. Assuming an
injective MPS with tensor A is symmetric under an MPO symmetry for all lengths, similar reasoning that lead to Eq. (B1) implies
the existence of another reduction tensor Y (g) satisfying

A

g

Y (g)Y †(g)

= A . (B6)

Similar to Eq. (B2), we find that acting with multiple group elements leads to a complex phase β(g0,g1),

g0

g1

A Y (g1)

Y (g0)
= β(g0, g1)

A

g1

g0 X(g0, g1)

Y (g0g1)

. (B7)
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We now consider the application of three group elements

A

g2

g1

g0

= β(g1, g2)

A

g2

g1

g0

= β(g1, g2)β(g0, g1g2)

A

g2

g1

g0

= β(g1, g2)β(g0, g1g2)φ(g0, g1, g2)

A

g2

g1

g0

=
β(g1, g2)β(g0, g1g2)φ(g0, g1, g2)

β(g0g1, g2)

A

g2

g1

g0

=
β(g1, g2)β(g0, g1g2)φ(g0, g1, g2)

β(g0g1, g2)β(g0, g1)

A

g2

g1

g0

,

(B8)

which leads to a consistency equation

φ(g0,g1,g2) = β(g0g1,g2)β(g0,g1)

β(g1,g2)β(g0,g1g2)
, (B9)

implying φ is a coboundary. Therefore φ ≈ 1, is in the trivial cohomology class. Hence no injective MPS can be symmetric under
an anomalous MPO symmetry. This leaves open the possibility of a noninjective MPS, describing a state which spontaneously
breaks the symmetry. Alternatively a symmetric state may be gapless and hence have no MPS description (with a fixed bond
dimension).

APPENDIX C: ANSATZ FOR MERA TENSORS
WITH TYPE-III Z3

N SYMMETRY

In this Appendix, we describe an ansatz for the tensors in a MERA with type-III Z3
N symmetry. Let G = Z3

N , with action as
defined in Eq. (36). Let T be an isometric tensor with 2A upper indices and 2B (B � A) lower indices:

T : (CN )⊗2A → (CN )⊗2B, (C1)

T †T = 1⊗2A
N . (C2)

Define the decoupling circuit on 2K indices as

D2K =
K−1∏
j=1

CX1,2j+1CX2K,2j . (C3)

Allowed MERA tensors are those given by

T = D†
2B(1N ⊗ t ⊗ 1N )D2A, (C4)

where

t : (CN )⊗2(A−1) → (CN )⊗2(B−1), (C5)

t†t = 1⊗2(A−1)
N . (C6)
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FIG. 10. The ternary MERA represents a quantum state using two types of tensors; unitary disentanglers (rectangles) and isometric tensors
(triangles).

The X portion of the symmetry is automatically enforced by this circuit. To enforce the CZ part, one must ensure that
⎛
⎝

B−1∏
j=1

CZ
†
2j−1,2j

⎞
⎠

⎛
⎝

B−2∏
j=1

CZ2j,2j+1

⎞
⎠t = t

⎛
⎝

A−1∏
j=1

CZ
†
2j−1,2j

⎞
⎠

⎛
⎝

A−2∏
j=1

CZ2j,2j+1

⎞
⎠. (C7)

1. 4:2 MERA

For clarity, we now include the form of the constraint on the 4:2 MERA (introduced in Fig. 1) with bond dimension N , N2,
and N3:

= , (C8a)

= , (C8b)

= . (C8c)

2. Ternary MERA

For completeness, we show how our ansatz is applied to the ternary MERA shown in Fig. 10. The ternary ansatz is commonly
seen in the literature due to its relatively low optimization cost. A ternary MERA is built from two kinds of tensors, unitary
disentanglers v (rectangles in Fig. 10) and isometric tensors w (triangles in Fig. 10). In the general case, these tensors may all
contain distinct coefficients, although symmetries such as scale invariance can be imposed by, for example, forcing the tensors
on each layer to be identical.

For bond dimensions N2 and N4, the constraint on the tensors is

= , = , (C9a)

= , = , (C9b)

with the obvious generalization to other bond dimensions.
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We remark that although our examples drawn here map χ -dimensional sites to χ -dimensional sites, this can be relaxed. This
allows the effective dimension of the sites to be increased as desired.

APPENDIX D: GENERALIZED ZN CZX MODEL
AND ITS GAPLESS BOUNDARY THEORY

The CZX model was introduced in Ref. [23] as a simple exactly solvable representative of the nontrivial Z2 SPT phase in two
spatial dimensions. In this paper we have considered the larger symmetry group Z3

2 of the model for which it is a representative
of the Z3

2 type-III SPT phase. In this Appendix we describe a simple generalization of the CZX model to a Hamiltonian with
Z3

N symmetry that is a representative of the root type-III Z3
N SPT. We then outline how this fits into the more general setting of

(1 + 1)D G-SPT dualities at the edge of a particular G × H2(G,U(1))-SPT bulk in (2 + 1)D.

1. Definitions

The model is defined on a two-dimensional square lattice with four ZN spins per site. For concreteness we label them
counterclockwise as follows:

4

1 2

3

. (D1)

Before stating the Hamiltonian, ground state, and symmetries of the model we establish some definitions:

P2 =
N−1∑
i=0

|i〉⊗2〈i|⊗2, (D2)

X4 =
N−1∑
i=0

|i + 1〉⊗4〈i|⊗4, (D3)

|GHZ4〉 = 1√
N

N−1∑
i=0

|i〉⊗4, (D4)

u−
X = X1 ⊗ X3, (D5)

u+
X = X2 ⊗ X4, (D6)

uCZ = CZ12CZ
†
23CZ34CZ

†
41, (D7)

where X,CZ are defined in Sec. IV.

2. Hamiltonian and ground state

The Hamiltonian is a sum of local terms acting on each plaquette of a square lattice H = ∑
p hp. The terms are given by

hp = −
N−1∑
i=0

Xi
4 ⊗ P2 ⊗ P2 ⊗ P2 ⊗ P2, (D8)

which act on the lattice as

X4

P2

P2

P2 P2 . (D9)

The ground state is unique for closed boundary conditions and is given by a tensor product of the state |GHZ4〉 on the four spins
around each plaquette:

|�GS〉 =
⊗

p

|GHZ4〉. (D10)
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...
...

...

· · ·· · ·

i − 1 i i + 1

2i − 3 2i − 2 2i − 1 2i 2i + 1 2i + 2 2i + 3

FIG. 11. Identification of the edge degrees of freedom.

Note that this ground state is not a product state with respect to the locality structure we have chosen by our grouping of spins
into sites. (If sites were instead defined to group the spins around each plaquette it would be a product state.)

3. Symmetry

To describe the Z3
N symmetry of the Hamiltonian in Eq. (D8), we first bipartition the lattice into black (b) and white (w) sites,

as indicated in Fig. 11. The generators are then given by

UX =
⊗

b

u−
X

⊗
w

u+
X, (D11)

UX̃ =
⊗

b

u+
X

⊗
w

u−
X, (D12)

UCZ =
⊗

b

u
†
CZ

⊗
w

uCZ. (D13)

One can verify that each of these operators is of order N and that they mutually commute. Furthermore, each local Hamiltonian
term commutes with all symmetries and they leave the ground state invariant. Note the UCZ symmetry is an on-site symmetry
for our definition of site but would not be if sites were instead defined by grouping the spins around each plaquette.

4. Boundary theory

In the presence of an open boundary the bulk Hamiltonian is extensively degenerate as it only projects pairs of spins along
the edge into the support subspace of P2. We identify effective ZN edge spins with the N states in this subspace via the projector∑

i |i〉〈ii|. This identification is indicated by ︸︷︷︸ in Fig. 11. An edge site is formed by a pair of these spins, as shown in
Fig. 11. This identification provides an exact mapping from bulk operators to the boundary. The symmetry acts on the edge as
follows:

UX �→
⊗

j

Xj , (D14)

UX̃ �→
⊗

j

X̃j , (D15)

UCZ C→� =

site

. (D16)

Due to the grouping of edge spins into sites, only the subgroup generated by UX and UX̃ acts on-site.
The bulk-to-boundary mapping can be used to find the edge action of certain operators that leave no residual effect on the

bulk of the ground state. In particular,

(Z1)b2i �→ Zi (D17)

(Z2)w2i−1 �→ Zi (D18)
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(Z1)w2i+1 �→ Z̃i (D19)

(Z2)b2i �→ Z̃i (D20)

(X2)w2i−1(X1)b2i �→ Xi (D21)

(X2)b2i(X1)w2i+1 �→ X̃i, (D22)

where the numbering is indicated in Fig. 11. We find an effective edge Hamiltonian by considering symmetric perturbations in
the bulk with minimal support:

(Z†
1Z3)b2i(Z2Z

†
4)w2i+1 �→ Z

†
i Zi+1 (D23)

(Z1Z
†
3)w2i+1(Z†

2Z4)b2i+2 �→ Z̃iZ̃
†
i+1 (D24)

(X2)w2i−1(X1)b2i + (Z1X2Z
†
3)w2i−1(X1Z

†
2Z4)b2i �→ Xi + Z̃i−1XiZ̃

†
i (D25)

(X2)b2i(X1)w2i+1 + (Z†
1X2Z3)b2i(X1Z2Z

†
4)w2i+1 �→ X̃i + Z

†
i X̃iZi+1. (D26)

The edge Hamiltonian is given by

HEdge = −
∑

i

N−1∑
k=0

ck

N−1∑
j=0

(
Z

†jk

i X̃i
jZi+1

jk + Z̃i−1
jkXi

j Z̃
†
i
jk

) −
∑

i

N−1∑
k=0

bk

(
Z

†
i
kZi+1

k + Z̃i
kZ̃

†
i+1

k
)
, (D27)

where bk = bN−k . The Hamiltonian is fully symmetric under UX and UX̃ , while the parameters transform as follows under C:

ck �→ ck−1, (D28)

bk �→ bk. (D29)

When ck is the only nonzero parameter the Hamiltonian is in the [k] ∈ H2(G,U(1)) SPT phase, while for bk = bN−k the only
nonzero parameters it describes a symmetry-broken phase. Hence the C operator cycles the SPT phases [k] �→ [k + 1] and the
Hamiltonian is fully symmetric when all ck = c0. This may correspond to an SPT critical point or a symmetry breaking point
depending upon the relative strength of the bk parameters.

5. General (1 + 1)D G SPT duality at the edge
of a (2 + 1)D G × H2(G,U(1)) SPT

The above construction for Z3
N is a specific instance of a general connection between duality of (1 + 1)D edge G SPT

phases and a (2 + 1)D bulk G × H2(G,U(1)) SPT phase. This connection may be of independent interest. The action of the bulk
H2(G,U(1)) symmetry can be though of as pumping G SPTs onto the edge.

Similarly to the case above, the Hilbert space of each spin is given byC[G] and four spins are grouped per site of a square lattice.
Rg denotes the right regular representation, and we fix a choice of representative for a set of generators of H2(G,U(1)) ∼= ∏

k ZNk

(their products fix all other representatives):

R⊗4
g P4 :=

∑
g∈G

|hg−1〉⊗4〈h|⊗4 (D30)

Cω12 :=
∑
g0,g1

ω
(
g0g

−1
1 ,g1

)|g0,g1〉〈g0,g1| (D31)

uω := Cω12Cω23Cω34Cω41 (D32)

for [ω] ∈ H2(G,U(1)).
The local Hamiltonian terms are given by

hp = −
∑
g∈G

R⊗4
g P4 ⊗ P2 ⊗ P2 ⊗ P2 ⊗ P2 (D33)

acting on the square lattice similarly to the term in Eq. (D9). The ground state is again given by

|�GS〉 =
⊗

p

|GHZ4〉. (D34)
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The global on-site symmetry is generated by

Ug =
⊗

R⊗4
g , (D35)

Uω =
⊗

b

u†
ω

⊗
w

uω, (D36)

which can be seen to mutually commute and also commute with hp. These symmetries also leave the ground state invariant.
As above, the effective edge spins are identified with the ground-state subspace of plaquettes crossing the boundary via the

projector
∑

g |g〉〈gg|. The action of the symmetry on the edge is given by

Ug �→
⊗

i

Rg (D37)

Uω �→
∏

i

Cω2i,2i+1Cω
†
2i−1,2i . (D38)

This forms a matrix product operator representation of G × H2(G,U(1)) with 3-cocycle

α((g0,ω0),(g1,ω1),(g2,ω2)) = ω2(g0,g1). (D39)

The edge action of Uω maps a G SPT phase [β] to [β + ω]. This can be seen by examining the effect of Uω on a fixed-point local
Hamiltonian such as the G-paramagnet

H = −
∑

v

∑
g

(Rg)v. (D40)

Alternatively, note the edge action of Uω restricted to an open chain is an MPO with two dangling virtual indices associated to its
boundaries. Denote this MPO Mω. Mω obeys the following commutation rules R⊗L

g MωR
†⊗L
g = VgMωV

†
g . Here Vg is a projective

representation of G, with cocycle ω, given by

Vg =
∑

h

ω(h,g)|hg〉〈h|, (D41)

which acts on one dangling virtual bond of the MPO. Hence applying Mω to a unique symmetric ground state, such as |+〉⊗N ,
maps it to a state in the SPT phase [ω].
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