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Robust edge states in amorphous gyromagnetic photonic lattices
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We numerically study amorphous analogs of a two-dimensional photonic Chern insulator. The amorphous
lattices consist of gyromagnetic rods that break time-reversal symmetry, with the lattice sites generated by a
close-packing algorithm. The level of short-range order is adjustable, and there is no long-range order. The
topologically nontrivial gaps of the photonic Chern insulator are found to persist into the amorphous regime, so
long as there is sufficient short-range order. Strongly nonreciprocal robust transmission occurs via edge states,
which are shown to propagate ballistically despite the absence of long-range order, and to be exponentially
localized along the lattice edge. Interestingly, there is an enhancement of nonreciprocal transmission even at very
low levels of short-range order, where there are no discernible spectral gaps.
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Introduction. Topologically nontrivial bandstructures have
been the subject of intense research interest for nearly forty
years, starting from the discovery of the quantum Hall
effect [1,2] and its link to topological band invariants [3–5].
The quantum Hall system is an example of a “Chern
insulator”, the simplest class of topological insulator [6].
The theoretical conditions for realizing a Chern insulator are
(i) spatial periodicity (so a bandstructure can be defined)
and (ii) broken time-reversal symmetry (T ) [3,4]. Such
conditions are not limited to condensed matter, but can also
be achieved in suitably-designed photonic crystals [7,8]. In
recent years, several photonic Chern insulators, featuring
topologically-protected electromagnetic edge states, have been
demonstrated [9–15]. The field of “topological photonics” [16]
has been fruitfully extended into many other areas, including
anomalous Floquet insulators [17–21], crystalline and valley-
Hall insulators [22–25], and Weyl points [26–29]. Various
groups have also explored the realization of topological
band insulators using mechanical oscillators [30,31], acoustics
[32–35], and electronics [36].

Due to the flexibility with which photonic structures can
be designed and implemented, topological photonics provides
new opportunities to study the interplay of disorder and band
topology in two dimensions (2D), a topic of long-standing
theoretical interest. Topological band invariants, such as Chern
numbers, are defined in periodic systems with Brillouin
zones [3,4]; the quantum Hall case, where lattice periodicity is
broken by a uniform magnetic field, can be handled by defining
a magnetic Brillouin zone [3,37] (a photonic analog has been
demonstrated by Hafezi et al. [13,15]). On the other hand, the
introduction of weak disorder into a 2D T -broken system is
known to localize all or most of the Bloch states (although the
localization lengths can be very large) [38,39]. Any extended
states surviving in the bulk are percolating states that form
thin bands embedded in the spectrum of localized states [40].
The mobility gaps between these bands of extended states are
spanned by robust edge states [39]. These features have been
extensively investigated in quantum Hall systems [38–40], but
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Chern insulators of the “quantum anomalous Hall” type [5]
should have the same universal behavior, even though their
bands are not flat (i.e., not Landau-level-like) in the ordered
limit.

In this Rapid Communication, we present a numerical
study of 2D T -broken photonic lattices that are amorphous,
possessing short-range positional order but no long-range
order. The lattices consist of microwave-scale gyromagnetic
rods, with parameters very similar to previously implemented
gyromagnetic photonic crystals [10–12], except that the sites
are not placed periodically. We investigate the behavior of the
topological band gaps, and their edge states, as the level of
short-range positional order is varied (by tuning the packing
algorithm that generates the lattices). In the limit of zero
disorder, or perfect packing, the system is equivalent to
a Chern insulator of the “quantum anomalous Hall” type,
with nonflat bands [5,7–10]. In amorphous lattices, it is
known that spectral gaps can continue to exist if there is
sufficient short-range order. Such gaps have been found, both
experimentally and numerically, in T -symmetric amorphous
photonic structures [41–47]. We show that for T -broken
photonic structures, topologically nontrivial higher-order gaps
can likewise persist into the amorphous regime. Despite the
aforementioned theoretical arguments predicting that most 2D
states must be localized [39], we do not observe signatures of
localization due to the limited system size. We do, however,
find evidence for robust edge states, in the form of strongly
nonreciprocal transmission at frequencies coinciding with
the ordered lattice’s topological gaps. Consistent with the
concept of topological protection, these edge states can bypass
sharp corners, and exhibit ballistic scaling of dwell time with
propagation distance. Intriguingly, enhanced nonreciprocal
transmission is observed even when the short-range order is so
weak that the spectral gap cannot be discerned. This appears to
be consistent with the principle that robust edge states require
only a mobility gap, not a spectral gap. It is also reminiscent
of earlier findings, in T -symmetric amorphous structures, that
even after a gap appears to close due to disorder, remnant
effects such as Q-factor enhancements persist near the gap
frequency [45].

Before proceeding, we take note of three recent related
papers. First, Mitchell et al. have shown that topological edge
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states can be realized in an irregularly connected lattice of mag-
netically interacting gyroscopes [48], which can be regarded
as an amorphous mechanical Chern insulator. Second, Bandres
et al. have shown numerically that robust edge states can exist
in a T -broken quasicrystal [49]. Quasicrystals are lattices that
are not periodic, but possess hidden long-range order; in the
presence of T breaking, the spectrum is fractal and exhibits
topological “minigaps” spanned by edge states [49], similar
to the quasiperiodic Hofstadter model of the quantum Hall
system [37]. By contrast, the amorphous lattices studied here
have only short-range order, and no long-range order. Third,
Agarwala and Shenoy [50] have shown, with tight-binding
models, that various classes of topological insulator behavior
(including class A, or Chern insulators) can also occur on
random lattices.

Lattice design. We study 2D amorphous photonic lattices
consisting of microwave-scale gyromagnetic rods made of a
ferrite material (such as yttrium-iron-garnet), surrounded by
air. Similar structures have been used to experimentally realize
photonic Chern insulators with topologically protected edge
states [9–12]. The system is sandwiched between metal plates,
so that the fields are effectively 2D with only transverse-
magnetic (TM) modes: the electric field points out-of-plane
(along z), and the magnetic field points in the x-y plane.
Since the amorphous lattice sites are to be generated by a
packing algorithm (see below), we first study the case of
perfect packing, which corresponds to a triangular lattice.
We choose parameters so that the TM band structure of the
triangular lattice, shown in Fig. 1(a), exhibits topological
gaps. Specifically, we take lattice constant a = 30.91 mm
and rod radius r = 0.11a; the ferrite has dielectric constant
ε = 15, and is magnetically biased in the z direction to give
permeability tensor components μxx = μyy = 14, μzz = 1,
and μxy = −μyx = 10i. These choices are close to previous
experiments, except that those used square [10,12] and
honeycomb [11] lattices. The values of r, ε, and μij are kept
constant throughout the study.

Band gaps can be characterized by an integer �C, the
sum of the Chern numbers for the bands below the gap.
According to the bulk-edge correspondence principle, �C is
equal to the net number of topological edge states in that
gap [9]. In Fig. 1(a), we observe two topological band gaps,
at frequencies 4.382 GHz � f � 4.536 GHz (with �C = 1)
and 4.611 GHz � f � 4.672 GHz (with �C = −1). In the
nongyromagnetic case μ = 1, the topological band gaps close;
the second and third TM bands meet at Dirac points at the K

and K ′ points (the Brillouin zone corners), while the third and
fourth bands have quadratic and Dirac band-crossing points at
� and along the Brillouin zone boundary.

Next, we generate amorphous lattices using molecular
dynamics simulations [45,51]. Each simulation contains 400
disks, bidisperse with radius ratio 1.2 (50:50 distribution). The
disks are packed by steadily increasing their radii relative to the
area in which they are enclosed, until a target filling fraction
� is reached; the use of bidisperse disks allows larger � to
be achieved before jamming. The gyromagnetic rods are then
placed at the disk centers (and the disks are then discarded).
A length scale is chosen so that for rod radius r , the rod filling
fraction is the same as in the triangular photonic crystal of
lattice constant a. (Note that the final filling fraction of the rods
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FIG. 1. (a) Transverse-magnetic band structure for a 2D triangu-
lar photonic crystal. The Chern number C for each topologically
nontrivial band is indicated, and the topological band gaps are
highlighted in green. The structure (inset) consists of gyromag-
netic rods with radius r = 3.4 mm, nearest-neighbor spacing a =
30.91 mm, permittivity ε = 15, and permeability components μxx =
μyy = 14, μzz = 1, μxy = −μyx = 10i. The rods are surrounded by
air. (b)–(d) Amorphous lattices generated with packing parameters
� = 0.1, 0.4, and 0.7. (e) Spatial correlation function C(�r) for
different �. Each curve is averaged over 100 samples. Inset: close-up
of the nearest-neighbor correlation peak.

is substantially less than the disk filling fraction �.) Finally, the
lattice is truncated to the desired shape. Further details about
this procedure are given in the Supplemental Material [52].

The amount of disorder is controlled by �, which we call
the “packing parameter.” As seen in Figs. 1(b)–1(d), larger �

produces more ordered lattices. Even in the relatively ordered
case shown in Fig. 1(d), corresponding to � = 0.7, there is
no long-range periodicity. To quantify the positional order, we
calculate the correlation function [52]

C(�r) ≡ 〈�(r + �r)�(r)〉/〈�(r)〉2 − 1, (1)

where � = 1 inside the rods and � = 0 outside. The results
are shown in Fig. 1(e) for several values of �. Each curve is
averaged over 100 independent samples, and over 450 spaced-
out choices of r for each sample. The correlation decreases to
zero for large �r , corresponding to the absence of long-range
order. For all but the most disordered (� = 0.1) samples, we
observe a first-order correlation peak at �r ≈ a, indicating the
typical nearest-neighbor spacing. The prominence of this peak
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FIG. 2. (a) Spectral density of amorphous lattices with different
values of the packing parameter �. These results are obtained from
frequency-domain calculations for an amorphous lattice of 266 rods
distributed within a square region, surrounded by empty space, with a
point TM source of fixed current amplitude at the center. Each curve
shows |Ez|2 averaged over the lattice region, and over ten samples.
For � = 0.7, three spectral dips are observed, which diminish with
greater disorder (smaller �). (b) Isolation ratio IR = IAB/IBA versus
frequency, for transmission along the lattice edge. Each curve is
averaged over ten samples. There is no enhancement of IR at the
primary gap, but the two higher-order gaps show enhanced IR

corresponding to forward and backward transmission, respectively.
(c) Schematic for the calculation in (b). The upper edge is a perfect
electrical conductor (PEC), while perfectly matched layer (PML)
boundary conditions are applied on the other three sides. The isolation
ratio is calculated between the two points labeled A and B, near the
edge. Also shown is the steady-state real electric field Ez emitted by
a 4.448 GHz point source at A, with red and blue corresponding to
positive and negative values of Ez; the lattice packing parameter is
� = 0.7. (d) Close-ups of (a) and (b) in the vicinity of the isolation
ratio peaks.

is a measure of the level of short-range order, and we indeed
observe that it is stronger for larger values of �.

Bulk and edge states. Figure 2(a) shows an estimate
of the electromagnetic spectral weight of the amorphous
lattices, obtained from finite-element (COMSOL MULTIPHYSICS)
calculations of steady-state solutions for a point TM source in
a finite lattice surrounded by empty space. The field intensity
|Ez|2 is averaged over the lattice region, and then over ten
independent lattice realizations. For � = 0.7, we observe three
prominent dips, coinciding with the triangular lattice band
gaps shown in Fig. 1(a). With increasing disorder (smaller
�), the dips become less prominent, confirming that the band

FIG. 3. Robust TM edge propagation in amorphous lattices of
� = 0.5 with (a) circular and (b) triangular shape, and PEC along
all edges. The steady-state real electric field Ez is indicated in red
(positive) and blue (negative). Stars indicate point sources emitting
at 4.437 GHz.

gaps are induced by short-range order. This is consistent
with previous studies of T -symmetric amorphous photonic
lattices, which found photonic density-of-states dips conciding
with topologically trivial gaps of an “equivalent” crystalline
lattice [45,46]. Our results demonstrate that the same is true of
topologically nontrivial gaps.

In order to determine whether the two higher-order dips
in Fig. 2(a) are associated with edge states, we pick two
points A and B lying near a perfect electrical conductor (PEC)
boundary, and compute the isolation ratio IR = IAB/IBA,
where IAB is the field intensity |Ez|2 at B produced by a
constant-frequency point Ez source at A, and vice versa for
IBA. The results are shown in Fig. 2(b), where each curve is
averaged over ten independent samples of the same �. The
simulation setup is shown in Fig. 2(c). Perfectly matched
layers (PMLs) are placed along the other three sides of the
computational domain to completely absorb impinging waves.

Since T is broken by the gyromagnetic medium, electro-
magnetic wave propagation is nonreciprocal [53], and IR can
deviate from unity at any frequency. In Fig. 2(b), however, we
observe that the transmission is only strongly nonreciprocal
(large |IR|) in two frequency ranges, which correspond to
the second and third spectral dips in Fig. 2(a). The sign
of IR is different in the two ranges, consistent with the
opposite signs of �C in the two gaps. This shows that short-
range order can induce robust unidirectional transmission,
with characteristics highly similar to the topological edge
states of the gyromagnetic photonic crystal. Interestingly, in
Figs. 2(b) and 2(d) an enhancement of |IR| is observable
in those frequency ranges even for the � = 0.1 case, where
the disorder is so strong that the correlation function has no
nearest-neighbor peak [Fig. 1(e)] and there is no clear spectral
dip [Fig. 2(a)]. Note also that IR ≈ 1 throughout the primary
gap, which is topologically trivial in origin.

The spatial distribution of the Ez field is also shown in
Fig. 2(c), confirming that propagation occurs mainly along
the edge. Figure 3 shows field distributions for circular
and triangular boundaries, demonstrating propagation around
curves and sharp corners.

A more rigorous method for demonstrating the robustness
of edge propagation is to show that it is ballistic under
disorder. Ballistic topological edge transport has previously
been established in a perfectly ordered bulk lattice with a
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FIG. 4. (a) Dwell time dϕ/dω versus path length s, for amor-
phous lattices with different packing parameters � as well as the
perfectly ordered triangular lattice. Each symbol is averaged over
ten samples; error bars show the standard deviation. The calculation
procedure is explained in the text. The legend indicates fitted
values of the group velocity vg , where c is the speed of light.
(b) Semilogarithmic plot of the intensity I versus the distance from
the edge y, where I is the value of |Ez|2 averaged over positions to
the right of a point source, and over a frequency band and ten lattice
samples. The results show that the waves are exponentially localized
to the edge, I ∝ exp(−βy). Inset: plot of the fitted values of β versus
� (including � values omitted from the main plot for clarity).

deformed edge [54]. To discover whether edge propagation
in the amorphous lattices is similarly ballistic, we calculate
the dwell time dϕ/dω as a function of propagation distance
s along a straight edge. The simulation setup is similar to
Fig. 2(c), except that there are several point probes placed
at equally- spaced intervals near the edge [52]. Each probe
measures the local phase ϕ over 21 equally -spaced frequencies
in 4.4292 GHz � f � 4.4677 GHz; this range is chosen to lie
within the ordered lattice’s first topological gap, and coincides
with the peak in IR shown in Fig. 2(a). For each lattice
realization, ϕ is found to have a linear relationship with ω, with
coefficient of determination R2 > 0.9 for all tested samples in
the range 0.1 � � � 0.7. We then calculate dϕ/dω (where
ω = 2πf ) by a linear least-squares fit for each probe. The
procedure is repeated for ten independent lattice realizations
to obtain ensemble means. The results are shown in Fig. 4(a).
For each value of �, the mean dwell time appears to scales

linearly with s, indicating ballistic behavior. The slope is the
inverse of the ensemble-averaged group velocity vg . For large
�, vg is very close to the value in the triangular lattice, but it
is lower in more disordered lattices.

Finally, we verify in Fig. 4(b) that the propagating waves
are exponentially localized to the edge. The setup is similar
to Fig. 2(c), but with probes placed in a grid (with x spacing
1.1a and y spacing 0.75a, and 11 probes for each y). The
normalized intensity I = |Ez|2 is averaged over the probes,
over 21 equally spaced frequencies in 4.4292 GHz � f �
4.4677 GHz, and over ten independent lattice realizations for
each �. Using these results, we perform a fit I ∝ exp(−βy)
to extract the inverse penetration depth β, which is found to
increase with � (i.e., more ordered lattices exhibit stronger
confinement).

Conclusions. We studied amorphous lattices generated us-
ing a packing algorithm, with controllable levels of short-range
order [45,51]. For strong short-range order, the lattices exhibit
spectral dips that are obvious counterparts of the ordered
lattice’s photonic band gaps—not just the topologically trivial
primary gap, but also the topologically nontrivial higher-
order gaps. Strongly nonreciprocal, ballistic, edge-localized
transmission is observed at frequencies corresponding to the
topologically nontrivial gaps. This confirms the principle that
topological edge states should be protected against disorder;
in the photonic context, this protection had previously been
probed using localized defects or edge deformations overlaid
on an ordered bulk [9,10,54]. Moreover, edge state dominated
transmission is observed even when the short-range order is so
weak that the spectral dips are not discernible, which appears
to be consistent with theoretical arguments that edge states in
disordered systems rely on the existence of a mobility gap, not
a spectral gap [39]. The evidence is not conclusive, however,
because our sample sizes are too small to distinguish between
localized and extended bulk states (and hence to locate the
mobility gaps). Larger-scale numerical studies might be able to
identify the percolating bulk states, and probe their relationship
with the edge states.

The lattice parameters that we have chosen are consistent
with previously reported experiments [10–12]. Hence, these
amorphous photonic lattices may be a fruitful experimental
photonic platform for studying various effects involving
topological band structures and disorder, such as topological
Anderson insulators [55,56] and the floating or annihilation of
extended states [57–60].
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