
RAPID COMMUNICATIONS

PHYSICAL REVIEW B 96, 121118(R) (2017)

Investigation of the chiral antiferromagnetic Heisenberg model
using projected entangled pair states

Didier Poilblanc
Laboratoire de Physique Théorique, CNRS and Université de Toulouse, 31062 Toulouse, France

(Received 27 July 2017; published 27 September 2017)

A simple spin- 1
2 frustrated antiferromagnetic Heisenberg model (AFHM) on the square lattice—including chiral

plaquette cyclic terms—was argued [A. E. B. Nielsen, G. Sierra, and J. I. Cirac, Nat. Commun. 4, 2864 (2013)] to
host a bosonic Kalmeyer-Laughlin (KL) fractional quantum Hall ground state [V. Kalmeyer and R. B. Laughlin,
Phys. Rev. Lett. 59, 2095 (1987)]. Here, we construct generic families of chiral projected entangled pair states
(chiral PEPS) with low bond dimension (D = 3,4,5) which, upon optimization, provide better variational energies
than the KL Ansatz. The optimal D = 3 PEPS exhibits chiral edge modes described by the Wess-Zumino-Witten
SU(2)1 model, as expected for the KL spin liquid. However, we find evidence that, in contrast to the KL state,
the PEPS spin liquids have power-law dimer-dimer correlations and exhibit a gossamer long-range tail in the
spin-spin correlations. We conjecture that these features are genuine to local chiral AFHM on bipartite lattices.

DOI: 10.1103/PhysRevB.96.121118

Introduction. Topological order (TO) has been rationalized
in the last few decades [1,2] as a new type of order in two
dimensions (2D), beyond the well-known Ginzburg-Landau
paradigm. Importantly, it is at the heart of the rapidly
expanding field of quantum computing [3]. The fractional
quantum Hall (FQH) state of the 2D electron gas [4] is the
first topological ordered state discovered. The simple Laughlin
wave function provides a beautiful qualitative understanding
of the physics of the Abelian FQH state at filling fraction ν =
1/m as an incompressible fluid [5], while more involved wave
functions can also describe non-Abelian FQH states [6–8]. It
revealed the emergence of fractional excitations, the anyons,
a key feature of TO [1]. Anyons carry fractional charge [5] as
well as Abelian [9] or non-Abelian statistics [6,10]. An impor-
tant feature of FQH states is the existence of a bulk gap and
chiral modes providing unidirectional transport on the edge
[11,12]. More precisely, their edge physics can be described by
chiral SU(2)k Wess-Zumino-Witten (WZW) conformal field
theory (CFT) [13]. Recently, a matrix product state (MPS) rep-
resentation of the FQH states [14,15] enabled one to probe their
physical properties with unprecedented numerical accuracy.

In a pioneering work [16], Kalmeyer and Laughlin (KL)
have extended the notion of the FQH state to the lattice. When
localized on the lattice, the bosonic ν = 1

b
Laughlin state gives

rise to a spin- 1
2 chiral spin liquid (CSL) [17], closely related to

the resonating valence bond (RVB) state of high-Tc supercon-
ductivity [18]. Recently, fractional Chern insulators [19–21]
have set up a new route to realize FQH physics on the lattice.

Whether simple local lattice Hamiltonians can host chiral
spin liquid ground states [17] is one of the key issues that
determine whether or not such topological phases could be
realized experimentally. The original innovative proposal by
KL that the ground state (GS) of the frustrated triangular spin- 1

2
antiferromagnetic Heisenberg model (AFHM) is a CSL turned
out not to be correct, the GS of this model being magnetically
ordered. However, Bauer et al. [23] showed recently that, on
the kagome lattice (2D lattice of corner-sharing triangles), the
GS of the Hamiltonian H = ∑

�(ijk) Si · (Sj × Sk), the sum of
the chiral spin interaction over all triangles �(ijk), has the
universal properties of the ν = 1

2 Laughlin state. This CSL
was shown to be exceptionally robust under the addition of an

extra nearest-neighbor Heisenberg-like interaction (defining a
generic “chiral AFHM”), even of large magnitude.

Another alternative approach has been pursued, trying to
construct “parent Hamiltonians” for the Abelian [24,25] and
non-Abelian [26,27] CSL. Using a rewriting of the wave
function as a correlator of a 1 + 1 chiral CFT [28,29], the
simplest spin- 1

2 parent Hamiltonian on the square lattice
obtained by Nielsen et al. [22] consists of interactions between
all pairs and triplets of spins in the system. Since long-range
interactions might be hard to achieve experimentally in, e.g.,
cold atom systems [30], the authors argue that a similar
(Abelian) CSL phase is also hosted in a simplified local
Hamiltonian where all the long-range parts of the interaction
have been set to zero [22]. We shall adopt here their local chiral
AFHM which, introducing a slightly different parametrization,
reads

H = J1

∑

〈i,j〉
Si · Sj + J2

∑

〈〈k,l〉〉
Sk · Sl

+ λc

∑

�(ijkl)

i
(
Pijkl − P −1

ijkl

)
, (1)

where the first (second) sum is taken over nearest-neighbor
(next-nearest-neighbor) bonds and the last sum over all pla-
quettes of the square lattice. Pijkl makes a cyclic permutation
of the four spins of every plaquette in, e.g., the clockwise
direction. H breaks time reversal symmetry but preserves the
global spin SU(2) symmetry. It is the analog for the square
lattice of the chiral AFHM on the kagome lattice studied by
Bauer et al. [23]: The chiral interaction Si · (Sj × Sk) on the
triangle is replaced here by its generalization on the plaquette
and magnetic frustration is introduced via competing J1 and
J2 antiferromagnetic couplings. A schematic phase diagram
showing the (approximate) extension of the KL chiral spin
liquid is provided for convenience in Fig. 1. We shall here
focus on the two special points studied by Nielsen et al. [22]
and located in Fig. 1, supposedly in the CSL phase: J1 = 2,
J2 = 0, λc = 1, and J1 = 2 cos (0.06π ) cos (0.14π ) � 1.78,
J2 = 2 cos (0.06π ) sin (0.14π ) � 0.84, λc = 2 sin (0.06π ) �
0.375. Hereafter, we refer to the latter as the “J1-λc model”
and the “J1-J2-λc model,” respectively.
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FIG. 1. Schematic phase diagram of the chiral AFHM drawn from
Ref. [22] as a function of magnetic frustration J2/J1 and (relative)
amplitude of the chiral interaction λc/J1. The KL nature and the
boundary of the chiral spin liquid phase (blue region) was only
accessed from small cluster calculations. The location in parameter
space of the two models studied here are shown by (blue) dots.

Our strategy to explore the physics of the above model
is to use the tensor network framework [31–35]. One of the
motivations is to test whether some fundamental obstruction is
at play that prevents one to describe a gapped CSL phase with
2D tensor networks [36]. Previous attempts using projected
entangled pair states (PEPS) led to the discovery of critical
CSL exhibiting chiral edge modes [37–39]. PEPS are Ansätze
that approximate GS wave functions in terms of a unique site
tensor As

αβγ δ , where the greek indices label the states of the D-
dimensional virtual spaces V attached to each site in the z = 4
directions of the lattice, and s = ± 1

2 is the Sz component of
the physical spin. The site tensors are then entangled together
(i.e., contracted with respect to their virtual indices) to form
a 2D tensor network. A priori, all the 2D4 coefficients of the
site tensor can serve as parameters to optimize the variational
GS energy. However, the CSL bears a number of symmetry
properties that greatly constrains the PEPS Ansatz. Recently, a
classification of fully SU(2)-symmetric (singlet) PEPS was
proposed [40] in terms of the irreducible representations
(IRREP) of the lattice point group (C4v in the case of the 2D
square lattice). Since the CSL should be invariant under the
combination of a reflection R with respect to to any crystalline
direction (x, y, x ± y) and time reversal symmetry (i.e.,
complex conjugation), the simplest adequate PEPS site tensors
have the form A = A

(A1)
R + iA

(A2)
I , where the two real tensors

A
(A1)
R and A

(A2)
I transform according to the A1 (symmetric with

respect toR) and A2 (antisymmetric with respect toR) IRREP
[38,39]. These tensors have been tabulated in Ref. [40] for
D � 6, and their numbers for all virtual spaces V considered
in this work are listed in Table I. Following a previous study
of the nonchiral frustrated AFHM [41], we consider a general
superposition of all tensors of each class, the weights in the sum

TABLE I. Numbers of independent SU(2)-symmetric tensors for
the four different virtual spaces we consider, D � 5. The third (fourth)
column gives the number of A1 (A2) tensors and the last column the
total number of tensors in the A Ansatz. Note that all four types of
Ansätze exhibit a gauge-Z2 symmetry associated with the conserved
parity of the number of spin- 1

2 on the z = 4 bonds.

V D A
(A1)
R A

(A2)
I Total No.

1
2 ⊕ 0 3 2 1 3
1
2 ⊕ 0 ⊕ 0 4 8 4 12
1
2 ⊕ 1

2 ⊕ 0 5 10 8 18
1
2 ⊕ 0 ⊕ 0 ⊕ 0 5 21 12 33

being considered as variational parameters. As in the nonchiral
case, the energy or observables can be computed directly in
the thermodynamic limit using infinite-PEPS (iPEPS) corner
transfer matrix (CTM) renormalization group (RG) techniques
[42–45], making advantage of simplifications introduced by
the use of point-group symmetric tensors [41]. At each RG
step a truncation of the (Hermitian) CTM is done keeping
(at most) χ eigenvalues and preserving exactly the SU(2)
multiplet structure. Energy optimization [46–48] is performed
using a conjugate gradient (CG) method [49] up to a maximum
χ = χopt and then, eventually, one takes the limit χ → ∞
(using a “rigid” Ansatz) by extrapolating the data [41].

We now turn to the results. In Fig. 2 we show the scaling
of the iPEPS energies versus D2/χ for the two local chiral
Hamiltonians studied here, and different choices of the virtual
space V up to D � 5. Using linear fits, one obtains accurate
variational energies in the χ → ∞ limit, apart from D = 5
for which the CTM RG converges to unphysical (pairs of)
solutions beyond χ = 2D2. The exact GS energies obtained
on a small periodic 30-site cluster [22] (expected to give a
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FIG. 2. Scaling of the iPEPS variational energies (per site) vs
D2/χ for the two local chiral Hamiltonians studied here: (a) J1-λc

model; (b) J1-J2-λc model. The solid (open) symbols correspond to
fully optimized (fixed) tensors as explained in the text. A comparison
with the exact energy (per site) of a 5 × 6 torus [22] is shown. In
(b) the variational energy of the Kalmeyer-Laughlin (KL) spin liquid
obtained by Monte Carlo [22] is also shown.
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FIG. 3. Chiral entanglement spectra of the D = 3 PEPS op-

timized for the J1-J2-λc model (subtracting the GS energy for
convenience) for Nv = 8. The edge momentum K is defined mod-
π since the SU(2) generators are invariant under only sublattice
translations. (a) Even and (b) odd Z2 sectors are shown. The correct
SU(2)1 counting obtained for each quasidegenerate group of levels at
low energy (outlined by boxes when necessary) is indicated in red.

lower bound of the true thermodynamic values) provide a first
reference, showing that the iPEPS energies are remarkably
accurate. For the second model in Fig. 2(b), we have compared
our results to the variational energy of the KL Ansatz computed
with Monte Carlo [22]. We find that, even for the smallest bond
dimensions D = 3 (V = 1

2 ⊕ 0) and D = 4 (V = 1
2 ⊕ 0 ⊕ 0),

the iPEPS energy is lower than the energy of the KL CSL.
This provides solid arguments that these chiral SU(2)-invariant
PEPS are very good variational states. Hereafter we investigate
further their edge and bulk properties and point out similarities
and differences with the KL wave function.

Chiral edge modes. First, we have computed the entan-
glement spectrum (ES) of the optimized D = 3 PEPS on
an infinitely long cylinder C, bipartitioned into two semi-
infinite half cylinders CL and CR, C = CL ∪ CR. This can
be done exactly [50] on cylinders with up to Nv = 8 sites
of circumference. Li and Haldane [51] have conjectured
that, in chiral topological states, there is a deep one-to-one
correspondence between the true physical edge spectrum
and the ES [52,53]. The ES is obtained from the leading
eigenvector of the finite-dimensional D2Nv × D2Nv transfer
matrix of the cylinder, as originally proposed in Ref. [50], and
already applied to chiral spin liquids [38,39]. The ES shown in
Fig. 3 as a function of the momentum K along the cut clearly
reveal the existence of well-defined chiral branches linearly
dispersing as EK ∼ vK . One also sees quasidegenerate groups
of levels whose counting [in terms of SU(2) multiplets]
matches exactly the one of the SU(2)1 WZW CFT [13], as
expected in a KL CSL phase [54]. Note that the ES of the
optimized PEPS is remarkably similar to the one obtained for
another studied chiral PEPS [38,39], certainly belonging to
the same D = 3 chiral PEPS family, but far away in parameter
space. Although the same exact calculation cannot be realized
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FIG. 4. (a) Absolute value of the spin-spin correlations vs
distance (along some crystal axis direction x or y) for the D = 3 and
D = 4 (optimized) chiral PEPS and different environment dimension
χ (as shown in legends) on a semilog plot. The dashed lines are fits
according to exponential behaviors of the short- and long-distance
correlations. (b) Largest correlation length ξmax [obtained from the
linear fits in (a)] vs χ/D2, for both model parameter sets. (c) w(ξmax)
vs ξmax using the same symbols as in (b).

for Nv = 8 beyond D = 3, we conjecture that the SU(2)1 chiral
edge modes are genuine features of our chiral PEPS optimized
for Hamiltonian (1).

Bulk properties. The KL CSL is expected to have short-
range (spin-spin) correlations [16] as the bosonic ν = 1

2 FQH
state it derives from. We investigate now the correlation func-
tions of the PEPS Ansätze, and establish important differences.
We use the same definitions and CTM RG procedure as
described in the study of the frustrated AFHM and focus on the
two cases D = 3 (V = 1

2 ⊕ 0) and D = 4 (V = 1
2 ⊕ 0 ⊕ 0).

Figure 4(a) shows the spin-spin correlations versus distance
on a semilog plot. At short distance, we observe a rapid
exponential fall-off characteristic of the KL CSL. However,
our data clearly show additional exponential tails with much
larger characteristic lengths but with much smaller weights.
In other words, we can parametrize the correlation function
versus distance as

CS(d) =
∑

ξmin�ξ�ξmax

w(ξ ) exp (−d/ξ ) , (2)

where the short-distance decay is characterized by w(ξmin) � 1
while, at long distance, the slower decay exp (−d/ξmax)
takes over with ξmax � ξmin and w(ξmax) � 1. In fact, we
think that ξmax → ∞ when χ → ∞ [see Fig. 4(b)] while,
simultaneously, w(ξmax) goes very rapidly to zero. If, as
suggested in Fig. 4(c), w(ξ ) ∝ exp(−ξ/λ), where λ � 0.7 ∼
ξmin, CS(d) will show a typical stretched exponential form
at long distance, CS(d) ∼ (d/λ)

1
4 exp {−(d/λ)

1
2 }. In any case,

CS(d) should exhibit a “gossamer tail” which decays slower
than any single exponential function.

The dimer-dimer correlations are shown in Fig. 5(a). The
asymptotic long-distance behaviors can always be fitted as
exponential decays. The correlation lengths extracted from
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FIG. 5. (a) Absolute value of the dimer-dimer correlations vs
distance d (along some crystal axis direction) for the D = 3 and
D = 4 (optimized) chiral PEPS and different environment dimension
χ (as shown in legends) on semilog and log-log (inset) plots. The
dashed (red) curve is a power-law d−α fit. (b) Correlation lengths
obtained from the fits of the long-distance correlations, shown vs
χ/D2, for both model parameter sets.

the fits are found to diverge linearly with χ , for both models
studied, as shown in Fig. 5(b). At short distance, the data are
better fitted as a power law d−α , although with a large exponent
α � 4.5, rather than as an exponential. Thus, the power-law
behavior takes over at all distances when χ → ∞. This
suggests a form of emerging U (1)-gauge symmetry typical of
dimer liquids [55] or RVB states [56–59] on bipartite lattices.

Summary and outlook. Using a previous symmetry classi-
fication of SU(2)-invariant PEPS we have constructed simple
families of chiral PEPS on the square lattice. Using iPEPS
supplemented by a CG algorithm, we have optimized these

PEPS with respect to the local chiral (frustrated) AFHM,
believed to host a CSL phase of the same class as the ν = 1

2
bosonic FQH liquid. The energy optimizations reveal very
competitive Ansätze (better than the KL Ansatz) even for small
bond dimensions D = 3 or D = 4. As expected in such a CSL
phase, we find clear evidence of SU(2)1 chiral edge modes.
However, bulk properties turned out to have fundamental
differences compared to a FQH gapped liquid: Although
spin-spin and dimer-dimer correlations seem qualitatively
different, both seem to reveal long-range behaviors. Although
detailed data have been provided for two particular points
in parameter space, a similar behavior has also been found
between those two points. We conjecture that this may well
be realistic features of the GS of (1) which would host
in fact a critical CSL. Certainly, this does not contradict
the results of Ref. [22] showing that, on small clusters, the
KL state is an extremely good Ansatz for (1). Indeed, the
short-range properties of our critical chiral PEPS are also likely
to be extremely close to those of the KL state so that only the
long-distance properties can distinguish them. Interestingly,
it was proved that any strictly short-range quadratic parent
Hamiltonian for chiral free fermions is gapless [36]. It may
well be that this extends to interacting local Hamiltonians, in
agreement with our findings. This would also agree with the
fact that the CFT wave function derived using the null vectors
of SU(2)1 [22,29], i.e., the KL state, has a parent H that is
long range.
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