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Nonlinear Dirac cones
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Physics arising from two-dimensional (2D) Dirac cones has been a topic of great theoretical and experimental
interest to studies of gapless topological phases and to simulations of relativistic systems. Such 2D Dirac cones are
often characterized by a π Berry phase and are destroyed by a perturbative mass term. By considering mean-field
nonlinearity in a minimal two-band Chern insulator model, we obtain a different type of Dirac cone that is robust
to local perturbations without symmetry restrictions. Due to a different pseudospin texture, the Berry phase of
the Dirac cone is no longer quantized in π , and can be continuously tuned as an order parameter. Furthermore,
in an Aharonov-Bohm (AB) interference setup to detect such Dirac cones, the adiabatic AB phase is found to be
π both theoretically and computationally, offering an observable topological invariant and a fascinating example
where the Berry phase and AB phase are fundamentally different. We hence discover a nonlinearity-induced
quantum phase transition from a known topological insulating phase to an unusual gapless topological phase.
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Introduction. Starting with the seminal papers of Thouless
et al. [1,2], the role of topology in the band theory of solids
has attracted tremendous interest. In addition to topological
insulators [3–5], the search for novel topological materials
has led to the discoveries of Dirac [6–11], Weyl [12–15],
and nodal-line semimetals [13,16–20]. Recently, topological
phases in interacting systems have stimulated much attention
[21–27]. After the topological classification of noninteracting
topological insulators [28,29], a general topological classifi-
cation of interacting systems constitutes an important topic
[21,24,27].

Developing physical insights into the interplay of topology
and interaction, which typically requires the use of advanced
many-body techniques [30], is often a challenge. Simple
mean-field approaches may be still useful [31–36]. Here, we
take a modest mean-field approach to a minimal two-band
topological insulator model with on-site bosonic interactions.
This leads to a nonlinear problem, insofar as the Bloch states
are now eigenstates of the Gross-Pitaevskii (GP) equation
[37,38] depicting a two-dimensional (2D) tight-binding lattice
with an on-site mean-field potential. GP equations are a
well-known tool to study the Bose-Einstein condensate (BEC)
of cold atomic gases, such as matter-wave solitons [39–41].
Moreover, GP equations are also useful in the study of photonic
systems, where Kerr nonlinearity becomes important with the
increase of light intensity [33,42,43]. We expect our theoretical
predictions below to be relevant to simulations of topological
quantum matter in cold-atom and photonic systems [44–46].

As already learned from zero- or one-dimensional systems,
the band structure arising from solving the stationary GP
equation may accommodate self-crossing loop (swallowtail)
formations [47]. This feature in 2D situations suggests the
loss of a well-defined band Chern number as a topological
invariant. In the vicinity of the self-crossing point of a 2D
looped band, we discover the formation of a different type
of 2D Dirac cone. Such nonlinear Dirac cones (NDCs) share
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analogous robustness with Weyl points in Weyl semimetals
[12–15].

Equally interesting, due to a peculiar pseudospin texture
different from what is found in those familiar Dirac cones in
2D Dirac semimetals [6–11], NDCs yield Berry phases no
longer quantized in π . Further, their band structure may be
potentially useful for the quantum simulation of some exotic
physics.

Following the stimulating experiment reported in Ref. [48],
we propose to detect the formation of an NDC by use of an
interference setup in the spirit of the Aharonov-Bohm (AB)
effect [49].

As a remarkable finding detailed below, the AB phase
associated with two adiabatic paths in the reciprocal space
enclosing an NDC is still quantized in π . This provides a
stimulating example where the Berry phase and AB phase
are different. We shall also use this result to identify an
experimentally accessible topological invariant for NDCs.

Two-band model. Consider a nonlinear version of the
spinless (bosonic) two-band Dirac-Chern insulator model [50],
with two sublattices serving as the pseudospin. With the
lattice Hamiltonian detailed in Supplemental Material [51],
the stationary GP equation in the momentum space assumes
the following form,

H[kx,ky,ψ(kx,ky)]|ψ(kx,ky)〉 = E(kx,ky)|ψ(kx,ky)〉, (1)

with

H[kx,ky,ψ(kx,ky)] = Jx sin(kx)σx+Jy sin(ky)σy+B(kx,ky)σz

+g

[|ψ1(kx,ky)|2 0
0 |ψ2(kx,ky)|2

]
, (2)

where σ ’s are Pauli matrices in the usual representation,
kx (ky) is the quasimomentum along the x (y) direction,
|ψ(kx,ky)〉 ≡ [ψ1(kx,ky),ψ2(kx,ky)]T denotes a Bloch band
state with two pseudospinor components, g is the nonlin-
ear strength, B(kx,ky) = B[M + cos(kx) + cos(ky)], B is a
parameter that may be interpreted as the hopping strength,
M is related to the difference in potential strength between
the two lattice species, and Jx and Jy mimic the effect
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FIG. 1. The development of loop structure in the nonlinear Dirac-
Chern insulator model. The parameters chosen are M = −1, B = 2,
Jx = Jy = 1, kx = 0, (a) g = 1, (b) g = 4, and (c) g = 5.5. The full
spectrum over the 2D Brillouin zone is plotted in (d). (e) shows an
enlarged version of (d) near a looped band structure. The red and blue
curves in (e) illustrate two different interfering paths in a proposed
AB-effect experiment.

of Rashba-like spin-orbit couplings. Throughout this Rapid
Communication, all physical variables are assumed to be
scaled and hence in dimensionless units. The linear version
of the model here shares the same topological property with
the Haldane model already realized in cold-atom systems [44],
with its spinful counterpart [52] describing a quantum spin
Hall insulator also realized experimentally [53]. Therefore,
H[kx,ky,ψ(kx,ky)] is a representative and natural choice to
accommodate bosonic mean-field interactions and to motivate
experimental investigations.

Figures 1(a)–1(c) show the snapshots of the band structure
near ky = 0 at a fixed kx = 0. As expected from previous
theoretical and experimental studies of nonlinear Bloch bands
in zero- or one-dimensional systems [47,54–61], a self-
crossing loop structure emerges as g increases beyond a critical
value gc. Specifically, for g = gc, the bottom band starts to
develop a cusp [see the red circle in Fig. 1(b)]. For g > gc, this
cusp transforms into a self-crossing loop, with the self-crossing
point marked by the magenta circle in Fig. 1(c). Next, we
examine in Fig. 1(d) the complete band structure for the whole
2D Brillouin zone (BZ), with special attention paid to the
bottom band. There, the self-crossing loop structure is found
to form along both kx and ky dimensions. In particular, three
looped subbands have grown from the bottom mother band
(two of them at the edge of the shown BZ). Within the regime
of each individual looped structure, Eq. (2) yields four Bloch
states. Precisely at a self-crossing point of a looped subband,
two of the four Bloch states are degenerate. The Chern number
of the lowest band, which distinguishes between topologically
trivial and nontrivial phases in noninteracting Dirac-Chern
insulators, stays at the same value as its linear counterpart
(g = 0) until g = gc. For g > gc, though the bottom mother
band is still well separated from the upper band, its Chern
number becomes ill defined due to the emergence of the
self-crossing points. As such, it is necessary to study the
bottom mother band individually from the perspective of a
gapless topological phase.

Nonlinear Dirac cones. For the rest of our analysis, we
set Jx = Jy = 1 and let B ≡ B(0,0) = B(M + 2). A simple
calculation indicates that gc = 2B, beyond which Eq. (2) may
host four stationary solutions for one given set of kx and ky . By
considering Eq. (1) near one of the three self-crossing points
seen in Fig. 1(d), e.g., at kx = ky = 0, we obtain the following
energy solutions [51],

E±(kx,ky) = g

2
± 1√

1 − 4B2

g2

√
k2
x + k2

y, (3)

where + (−) stands for the upper (lower) energy branch around
a self-crossing point. These energy solutions are isotropic in
the kx-ky plane, linear with respect to the magnitude of the

overall wave vector k ≡
√

k2
x + k2

y . Analogous results linear
in both kx and ky are found near other self-crossing points. We
thus witness here the emergence of 2D self-crossing perfect
Dirac cones for g > gc, which we will refer to as nonlinear
Dirac cones (NDCs).

We next rewrite Eq. (2) by making use of the above-obtained
solutions and their corresponding eigenstates [51], arriving
at two effective Hamiltonians for the positive and negative
branches of the Dirac cone centered at kx = ky = 0,

heff,± = kxσx + kyσy ∓ 2B√
g2 − 4B2

√
k2
x + k2

yσz. (4)

That the two branches of the Dirac cone are described by
different effective Hamiltonians is simply because H specified
in Eq. (2) depends on the Bloch band state. As a consequence,
the two Bloch band states associated with the positive and
negative branches of the same Dirac cone are not orthogonal
in general. Of particular importance and interest, heff,± differ
from the familiar effective Hamiltonian of a conventional 2D
Dirac cone [9,10], in that only heff,± found here has a σz (mass)
term. The peculiar form of heff,± depicted in Eq. (4) has three
implications detailed below.

First, NDCs are robust against generic local perturbations,
similar to Weyl points in Weyl semimetals [12–15]. To
understand this, note that a generic perturbation in two-level
systems can be expressed in terms of the Pauli matrices σx ,
σy , and σz. As seen from heff,±, perturbations proportional
to σx or σy will only shift the location of the self-crossing
point of an NDC in the kx-ky plane, e.g., perturbation of
the form hxσx shifts the location of the self-crossing point
from (kx,ky) = (0,0) to (kx,ky) = (−hx,0). For a perturbation
proportional to σz, i.e., a perturbative mass term (which
opens a gap in conventional 2D Dirac cones), it can only
renormalize the value of B [62]. This preserves NDCs again
as long as g is not too close to gc. These understandings are
computationally confirmed in the Supplemental Material [51].
While a conventional 2D Dirac cone needs to be protected by
certain symmetries, NDCs here are protected by interaction.

Second, the σz term of heff,± may be interpreted as a mass
term. In that case, the mass m has to be momentum dependent,
which is an exotic and counterintuitive result. Along this line,
heff,± in Eq. (4) can then be rewritten as heff,± = ckxσx +
ckyσy + m±c2σz in the same manner as a Dirac particle, with
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c = 1, m = 2B√
g2−4B2

k. Further, the group velocity, i.e., the

gradient of the energy band with respect to k near a Dirac
point, is given by g√

g2−4B2
> 1. It depends on B and g, but

stays always larger than c = 1, indicating a “superluminal”
behavior. Namely, a quasiparticle described by an NDC may
travel faster than the effective speed of light in the system.
These features can be useful for the quantum simulation of
the so-called tachyonic particle [63,64]. For example, it is of
interest to look into the quantum Landau levels and Klein
tunneling of such exotic quasiparticles.

Third, around the self-crossing point of an NDC, an
interesting pseudospin texture arises. This can be appreciated
more clearly by specifically writing down the Bloch band states
in the NDC regime. Using heff,± in Eq. (4), one obtains the
following Bloch band pseudospinors,

|ψ±(kx,ky)〉 =
[

cos
(

θ
2

)
± sin

(
θ
2

)
eiφ(kx ,ky )

]
, (5)

with

tan[φ(kx,ky)] = ky

kx

, tan(θ ) = ∓
√

g2 − 4B2

2B . (6)

Hence, within the NDC regime, the orientation of the Bloch
state pseudospinor is in the (θ,φ) direction on the pseudospin
Bloch sphere, with θ being independent of kx and ky . For g

close to gc = 2B, the pseudospinor is aligned almost towards
the north or south pole, and only for g � gc, the pseudospinor
is aligned almost towards the equator. In general situations, the
pseudospinor may be aligned towards any direction. Consider
then a parallel transport of the vector |ψ±(kx,ky)〉 around
the Dirac cone for one complete cycle (φ → φ + 2π ) (note
that the Berry phase itself can be unrelated to any dynamical
evolution). Both |ψ+(kx,ky)〉 and |ψ−(kx,ky)〉 are found to
yield the same Berry phase γ , with

γ = i

∫
〈ψ±(kx,ky)| d

dφ
|ψ±(kx,ky)〉dφ

= πWc[1 − cos(θ )]. (7)

Here, Wc = 1 is the winding number of the pseudospinor
around a string pointing at the north pole. More generally,
Wc = 1

2π

∮
dφ

dξ
dξ , with ξ being an arbitrary parameter of a

cyclic path. In particular, the quantity πWc, the topological
part of the Berry phase [65], is by definition quantized in π .
However, the overall Berry phase γ for one NDC is apparently
not quantized. Rather, it changes continuously from γ = 0 to
γ = π , as θ changes continuously from θ = 0 (when g → gc

from above) to θ = π/2 (when g � gc). A computational
example without making any approximation is shown in Fig. 2
(red line and black squares). There, the Berry phase is zero in
the absence of an NDC. Once an NDC emerges within the area
enclosed by a cyclic path in the momentum space, γ becomes
continuously tunable with g. The computational results are in
full agreement with our theory. The features of γ shown in
Fig. 2 also indicate that γ can serve as an order parameter to
signify the generation of one NDC by interaction.

Detection of NDCs and topological invariant. A recent
study [48] demonstrated the detection of a conventional 2D
Dirac cone by use of an interference setup, very similar

FIG. 2. The red dashed line and black squares depict the Berry
phase γ associated with one nonlinear Dirac cone, obtained from
theory and from direct numerical results based on the time-dependent
GP equation. The blue line and circles are the adiabatic AB phase γAB

associated with two interfering paths enclosing the same nonlinear
Dirac cone, obtained theoretically or computationally. The system
parameters chosen are M = −1, B = 2, and Jx = Jy = 1. The two
interfering paths in the momentum space to generate the AB phase
are chosen as two small semicircles going around the nonlinear
Dirac cone, one clockwise and the other one counterclockwise. The
system is forced to quasiadiabatically move along the two paths with
dφ

dt
= 10−3.

to an AB-effect experiment [49]. The two interfering paths
enclosing a Dirac point are designed in the reciprocal
(quasimomentum) space, with the beam splitting and recom-
bination executed adiabatically by, for example, a certain
spin-dependent (in our case, sublattice-dependent) force [48].
Consider then this interference approach: Two interfering
paths share the same starting point [see Fig. 1(e)] and both
go around a Dirac point in a symmetric manner, with one
clockwise and the other one counterclockwise. In the NDC
regime with all other system parameters fixed, the θ parameter
given in Eq. (6) is a constant along each path. Hence only the φ

parameter [also defined in Eq. (6)] suffices to parametrize the
two paths. After the system has been forced to adiabatically
travel along the two respective paths, we look into their
quantum phase difference, called the adiabatic AB phase here.
Explicit implementations of how the initial Bloch state is split
and recombined, as well as how quasimomenta kx and ky are
adiabatically varied, are not needed in our computational and
theoretical studies below.

It is tempting to associate the adiabatic AB phase with
the Berry phase γ in Eq. (7). However, computational results
clearly indicate that they are different. As depicted by the blue
circles in Fig. 2, the adiabatic AB phase is zero in the absence
of NDCs (g < gc). However, as long as g > gc, the adiabatic
AB phase changes discontinuously to π . That is, contrary
to the continuous behavior of γ shown above, the adiabatic
AB phase is actually quantized in π . For the computational
results shown in Fig. 2, the two paths enclosing an NDC
are chosen to be two small semicircles. We have considered
other path geometries and the same results are obtained. The
experimentally measurable AB phase obtained here is thus
smoking-gun evidence of the formation of an NDC.
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Note that the detection of the AB phase necessarily involves
a process of dynamical evolution. Indeed, the system is
designed to adiabatically evolve along two different paths.
During this process, though φ changes very slowly at a small
rate ε, the system cannot be precisely on its instantaneous
Bloch states |ψ(kx,ky)〉. Instead, to the first order of ε, the
system’s actual time-evolving state |
(t)〉 is given by

|
(t)〉 = |ψ(kx,ky)〉 + ε|δψ(t)〉. (8)

This adiabatic perturbation to the first order of ε has a nontrivial
impact on the nonlinear HamiltonianH[kx,ky,
(t)] governing
the dynamics [66,67], resulting in

H[kx,ky,
(t)] = H[kx,ky,ψ(kx,ky)] + hNA + O(ε2), (9)

where hNA stands for the first-order nonadiabatic contri-
bution to the system’s instantaneous effective Hamiltonian
H[kx,ky,ψ(kx,ky)]. Using the first-order perturbation theory
and Eq. (5), we find that hNA is rather simple [51],

hNA = 1

2
σz

dφ(kx,ky)

dt
. (10)

Note that the first-order energy correction due to hNA,
i.e., ENA = 〈ψ(kx,ky)|hNA|ψ(kx,ky)〉, is simply given by
1
2 cos(θ ) dφ(kx ,ky )

dt
. As a useful observation, the two paths now

yield different ENA as energy corrections because their dφ(kx ,ky )
dt

has different signs.
Consider then the dynamical phase along each path, which

is obtained as an integral of E±(kx,ky) + ENA, i.e., the expec-
tation value of H[kx,ky,
(t)] = H[kx,ky,ψ(kx,ky)] + hNA,
over a time scale of the order ε−1. Clearly then, though ENA

is of the order of ε, with its impact accumulated over time of
the order ε−1, it can still make a contribution of the order of
ε0 to the dynamical phase. Further, we note that the dynamical
phase contributed by E±(kx,ky) is identical for two symmetric
interfering paths on the same branch of an NDC. Thus, only
ENA introduces an ε-independent dynamical phase difference
�γdyn between the two adiabatic paths, with

�γdyn = 1

2
cos(θ )

[∫ π

0
dφ −

∫ −π

0
dφ

]
= π cos(θ ). (11)

The adiabatic AB phase produced by the two interfering paths
is then given by �γdyn obtained above plus their geometric
phase difference. Recognizing that their geometric phase
difference is simply the previously found Berry phase γ

(dropping a negligible correction of the order of ε), we obtain

the adiabatic AB phase as the following,

γAB = γ + �γdyn = πWc. (12)

That is, �γdyn precisely cancels the nontopological part of the
Berry phase γ , yielding an adiabatic AB phase quantized in π .
This fully explains the computational results presented in Fig. 2
(see the blue dashed line and circles). Our theory here also
identifies the winding number Wc as an observable topological
invariant of NDCs. In our numerically exact calculations, we
also find that if the rate of change in φ is increased by ten
times from what is considered in Fig. 2, the quantization of the
AB phase is only slightly degraded due to nonadiabatic effects
beyond the first order of ε.

Discussion and conclusions. It is also of interest to discuss
the role of the system parameter M . In the noninteracting
Dirac-Chern insulator model, cases with |M| > 2 (|M| < 2)
represent a topologically trivial (nontrivial) phase [50], with
a topological phase transition at M = 2. The same behavior
is observed in the interacting case with g < gc. Interestingly,
with the emergence of NDCs [g > gc = 2B(M + 2)], regard-
less of the value of M , their topological invariant Wc stays
to be unity and the adiabatic AB phase remains quantized
in π . In particular, for g > 8B, phases with |M| > 2 and
those with |M| < 2 all have the same topological invariant
and hence they can be categorized into the same (gapless)
topological phase. This clearly shows the possibility of
two topologically distinct phases to become topologically
equivalent as an outcome of interaction [21], thus revealing
the interplay of topology and nonlinearity. About possible
experimental studies, one potential issue is the dynamical
stability [56] of our nonlinear two-band model. We have
checked that near a looped subband, the lower main band is
dynamically stable in the presence of perturbations that respect
the translational symmetry of the system (see Supplemental
Material [51]).

In conclusion, we have discovered a nonlinearity-induced
quantum phase transition from a known topological insulating
phase to a different gapless topological phase featured by
NDCs. The NDCs are robust against local perturbations
without symmetry restrictions. In addition, they have peculiar
pseudospin textures, remarkable band structures, and non-
quantized Berry phases. By showing that an adiabatic AB
phase is still quantized in π , we have identified a winding
number as a directly measurable topological invariant of such
nonlinear Dirac cones.
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