PHYSICAL REVIEW B 96, 125101 (2017)

Skyrmion defects and competing singlet orders in a half-filled antiferromagnetic
Kondo-Heisenberg model on the honeycomb lattice

Chia-Chuan Liu,' Pallab Goswami,? and Qimiao Si'
' Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
2Condensed Matter Theory Center and Joint Quantum Institute, Department of Physics, University of Maryland,
College Park, Maryland 20742-4111, USA
(Received 26 April 2017; published 1 September 2017)

Due to the interaction between the topological defects of an order parameter and underlying fermions, the
defects can possess induced fermion numbers, leading to several exotic phenomena of fundamental importance to
both condensed matter and high-energy physics. One of the intriguing outcomes of induced fermion numbers is
the presence of fluctuating competing orders inside the core of a topological defect. In this regard, the interaction
between fermions and skyrmion excitations of an antiferromagnetic phase can have important consequences
for understanding the global phase diagrams of many condensed matter systems where antiferromagnetism and
several singlet orders compete. We critically investigate the relation between fluctuating competing orders and
skyrmion excitations of the antiferromagnetic insulating phase of a half-filled Kondo-Heisenberg model on a
honeycomb lattice. By combining analytical and numerical methods, we obtain the exact eigenstates of underlying
Dirac fermions in the presence of a single skyrmion configuration, which are used for computing the induced
chiral charge. Additionally, by employing this nonperturbative eigenbasis, we calculate the susceptibilities of
different translational symmetry breaking charges, bond and current density wave orders, and translational
symmetry preserving Kondo singlet formations. Based on the computed susceptibilities, we establish spin Peierls
and Kondo singlets as dominant competing orders of antiferromagnetism. We show favorable agreement between
our findings and field theoretic predictions based on the perturbative gradient expansion scheme, which crucially
relies on the adiabatic principle and plane-wave eigenstates for Dirac fermions. The methodology developed here
can be applied to many other correlated systems supporting competition between spin-triplet and spin-singlet

orders in both lower and higher spatial dimensions.
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I. INTRODUCTION

Competing orders and quantum criticality are two generic
features of the rich phase diagrams displayed by several
strongly correlated materials, including heavy-fermion
systems [1-9]. Of particular significance are the antiferro-
magnetic phase and competing spin-singlet phases such as
charge and bond density waves and unconventional pairings.
Therefore, for a comprehensive understanding of the global
phase diagrams of many strongly correlated materials, it is
essential to gain insights into the relationship among different
competing orders, which spontaneously break distinct global
symmetries. Within the conventional theme of Landau theory
of local order parameters, describing smooth fluctuations or
collective modes, order parameters breaking distinct symme-
tries do not seem to bear any specific relationship. However,
the nonperturbative topological defects of order parameters
such as domain walls, vortices, skyrmions, and hedgehogs can
support competing orders as fluctuating objects and thereby
contain information about apparently distinct ordered states
[10-45,47-53]. In addition, the interaction between fermions
and topological defects can be important in strongly correlated
electronic systems such as heavy-fermion compounds,
generically described by effective Kondo-Heisenberg models
[1-3,7-9,42,45,47,48,54]. The strong competition among
antiferromagnetism and Kondo singlet formation in addition
to spin-singlet superconductivity are essential features of
many heavy-fermion compounds [1-9], and a global phase
diagram has been theoretically proposed [7], which features
the transitions between an antiferromagnetic order and a
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variety of spin-singlet paramagnetic phases. This global phase
diagram has been studied in the Kondo-Heisenberg models
using various microscopic methods [55,56], and has motivated
experimental investigations in a number of heavy-fermion
materials [57-67]. However, it remains a theoretical challenge
to concretely access the spin-singlet orders (e.g., the heavy
fermi liquid phase due to static Kondo singlets) of the
paramagnetic phases starting from the antiferromagnetically
ordered side. In this work, we are interested in addressing the
fluctuating spin-singlet orders supported by gapped skyrmion
excitations inside an antiferromagnetically ordered phase
of a Kondo-Heisenberg model. We are also interested in
identifying the most dominant singlet orders, which can
be nucleated when the antiferromagnet order is destroyed
by quantum fluctuations, causing the collapse of skyrmion
excitation gap inside the paramagnetic phase.

The general problem of interaction between fermions and
topological defects is often intractable. But valuable insights
can be gained by studying specific toy models where fermionic
degrees of freedom are modeled by Dirac fermions. In this
regard, a Kondo-Heisenberg model defined on the honeycomb
lattice plays a very instructive role, as the coupling between
Dirac fermions and antiferromagnetic order parameter can
be addressed employing diverse analytical and numerical
methods [42,45,54]. In one of our previous work, we have
addressed the interaction between Dirac fermions and topolog-
ically nontrivial skyrmion configuration of antiferromagnetic
order parameter, by employing perturbative gradient expansion
scheme [45]. Within such scheme the calculations of triangle
diagram for Goldstone-Wilczek current are controlled by
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the inverse of Dirac mass (caused by uniform amplitude of
antiferromagnetic order) and rely upon the adiabatic principle.

A. Competition between spin Peierls and
antiferromagnetic orders

The simplest situation involves a doublet (two inequivalent
valleys or nodes) of spinful Dirac fermions coupled to
an antiferromagnetic order that simultaneously breaks time
reversal and spatial inversion symmetries. The corresponding
low-energy theory can be described by the effective action

5, = / Pxdtily,d, + g1 ® 0 -0y, ()

where i is an eight-component spinor (incorporating two
sublattice, two nodal and two spin degrees of freedom), y,,
are three mutually anticommuting 4 x 4 Hermitian matrices
operating on sublattice and valley indices, 1 is a 4 x 4
identity matrix that operates on sublattice and valley indices,
and Pauli matrices » act on spin components. The coupling
between fermion and the O(3) vector order parameter n is
denoted by gy, . Inside the antiferromagnetically ordered phase,
Dirac fermions possess a mass gap 2gy (Y1 ® n - nyr). The
gradient expansion analysis (controlled by the mass gap)
shows that a skyrmion acquires an induced chiral charge Qs =
(Pyvoysy) = 2Qop, Where Qy, is the topological invariant
or Pontryagin index for skyrmion configuration. Within the
continuum description, the chiral charge acts as the generator
of translational symmetry [an emergent U(1) symmetry when
higher gradient kinetic terms are ignored]. Inside the anti-
ferromagnetically ordered phase, the skyrmion number and
consequently the chiral charge Q5 act as conserved quantities,
thus freely mixing two bilinears ¥ My and ¥ Mysy, where
[M ,¥5] = 0, which cause hybridization between two inequiva-
lent nodes. Consequently, skyrmion core supports translational
symmetry breaking orders ¥ My and ¥ Mysy as fluctuating
quantities. The specific choice M = 1 corresponds to spin
Peierls order, while other choices for M represent charge and
current density wave orders. All of these singlet orders mix two
valleys, and naturally break chiral or translational symmetry
[43,45].

B. Competition between Kondo singlets, spin Peierls, and
antiferromagnetic orders

For the Kondo-Heisenberg model defined on the hon-
eycomb lattice, we have to account for two species of
eight-component fermions corresponding to conduction and f
electrons. Inside the antiferromagnetically ordered phase, the
low-energy theory can be qualitatively understood in terms of
the effective action

S, = /dzxdﬂﬁ[yﬂaﬂ +gyl®n-nly

+ /dzxdr)'([yuau tedennlx, @

where ¢ and yx capture two distinct eight-component Dirac
fermions [45,54]. Crucially, the antiferrormagnetic sign of
Kondo coupling is described by the condition gy g, < 0 (same
sign would represent Hund’s coupling and describe spin-1
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system). For simplicity, all additional couplings between
two species of fermions (residual quartic interactions) are
being ignored. Both species of fermions give rise to induced
chiral charges, while their sum vanishes. Interestingly, the
difference between two types of induced chiral charge equals
4Q1op, 1.€., Os+ = (¥ roys¥) + (Xvysx) =0 and Qs =
(Uyoys¥) — (Xvoysx) = 4Quep- It has been shown that the
relative chiral charge Qs _ (hence the skyrmion number)
causes free rotation among several translational symmetry
preserving Kondo singlet operators (mixing v and x at same
valley) in addition to conventional translational symmetry
breaking density wave operators. Therefore gradient expansion
scheme provided important insight that the skyrmion texture
supports several competing Kondo singlet operators, spin
Peierls (bond density) as well as charge and current density
wave orders inside the antiferromagnetic insulating phase [45].

C. One-dimensional Kondo-Heisenberg model

A similar issue of interaction between Dirac fermions
and topological defects of antiferromagnetic order has also
been emphasized in one spatial dimension [47,48]. In one
dimension, the relevant topological defects are instantons or
tunneling events for O(3) quantum nonlinear sigma model.
However, these instantons in two-dimensional Euclidean
space, and static skyrmions of (2+41)-dimensional model
have identical forms. By employing different field theoretic
methods (direct gradient expansion and chiral anomaly), it
has been found that the instanton number is directly related
to the expectation value of bilinear ¥ 51 (which represents
translational symmetry breaking, Ising spin-Peierls order). In
the presence of Kondo coupling, one finds the competition
between Kondo singlet formation and spin-Peierls order [48].
This picture is also qualitatively supported by bosonization
analysis.

D. Accomplishments of the present work

However, the gradient expansion scheme only employs
scattered states of Dirac fermions, while completely ignor-
ing the effects of low-energy bound states. How do these
nonperturbative eigenstates affect the predictions of gradient
expansion? Which are the most dominant singlet orders which
can be nucleated after the antiferromagnetic order is destroyed
by quantum fluctuations, causing a collapse of skyrmion
excitation gap? In the present work we answer these important
physical and technical questions. We first solve for the
exact fermion eigenfunctions in the presence of topologically
nontrivial skyrmion background to establish the induced chiral
charge of skyrmion texture. Subsequently, by employing these
nonperturbative eigenstates, we evaluate the susceptibilities of
different competing orders. Based on the susceptibilities, we
demonstrate spin Peierls to be the most dominant translational
symmetry breaking singlet order, which strongly competes
against the static Kondo singlet formation. We also substantiate
our results obtained in the continuum limit by calculations
performed with lattice regularizations. Intriguingly, we find
remarkable agreement between the analysis of this work and
the predictions of perturbative field theory [45] and more recent
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nonperturbative analysis of hedgehog-fermion interactions
inside the paramagnetic phase [54].

Since the two-dimensional skyrmion texture describes the
instanton or tunneling event of nonlinear sigma model in
one spatial dimension, our methodology can be directly
applied to the one-dimensional problem (1+1-dimensional
space-time) for computing the fermion determinant in the
presence of topologically nontrivial dynamic background (it is
equivalent to solving a fictitious two-dimensional Hamiltonian
defined in Euclidean space). Therefore we can also extract
the dynamic information regarding destruction of algebraic
spin liquid in favor of competing Kondo singlet and spin
Peierls phases for one-dimensional Kondo-Heisenberg chain.
Similarly, our methodology can be applied for many two
and also three-dimensional systems, supporting competition
between spin-triplet and spin-singlet orders.

The rest of the paper is organized as follows. We introduce
the microscopic model and its continuum limit in Sec. II, and
briefly discuss the results of gradient expansion in Sec. III. The
calculations of nonperturbative eigenstates of Dirac fermions
and order parameter susceptibilities are presented in Sec. I'V.
The results from continuum limit are justified with lattice based
calculations in Sec. V. We discuss the broader implications of
our analysis in Sec. VI, while we summarize our findings
in Sec. VII. Some details regarding the coupling between
Dirac fermion and nonlinear sigma model fields, and chiral
charge calculations are respectively relegated to Appendixes A
and B.

II. KONDO LATTICE MODEL ON HONEYCOMB LATTICE

The Hamiltonian for Kondo-Heisenberg model on a hon-
eycomb lattice is given by

3
H = Z Z |:—lc C‘an(r,')CB,a(r,' +6j)+HC+ Ju Sa(ry)

ricA j=I1

Ne
Sp(ri +8))+ Tk ()T Cap(ri) - Salri)

Ik .
+ ?K CpoTi+ 51‘)”7/363,,3("1‘ +3d;)- Sp(ri + 3j)i|,

3

where CL /B.a/B is the conduction electron creation operator,
and A, B denote two interpenetrating triangular sublattices,
and Pauli matrices 5 operate on spin indices @ and 8, and
d; are three coordination vectors connecting two sublattices,
as shown in Fig. 1. The explicit forms of these vectors are

81 = (—4,%4) §, = (a,0), and 83 = (—%, — ¥29), where a
is the lattice spacing. The local moments on sublattice A and
B are represented by S4(r;) and Sp(r; + 8;), respectively.
The RKKY coupling between local moment is modeled by
nearest neighbor Heisenberg interaction with strength Jy,
and Jx is the Kondo coupling between conduction electron
and local moment. We will consider both Jy and Jg to be
antiferromagnetic, i.e., Jy > 0 and Jx > 0.

After linearizing the dispersion relation for fermions around
two inequivalent nodal points of the hexagonal Brillouin
zone (located at Ky) and analytically continuing real time
to imaginary time by setting t = i¢, the low-energy effective
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FIG. 1. The structure of honeycomb lattice, where the red and
the black circles, respectively, denote two interpenetrating triangular
sublattices A and B. Coordinate vectors §; are shown as solid line
with arrows.

physics of free conduction electron can be described by the
imaginary time action:

So = /dxzdr%(yo ® 100 + vy ¥; @ Nod Ve, (4

V3ta
3

where vy = is the Fermi velocity, spinor ! =

(C+. A€+ B.asC—B.asC—A0), Vo = Va0, £ is index for two
valleys K4, and « is spin index. The gamma matrices are
defined as

0 o . 0 o;
V0=T1®Uo=(00 00) Vj=lfz®0j=<_oj O]>
0
V5=T3®Uo=(000 —Uo>’ (5

where the Pauli matrices o and 7, respectively, operate on the
sublattice and valley indices.

Inside the antiferromagnetically ordered phase, the low-
energy physics of local moments can be described by QNLoM
[27,30,31,68]:

S, = ﬁ d*xdt[c*(3;n)* + (0:n)*1 +iSg[n].  (6)
The coupling constant g has the dimension of length, and the
antiferromagnetically ordered phase exists for g smaller than
a critical strength g. [68]. The last term Spz[nr] corresponds
to Berry phase, which vanishes inside the ordered phase. The
Berry phase can be finite inside the paramagnetic phase, but it
does not possess a simple continuum limit in (24-1) dimensions
[31].

Now we incorporate the Kondo coupling, which captures
the scattering between conduction electron spinor ¢ and the
QNLo M field n representing the local moment:

Sk = gx / Pdv g ysn - nag Vs, ™

Therefore the low-energy theory of antiferromagnetic phase
for the Kondo-Heisenberg model can be described by

S =So+ S, + Sk. ®)

The lack of continuum representation for Berry’s phase in
(2+1)-dimensions makes it hard to analyze its consequence
inside the paramagnetic phase based on the coarse grained
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representation. However, this can be circumvented by intro-
ducing auxiliary f fermions for describing the local moments
[45]. We assume that the auxiliary f fermions only hop to
the nearest-neighbor sites like the conduction fermions, with
a hopping strength 7. At low energies, these f fermions
can also be described by the Dirac equation with a new
spinor XO(T = (ft+.Aa>f+.B.a>f- B.a>f-.A.a) Thus the resulting
low-energy effective action for f fermion inside AF phase is

Sr = /dxszYQ[Vo ® 100y + vy y; ® Nod;

+ &y V3l - Nlap Xp> 9

where v, = ‘/52” <. In fact, after integrating out the f-fermion

degrees of freedom, this action will return to the same form
of QNLo M of Eq. (6) [38,40,41]. We again remind the reader
that the Berry phase vanishes inside the antiferromagnetically
ordered phase and only becomes important for addressing the
nature of paramagnetic phase. The Hamiltonian operator from
Eq. (7) involving only f electrons would be

Hf = 13[—ivx(0181 + 0207) + gy - 770'3]. (10)

Usually, the introduction of auxiliary fermion description
requires the introduction of Lagrange multiplier or constraint
gauge fields. Since in this work we would be dealing with
confined phases of matter such as antiferromagnet, spin Peierls
or Kondo singlets, the constraint gauge field does not affect
any of our conclusions regarding the competing order. For this
reason we follow Ref. [69] and use an alternative method that
avoids introduction of any constraint gauge fields. Within this
method, one considers actual f electrons in the presence of
sufficiently strong Hubbard interaction, which gives rise to an
antiferromagnetic phase. The relevant steps are described in
Appendix A.

Therefore the Hamiltonian operator for the combined
problem described by S = Sy + Sy + Sk is given by

Hy = 53[—ivy (0101 + 0202) — iv_(0191 + 0202)03
+g+n - no3 + g_n - no3p3], (11)

which operates on the spinor U =x) =

(CAat+CBa+>CBa—CAa—s fAats [Bats fBa—» faa—) where
v, v . .

vy = =5 L and gy = 8K zgx , and new Pauli matrices p; act

on the flavor index representing conduction and f electrons,
(¥, x). Inside AF phase, we expect that the staggered magnetic
moments of conduction electron ¥ and f electron x antialign
to each other. Therefore we have gx g, < 0 [45].

III. SKYRMION, INDUCED CHIRAL CHARGE, AND
COMPETING ORDERS: PERTURBATIVE ARGUMENT

The static nonsingular topological defect of QNLoM in
2 4+ 1 dimensions is called skyrmion, which satisfies the
boundary condition n(r — oo) = n°, where r = /x2 + y2
and n® is a constant unit vector. Therefore the two-dimensional
space is compactified onto a two sphere S? and the skyrmion
configurations are defined by an integer topological charge
also known as skyrmion number, since the homotopy group
I1,(S%) = Z. The skyrmion with topological charge Q.op € Z
can have arbitrary profile function, provided it satisfies the
boundary condition and the requirement that ﬁ / d’xn -
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FIG. 2. Illustration of single skyrmion. The red dot denotes the
origin of skyrmion core, and blue arrow is the direction of staggered
magnetization or antiferromagnetic order parameter n.

01n x don = Qyop. Figure 2 illustrates a real space profile for
single skyrmion with O, = 1.

It is well known, when Dirac fermions are coupled to
QNLo M, the skyrmion textures will acquire induced fermion
number [23,28,29,38]. For the Hamiltonian of Eq. (10), due
to the overall matrix 73 (appearing odd number of times)
operating on two inequivalent valleys, the total induced
fermionic charge vanishes. However, the chiral charge, defined
as the difference of fermion densities at two valleys, will be
proportional to the topological charge of skyrmion:

0. = / P fLfer) = £ sign(gy) Qp.

Os = /d2x(:xf1:3x:) = /dzx((ifiﬂ_:) _ <3f_Tf_:)),

=2 Sign(gx)Qtop, (12)

Q. are the charges for £ valleys, and :: denotes normal
ordering operation. These relations can be proven by gradient
expansion method [38], and the detailed derivation is provided
in Appendix B. We can also verify this result numerically
by solving for the spectral flow during adiabatic formation of
skyrmion, as shown in Fig. 3. We can simulate the formation of
single (anti)skyrmion without loss of generality by assuming

n(r,t) = (sintf(r)cos @, sintf(r)sinf, costf(r)), (13)

01T Il

0 0.2 0.4 0.6 0.8 1

t

FIG. 3. The spectral flow for + valley during the adiabatic
formation of skyrmion. Here we choose coupling constant g, = 2.
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TABLE I. Competing orders for one species of fermion coupled
to antiferromagnetic order parameter.

Competing order Matrix form M anticommute with Hy?

Valence-bond solid 71,7 Yes
Charge density wave 7,01,T102 No
Current density wave 7103 No

where f(r) = me™.One can easily verify that Owp =0att =
O0and Q(p = —1att = 1, and the definition of (anti)skyrmion
does not depend on the precise form of profile function. For
+ valley, as shown in Fig. 3, we find there is precisely one
state that crosses zero energy (flowing out of negative energy
states or filled Dirac sea) during the formation of skyrmion.
Therefore the induced charge is —1, just as Eq. (12) suggests.
The relation between the induced fermionic chiral charge
of the system and the topological charge of skyrmion is a
consequence of index theorem [11].

Since gk g, < 0, the induced chiral charges for conduc-
tion and f electrons have opposite signs [electron Qs y =
2sign (gg)Qiop and f-electron Qs = 2sign(g,)Oiopl- This
means if one state for conduction fermion sinks into the Dirac
sea, there will be a state for f-electrons which will emerge
out of the Dirac sea. Therefore the net chiral charge of two
species vanishes. Nonetheless, the difference between two
chiral charges is quantized:

Q_y= /dzx(:‘IJT,Oafs‘Iﬁ) = Qs.y — Osy
= 4sign (gx) Otop- (14)

Inside the AF ordered phase, the tunneling events described
by singular hedgehog and antihedgehog configurations (space-
time singularities) are linearly confined, leading to the conser-
vation of skyrmion number. When the AF order is gradually
suppressed by quantum fluctuations, the spin stiffness of the
sigma model and the skyrmion energy cost decrease. On the
paramagnetic side, the skyrmions excitation energy vanishes,
and all topologically distinct skyrmion configurations become
energetically degenerate. Hence the tunneling events between
different skyrmion configurations become important for deter-
mining how ground state degeneracy is lifted. Since Qs and
Q_ y are proportional to the topological charge Qi [as in
Egs. (12) and (14)], Os and Q_ y would also be changed via
tunneling events. Thus Os and Q_ y would act as fast variables
inside paramagnetic phase, and their conjugate operators will
serve as the appropriate slow variables or competing order
parameters [43,45].
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Based on this argument, for one species of Dirac fermions
[e.g., for Hamiltonian H s of Eq. (10)], the corresponding spin-
singlet competing orders in the particle-hole channel are found
to be

Om = x'Me™y. (15)

Here, M is a 4 x 4 matrix operating on sublattice and valley
indices, and there are five distinct order parameters Oy,
which are conjugate to chiral charge operator Qs = x 13,
ie., [0s,0u] x xTMe!Zt®% 5 | as indicated in Table I. The
first two correspond to components of the valence-bond solid
(VBS), which is also called Kekule bond density wave order
or spin Peierls order breaking the translation symmetry unlike
the usual AKLT state resulting from spin-1 model, and the
final three correspond to different kinds of charge or current
density wave orders [43,45]. However, only the components of
VBS order anticommute with the whole Hamiltonian operator
Hy of Eq. (10), thus maximizing the energy gap inside the
skyrmion core. Therefore, from a weak coupling perspective,
the VBS order should be the most dominant competing order
of antiferromagnetism.

For the Kondo-Heisenberg model with two species of
eight-component Dirac fermions [see Eq. (11)], O_ ¢ is
proportional to the skyrmion number. Therefore the conjugate
operators of Q_ y would serve as competing orders in the
presence of antiferromagnetic Kondo coupling, and they are
listed in Table II. Besides VBS, and charge and current
density orders already found in Table I, the presence of p3
in QA,,W gives rise to additional competing orders involving
p1 or py, corresponding to hybridization of two species or
Kondo singlet formation [45]. While the VBS orders (with 7y,
7,) always anticommute with the combined Hamiltonian, the
Kondo singlet operators do not generically anticommute with
the combined Hamiltonian. Hence from the weak coupling
perspective, they may not be dominant competing orders inside
the skyrmion core. Only for some special choice of parameters,
some Kondo singlet operators can anticommute with the
effective Hamiltonian. Therefore the gradient-expansion based
results may not always predict the correct competing orders.
In the following section, we circumvent this shortcoming of
gradient-expansion scheme, by evaluating the exact eigen-
states of Dirac Hamiltonian and subsequently computing the
susceptibilities of different competing orders.

IV. BEYOND PERTUBATIVE ARGUMENT

The eigenstates of Dirac fermions in the presence of
skyrmion configurations of O(3) nonlinear sigma model have
been previously discussed in Ref. [29]. The main goal was
to establish the induced fermion number due to spectral flow.

TABLE II. Competing spin-singlet orders in the presence of Kondo coupling.

Competing order

Matrix form M

anticommute with Hy ?

Valence-bond solid 71,72
Charge density wave 7101,T102
Current density wave 7103

Kondo singlet
Kondo singlet

P1,02,T301,T302
0301,0302,7T30301,T30302

Yesiff vy, =0and g, =0
Yesiffvo=0and g, =0
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However, the physical role of fermion doublers (present for any
lattice model) and competing orders has not been addressed.
By contrast, we would deal with fermion doublers arising
from the underlying lattice model, and focus on identifying
dominant competing orders residing in the skyrmion core.
Therefore we would compute susceptibilities of competing
spin singlet order parameters, by using the exact eigenstates of
Dirac fermions. This is a new development for the problem
of interaction between Dirac fermions and O(3) skyrmion
configurations.

A. Without Kondo coupling

To calculate the local susceptibility of predicted competing
orders in Table I, we solve

(Hf + AM)x = Ex (16)

on a finite disk of radius R by performing exact diagonaliza-
tion. We denote the Hamiltonian (10) with or without single
skyrmion as Hy,s and H o, respectively. For single skyrmion,
we choose the profile function of skyrmion n as

n = (sin f(r)cos 0, sin f(r)sin, cos f(r)), (17)

where f(r) = me~# and A is the length scale for skyrmion.
One can easily verify that in this case we have ﬁ [ d*xn -
on x opn = —1.

The eigenstates of Hy( constitute a suitable basis for
performing exact diagonalization. We choose the background
field n = (0,0, 1), such that

Hyo = 53[vy(01ki + 02ks) + g, n303] (18)

Since Hamiltonian H o commutes with the grand spin opera-
tor M3 = —idy + % + I Hypand M3 can be simultaneoulsy
diagonalized. The solutions for Hyox = E x with fixed grand
spin m consist of the following linearly independent states:

- . i _io
Comt 2l g (K jr)e™
o "_lnEm,j*gx m 1( m,j )
X+,m.j,n,n:1(r’9) =e lCr]:l Jm(km,jr) ’
Opx1

B 021

kam,j .
Ch=— HE +8y Ik, j1)

i Cpet S (ki jr)e
L O4x1
B O4x1

VyKm, j —i6
imo Cn:l _ Jm—l(km,jr)e
X—,m,j,n,n:l(r’g) =e nEm.j =8 s

iCn:l Jm(km,jr)

021

imo
X+,m,j,n,n=71(r79) ="

Opx 1

Uy ki, j

imf
X—m.jnn=—1(r0) = e Ch=1 nEn j+8y JM(km’j,r) - 19
L iCpmt 1 (ki jr)e ™

where the fist index £ means the + valley, index n = £1
denotes the solution with energy £E,, ;, and n is the spin
index. We have chosen the boundary condition J,, (k, j R) = 0,
with index j denoting the j-th zero of Bessel function J,,(r), so

) 2
that the momentumk,, ; and energy E, j = vV vik,, ; + g, are
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quantized. The coefficient C,, is determined by the normaliza-
tion condition ||X:l:,m,j,n,7]||2 = fdz)C(X:t,m,j,n,n|X:|:,m,_j,n,n> =
1.

We then solve Eq. (16) by diagonalizing the matrix with el-
ements [ dx(Xam. jnn|Hy + AM| X4 i w ). Besides the
real space cutoff (i.e, the radius of disk R), we also impose a
large momentum cutoff A, and the large grand spin cutoff M.
We choose our basis set spanning from grand spin —M to M.
For M = 1,,7,,7,03, the Hamiltonian H r+ AM commutes
with the grand spin Mj3. Therefore we can diagonalize the
matrix in diagonal blocks with a fixed value of grand spin m.
While for M = 1,01,7102 (which do not commute with M3),
we have block off-diagonal elements and need to diagonalize
the whole matrix at once.

After finding the solutions for Eq. (16), we compute the
local susceptibility for each candidate competing order by
using

xm(r) = ilino — (20)

The local susceptibility diverges with momentum cutoff A
in two dimensions, but once we choose a finite momentum
cutoff A, it converges with radius of disk R and the maximum
of grand spin M. In this paper, we choose R =8, A =8,
M = 30, the length scale of skyrmion A = 2, and the coupling
constant g, = 2.

We have found that the local susceptibilities for VBS orders
M = 1; or 7, gain expected enhancement near the core of
skyrmion, as shown in Fig. 4 [46]. On the other hand, for
other candidate competing orders like charge density wave
(with 1707 and 1107), the enhancement is less prominent, as
shown in Fig. 5. Moreover, for current density wave 1,03,
the presence of skyrmion even suppresses the susceptibility,
like Fig. 6. The suppression of the susceptibility for current
density wave 1) 03 demonstrates that the pertubative arguments
of gradient-expansion scheme are not always sufficient.

4.5 T T

—e—with skyrmion

—e—without skyrmion

local susceptibility

>

BN
o
o_
&)
N
N
&)l
N
NA
o0
w

FIG. 4. The local susceptibility of VBS order M = 7,7, vs radial
distance. The blue and red lines correspond to the presence and
the absence of a skyrmion on the origin, respectively. Once the
skyrmion is present, the susceptibility of VBS order will gain obvious
enhancement near the core of the skyrmion defect.
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FIG. 5. The local susceptibility of charge density wave order
M = 1y0,,710, vs radial distance. Now the presence of skyrmions
can still enhance the susceptibility, but the amount is smaller than the

VBS order.

B. With Kondo coupling

In the presence of Kondo coupling, we have to account
two types of fermion fields ¢ and y, and the pertubative
argument predicts that the VBS and Kondo singlet orders
are important competing orders of antiferromagnetism (see
Table II). We want to establish the validity of this prediction
by using exact eigenstates of Dirac Hamiltonian. This is
particularly important, since Kondo singlet operators do not
generically anticommute with the Hamiltonian, and within
the weak coupling picture fully anticommuting VBS would
seem to be the dominant competing order. Whether the Kondo
singlet orders can be favored over fully anticommuting VBS
over a wide range of microscopic parameter regime is not clear
from the weak coupling arguments. By contrast, our physical
intuition suggests that the Kondo singlets should be stabilized
over a finite parameter region [7]. Here we address this issue
by solving the eigenstates of

(Hy + AM)V = EV, 1)
1.2 T T
ey ——with skyrmion
5 14 . . o
-_.'g ——without skyrmion
Qo
()
O 4 i
w B—
L 8
n M
© oof ]
O
o
0.8 : : : : :
0 0.5 1 1.5 2 2.5 3

FIG. 6. The local susceptibility of current density wave order
M = 7103 vs radial distance. Instead of enhancement, the presence
of skyrmion now suppresses the susceptibility of M = 7,03 near the
core of skyrmion.
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for each M identified in Table II, and then computing the local
susceptibility by employing

(WM
xu(r) = lim ———. (22)
A—0

For diagonalizing this Hamiltonian, we use the basis set

\I’[:i:,m,j,n,r] = (I/I:i:,m,j,n,n’x:t,m,j,n,n)’ where X:I:,m,j,n,r]’s have

been already defined in Eq. (19) and v ,, j ».,’s are defined

as

r k. i s

Dr]:l M}Zﬁjm—l(km,jr)e i
iD,,ZIJm(km,jr) )
O6><l

imo
er,m,j,n,n:l(rs@) =e"

02><1

Vy K, j )
Dn:—l ”E,,,mv*i’gl( -]m(km,jr)
an:—l Jm_,_l(km,jr)e*’

L O4x1

imo
w+,m,j,n,r]=—l(ra9) =e"

0451
vy ko _ip
) — ¢imo Dy 55 .—/g[( Im—1km,jr)e”
‘Q/f—,m,j,n,nzl(ra ) =e el ’
an:l -,m(km,jr)

L O2><l

Opx1
vy K,

Ve m g1 (r,0) = €™ Dyt Il 1) |- (23)

L iD=t Jngi (ki jr)et™

Here, E;, ; = vk, ; +g; and the coefficient D, is ob-
tained from the normalization condition ||+ m jn., I> =
[ @Px(Wsm, jnn|¥tm,jny) = 1. We diagonalize the matrix
with elements [ d?x (W jpy| Ho + AMWi o).

As shown in Fig. 7, we have found that the enhancement of
these Kondo singlet orders by skyrmion is comparable with the
enhancement of VBS orders. Moreover, the enhancement of

>
N

2 —e—with skyrmion
E 41 . .
= —e—without skyrmion
Q
s
I
-} W
n
© 39 |
O
o

38 . ‘ . ‘ ‘

0 0.5 1 1.5 2 2.5 3

FIG. 7. The local susceptibility of Kondo singlet orders M =
P1,P2,T301,T302 (M = 0301,0302,03T301,03T302) With Uy = Lv, =
—1,gy=2,and g, = -3 vy =1,v,=1,8, =2,and g, = =3).
The enhancement of susceptibility of these Kondo singlet order by
skyrmion can still sustain obviously, even with parameters beyond
where perturbative argument can be applied. The enhancement of
susceptibility of Kondo orders in fact can sustain to very broad
parameter space.
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Kondo singlets is also sustained over a broad parameter space,
including the regime where perturbative arguments may not
be applicable. Therefore we conclude that the Kondo singlet
and VBS orders act as the dominant competing orders inside a
skyrmion core. Therefore the paramagnetic phase in the global
phase diagram can support both of these competing singlet
orders.

C. Crossover between VBS and Kondo order

The Hamiltonian (11) is only useful for describing low-
energy physics inside the antiferromagnetic phase. In the
vicinity of a magnet to paramagnet phase transition, such
description is not sufficient to capture all features of the
Kondo lattice model, since the fluctuations for competing
channels and residual interactions in those channels can
become important. The effective Hamiltonian describing the
competition among VBS, Kondo singlet, and AF phases for a
Kondo lattice model can be postulated to have the form

Po — p3

H = Hy + bp, +QT|T, (24)

where b and Q capture the fluctuations for Kondo and VBS
channels and increase with Jx, Jy respectively [42,55]. The
presence of 252 reflects that the VBS order in a Kondo lattice
model can only be generated through the frustrated RKKY
interactions between local moments.

From the perspective of AF Hamiltonian Hy, the fluctu-
ations of VBS and Kondo channels serve as external pertur-
bation, and thus induce the corresponding order parameters
approximately as

(x'tix) = Qxves(r),
(Wi o1 W) = bxondo(r), (25)

where xvps(r) and xxondo(r) are the local susceptibilities of
VBS and Kondo orders, respectively.

Since we have already observed that the skyrmion defect
of AF order can enhance the susceptibility of VBS and

0.15 T T T T

—~
S 0.1

—
_‘_Q
A
S~
= o

0 ‘ : . :
0 0.5 1 15 2 25 3
r

FIG. 8. The difference of Kondo singlet order (p,) between the
presence and the absence of the skyrmion on origin for different
fluctuation strength b. We choose vy, =1, v,— = —1, g, =2, and
g, = —3and Q = O here. A|{¥p, V)] is defined as A[{(¥p, W)| =
(WTp W) — [(¥Tp W), where | (W1 p;W)|, and | (W p; W) |o means
|(¥fp, )| calculated in the background with and without single
skyrmion, respectively.
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FIG. 9. The VBS pattern with 8t, , .5, = Ae'K+%ielCri/3 4
H.c. The blue thick(black thin) lines indicate hopping amplitude is
increased(decreased) by %A ( % ).

Kondo order inside AF phase, we expect that the VBS
and Kondo order parameters induced by these fluctuations
will also be enhanced by skyrmion. Moreover, once the
Jk (Jg) is enlarged, that is, the fluctuation into Kondo(VBS)
channel is larger, from Eq. (25), the resulting enhancement
of Kondo(VBS) order parameter by skyrmion should also be
enlarged.

This behavior actually is also manifested by solving the
Hamiltonian of Eq. (24) directly and computing the resulting
order parameters, as shown in Fig. 8. Therefore, once we
increase the Kondo coupling in microscopic Kondo lattice
model, the skyrmion will eventually favor Kondo order over
the VBS order, causing the transition from VBS to Kondo
phases. This result gives us a unifying point of view to
understand the crossover between VBS and Kondo orders in

10|l||||||||||
0 0.2 0.4 0.6

2

[=]

1

(=]

.
.

00 e E———— ¢

)

1.0

FIG. 10. The spectrum flow during the formation of skyrmion
for lattice Hamiltonian (26) involving f electron only. We choose
coupling constant Jy =5, t; =10 and simulate the formation
of skyrmion by n(¥;,t) = (sintf(r;) cos 8, sint f(r;) sin@, cos tf (r;)),
where f(r;) = e~ % and r; is the radial position of the site i. There
is one state flowing from negative state to positive state, and precisely
one state flowing oppositely. This is just a reflection of relation (12),
since the spectrum here consists of + and — valley.
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(¢) Current density wave order M = 7103
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X

(b) Charge density wave order M = 1101
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X
(d) Kondo singlet order M = p;

FIG. 11. The difference between distinct order parameters in the presence and absence of a skyrmion at the origin. Here we solve the lattice
Hamiltonian whose low-energy effective model is Hy + AM. The blue circle means the difference is positive, and the bigger circle indicates
the difference is larger. We can see obviously that VBS, charge density wave, and Kondo singlet order gain enhancement near the core of
skyrmion, while the current density wave is suppressed due to the presence of skyrmion, which is consistent with the results from low-energy
Hamiltonian in last section. Similar conclusions hold for other order parameters listed in Tables I and II.

a Kondo lattice model, beginning from the antiferromagnetic
phase.

V. JUSTIFICATION BY LATTICE MODELS

So far, the model we relied on are different kinds of low-
energy effective Dirac-type Hamiltonian. In these models, the
presence of large momentum cutoff is practically inevitable,
even though all of our conclusions hold regardless of cutoffs.
In order to further justify these results, we have also solved
the lattices models in the presence of skyrmion defect (whose
low-energy effective theory is equivalent to Hy + AM for
different candidate competing orders in Tables I and IT) through
exact diagonalization. For example, the VBS order M = 7 can

be generated through the lattice model:

H = Z[_tffifafjﬂ — chiT,aCj,a + H.c.]

(ij)
_ — + (l’l : ")a
iaf
n -
fag(enyieaog 2 e 2" & ci,,s} (26)

if we replace t; — ty + 8tr, r4s, and to —> tec + 8ty rivs;
where 81y, .45, = Ae'K+¥ei6Ti/3 4t He. and G =K, —
K _, as Fig. 9. The resulting low-energy effective Hamiltonian
of this model is exactly the same as Hy + At [70]. By
assigning the skyrmion configuration for local moment field
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n, we can explore its influence on VBS order parameter
in a lattice model. The presence of skyrmion in the lattice
model also causes spectral flow events as in Fig. 10, which
is consistent with the low-energy continuum theory. The VBS
order parameter in lattice model can be extracted through the
nearest-neighbor hopping amplitude. After solving the lattice
model, we can see that the presence of skyrmion enhances the
VBS order parameter as shown in Fig. 11(a). Similar results
for other competing orders are presented in Fig. 11. All of
the results are consistent with our previous findings based on
low-energy Dirac theory.

VI. DISCUSSION

In the field theory literature, the nonperturbative eigenstates
of Dirac fermions have been already employed for com-
putation of induced fermion numbers [15-22,24-26,29,54].
Some famous examples are the induced chiral charge of
a domain wall in one dimension, and baryon number of
O(4) skyrmions in three dimensions. A similar analysis
has also been performed for O(3) skyrmions in two spatial
dimensions. However, the physical issue of competing orders
and the determination of dominant fluctuating order based
on nonperturbative eigenbasis are new aspects of the present
work. To the best of our knowledge, previous analysis along
this direction has been restricted to competing orders in a
vortex core (defects of Abelian theory).

Since we are explicitly solving for the eigenstates of
the Dirac Hamiltonian, we can also employ these states for
computing the competing orders away from half-filling. Not
much is known for such a situation from perturbative field
theory. The chiral charge also acts as the generators for
translational symmetry breaking paired states (FFLO states).
At half-filling, they do not produce fully gapped states and are
less favorable compared to spin-Peierls order (causing Dirac
mass gap). However, when we move away from the special
case of half-filling, the paired states are more effective in gap
formation. Therefore we expect FFLO phases to become more
important in the generic situation of finite carrier density.
Even current and charge density wave orders, which were
earlier disfavored compared to spin-Peierls order can become
more important (as none of them are able to effectively gap
out the Fermi surface). Such intriguing competition among
particle-hole and particle-particle channel condensates are
germane to understanding the generic global phase diagrams
of correlated metals, and will be elucidated in a future
publication.

Our methodology can be easily adapted for both higher and
lower-dimensional problems. Specifically, the computed en-
ergy eigenstates for a two-dimensional model in the presence
of skyrmion configuration can be directly taken over as the
complete eigenbasis for evaluating the fermion determinant
in one dimension in the presence of dynamic instanton
background. Such calculations can again be performed both
at and away from half-filled limit to unveil the competi-
tion among spin-Peierls, Kondo singlets, and paired states,
which have been suggested by different perturbative calcula-
tions as well as some density matrix renormalization group
analysis.
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VII. CONCLUSION

We addressed the nonperturbative aspects of interaction
between topological defects and fermions, and how it can give
rise to competition among different order parameters. Specif-
ically, we considered the interaction between topologically
nontrivial skyrmion configurations of antiferromagnetic phase
and fermionic quasiparticles in two spatial dimensions. To
make progress we have modeled the fermionic excitations
by Dirac fermions. Beginning with a half-filled Kondo-
Heisenberg model on a honeycomb lattice, we investigated
fluctuating orders that can be supported by skyrmion core in-
side the antiferromagnetically ordered insulating phase. Inside
this ordered state, we have considered the coupling between
conduction and f-electrons to the collective mode, described in
terms of an O(3) quantum nonlinear sigma model(QNLoM).
By employing perturbative field theory, exact numerical and
analytical solutions for eigenfunctions of Dirac fermions in
the presence of a single skyrmion we have established the
competition between magnetism, Kondo singlet formation
and spin Peierls order. Our specific goal was to establish a
framework for finding dominant order parameter, which can
be adapted for many other problems involving the interaction
between fermion and topological defects. The perturbative
field theory calculation of Goldstone-Wilczek current for our
model suggests the presence of several translational symmetry
breaking orders such as charge, bond and current density waves
as well as translational symmetry preserving Kondo singlet
formation. However, this method does not clearly specify
the dominant incipient order. Therefore we have explicitly
computed the susceptibilities for all possible local Dirac bi-
linears by using nonperturbatively determined eigenfunctions.
Our analysis thus provides strong evidence that the global
phase diagram of Kondo-Heisenberg can support a variety
of competing singlet orders from skyrmion condensation
(violation of skyrmion number) on the paramagnetic side. All
of our results from continuum model have been consistently
justified by analysis performed on suitable lattice model. This
general strategy for identifying dominant competing orders
mediated by topological defects can be useful in both one and
three spatial dimensions.
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APPENDIX A: COUPLING BETWEEN FERMIONS AND
NONLINEAR SIGMA MODEL

Since we are working with a bipartite honeycomb lattice, an
intraunit cell antiferromagnetic phase (Néel order) describes
the ground state of a nearest neighbor Heisenberg model. The
nonlinear sigma model description for this phase is usually
derived by employing a large spin approximation. However,
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for describing the competing spin singlet orders such as spin
Peierls and Kondo singlet, it is more advantageous to work
with a fermionic description. This is similar to the methods
of Affleck and Haldane [69] for one-dimensional spin-1/2
chain. The antiferromagnetic phase for honeycomb lattice can
only be obtained from a Hubbard model for sufficiently strong

|
&7 dt
/ dcjdci exp |:—/. ’ THim:| =/ dcjdcidMi exp|:
0

Notice that the Hubbard interaction has been decoupled in the
magnetic channel in terms of the vectors M; (i = A,B are
assigned to two sublattices), where M; = (U/3)(cis17”/c,-,s/).
In the process of mean-field decoupling, the chemical potential
has to be shifted by the amount U /2, to maintain the condition
of half-filling. The antiferromagnetic phase corresponds to the
choice M4 = —Mj. Due to the vanishing density of states,
the antiferromagnetic phase arises for U > U.. Within the
continuum limit this leads to the following effective action:

2
S = /dzxdt [&yﬂaﬂ +gUM gy + M7i| (A2)

with g o« /U. At U = U, (equivalently g = g.), we have an
itinerant version of paramagnetic semimetal to antiferromag-
net quantum phase transition, where the fermion fields and
both longitudinal and transverse parts of the order parameter
constitute gapless or critical excitations. For U > U,, the
amplitude of the order parameter M| ~ |U — U,|? is finite,
and away from the itinerant critical regime, i.e., at the length
scales larger than the correlation length & ~ |U — U.|™"
we can effectively freeze the amplitude fluctuations of the
magnetic order parameter. Since we can denote M = |M]| n,
where n is the unit vector or nonlinear sigma model field, after
freezing M|, Eq. (A2) can be reduced to

S = /dzxdt[ifyﬂau + gy Um -yl

This allows us to work with a nonlinear sigma model coupled
to Dirac fermions, as used in the main text. The longitudinal
part of the nonlinear sigma model field gives rise to a charge
gap for the Dirac fermions, and after integrating out the Dirac
fermions by following [38,40,41] one can obtain a nonlinear
sigma model. The ordered phase of the nonlinear sigma model
indeed corresponds to the ordered phase obtained within
the large spin approximation of nearest neighbor Heisenberg
model. An advantage for the effective theory is that the bare
stiffness for nonlinear sigma model does not guarantee a global
long range order, and it remains possible that the emergent
gapped/insulating phase supports a nonmagnetic competing
order, where the Berry phase for the sigma model does not
vanish and follows from the evaluation of fermion determinant
[40,41].
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on-site repulsion, as the density of states for two-dimensional
Dirac fermion vanishes at zero energy. The repulsive Hubbard
interaction, H;, = U Zi n;+n; |, where n; is the density
operator for spin projection s =1 / |, can be decoupled in
the magnetic channel by performing the following Hubbard-
Stratonovich transformation

h
BT dt 3M? ; U
- 7{ 2 [W M- v} =y ”

i is

(AD)

(

APPENDIX B: TOPOLOGICAL CHARGE OF SKYRMION
AND INDUCED CHARGE

The induced charge for each valley is defined as the
difference of charge in each valley between system with and
without skyrmion (vacuum):

0 0
0. = / dEps +(E) — / dEpo+(E)

—00 —00

1 [ : 1
-5 f dEps+(E)sign(E) = —>ns, (B
2 ) 2
where pg +(E) and pp 1 (E) is the density of state at energy E
with and without skyrmion for + valley, respectively, ny =
Joo dEps +(E)sign(E) = [~ dE(ps+(E) — ps +(—E)) is
called the spectral asymmetry, and we have used the fact that
system without skyrmion field has charge conjugate symmetry.

Since Hamiltonian (10) does not break valley symmetry, it
can be decoupled into each valley space as H, the density of
states in each valley is well-defined as

o (E)=Tr8(Hy — E) = %ImTr( . (B2)

Hi—E—ie)

The spectral asymmetry then is

ne = /O dE(ps.+(E) — ps.+(~E))

1 [ 1 1
= — dE{ImTr — —ImTr—
T Jo Hy—FE —ie Hi+FE —ie
o

1

T Jo

1 1
+ 9
He — E —ie Hi—i—E—i—ie)

where we use the identity ﬁ = P(}C) F inwd(x). By changing
the variable z = E + i€, we have

1 oo+ie 1 1
— Im dzTr +
T /i; (Hi —Z Hy + Z)

2 oo+ie 1
—1I dzTr{ He———— ). B4
n m/i; : r( iHi—#) ®9

In our case, Hi=x(,(01ki + 02ky)+ gyn-no3) =
£(Hy + 1), where Hy = v, (01k; + 02k;) and I = gxM - 103,
thus Hi = HO2 +V = —vin + g)z( — ing)gogo’ain -1,
where HO2 = —vin + gf( and V = —ig,v,030'0;n -9

N+
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We assume that background field varies very slowly compared with coupling constant, that is |Vr| < g, and then expand

n+ in order of |Vn|/g,:

1 1 . - ;
Tr(Hi@) = Tr(Him> = TI'(HiG()(Z)(l + GO(Z)V) 1) =Tr <HiG0(Z) Z (—GO(Z)V) ), (BS)

where Go(z) = H+—zz

n=0

By identity Go(z)V = VGo(2) + Go(z)[V, Hy]Go(z), we are now able to separate the trace into pure momentum and real-space
part, and then do the trace separately. The non-vanishing leading order of (B5) will be & Tr (1 V?) Tr (Gg(z)). Since

jaaa..b c

Tr(I1V?) = —g;vi Tr (033n o' din - nojajn . 17) = —g;vi Tr(o30 0/ nn’y ng0inyd;n,)

= —4g)3(v§ /dzxe”eabcnaainbi)jnc,

Tr(G3@) = T ( 1 )3 T 1 dk 2k 1 B6)
T n(Z = Ir|{ —— = IT = = .
0 H} — 22 —v2V2+g2 — 22 Qm)? (2K + g2 —22)  8mu2(g2 — 22)°
Consequently, the leading order of n. will be
893 12 ocotie d y i ,
o8 Im @ d’xe e n, 3in,din, = T signs,) d’xe €™ n,0;n,0;n,. (B7)
; 2(02 _ ,2)2 ! 4 !
T ie 8wvy (gX -z ) T
Therefore
1 =+ sign(g,) ii abe .
O+ = _Eni = %/dzxe Jeab ngdin,din. = % sign(g,) Oiop- (B8)
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