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Anisotropic chiral magnetic effect from tilted Weyl cones
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We determine the antisymmetric current-current response for a pair of (type-I) tilted Weyl cones with opposite
chirality. We find that the dynamical chiral magnetic effect depends on the magnitude of the tilt and on the angle
between the tilting direction and the wave vector of the magnetic field. Additionally, the chiral magnetic effect is
shown to be closely related to the presence of an intrinsic anomalous Hall effect with a current perpendicular to the
tilting direction and the electric field. We investigate the nonanalytic long-wavelength limit of the corresponding

transport coefficients.
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Introduction. In classical electrodynamics, magnetic fields
always induce currents that are perpendicular to the mag-
netic field direction due to the Lorentz force. However, in
quantum electrodynamics, a current can also be generated
in the same direction as the magnetic field. This was first
realized for massless fermions in particle physics [1,2]. It
is a consequence of the fact that quantum mechanically a
magnetic field quenches the kinetic energy perpendicular
to its direction and also spin polarizes the lowest Landau
level. As a result, massless fermions only obtain a drift
velocity along the magnetic field with an opposite sign for
opposite chiralities. Inducing an imbalance between the two
chiral species then gives a net current along the magnetic
field direction known now as the chiral magnetic effect
(CME).

Massless chiral fermions also occur as low-energy quasi-
particles in the recently discovered Weyl (semi)metals [3—7].
These quasiparticles do not move at the speed of light,
as in elementary-particle physics, but rather at the Fermi
velocity. Additionally, the effective Weyl cones with different
chirality are in a real material always connected by the full
band structure, and hence electrons can be transported from
one cone to another by applying both an electric and a
magnetic field [8]. In particle physics, the same phenomenon
occurs due to the breaking of chiral symmetry by quantum
corrections. This breaking of chiral symmetry due to the
renormalization of ultraviolet divergencies is called a chiral
anomaly and causes the difference between the numbers of
particles with positive and negative chirality to be no longer
conserved [9-11].

The main difference with particle physics is that Lorentz
invariance is not enforced in a condensed-matter material.
This gives, besides a velocity that is smaller than the speed
of light, also the possibility that Weyl nodes are separated
in energy-momentum space. Splitting them in the momentum
direction gives rise to a topological anomalous Hall effect
[8], whereas splitting them in the energy direction is exactly
the situation of most interest for the CME [2,12]. Indirect
measurements of the chiral magnetic effect have recently been
made by the observation of a negative magnetoresistance

“e.c.i.vanderwurff@uu.nl

2469-9950/2017/96(12)/121116(5)

121116-1

[13-16]. Another interesting possibility is tilting the Weyl
cones, meaning that the slope of the dispersion relation is not
the same in opposite directions [17,18]. Materials that exhibit
such tilted Weyl cones are of type I if the tilt is relatively small
and of type II if the cones are overtilted such that the electron
and hole dispersions intersect the energy plane of the Weyl
node itself [19-21]. Moreover, the tilt is affected and can even
be generated by disorder and interaction effects [22-24]. It is
thus of considerable interest to investigate what such a tilt does
to the chiral magnetic conductivity of a Weyl (semi)metal.

The chiral magnetic conductivity is in principle a function
of the wave number and frequency of the applied magnetic
field [25]. When calculating the long-wavelength limit, the
order of limits is crucial and we need to distinguish the case
in which the Weyl nodes are located at the same energy and
the case in which they are not [26-29]. Only when the chiral
imbalance of the two Weyl nodes is exactly opposite to their
energy separation, is there a vanishing current in the static
limit [12,30,31].

Here, we reconsider these subtleties for a pair of type-I
tilted Weyl cones. We first illustrate the short-wavelength
physics involved by calculating the full frequency and wave-
number dependence of the effective CME for a transverse
electromagnetic wave propagating along the tilting direction.
For arbitrary magnetic field directions we focus on the
long-wavelength response. We find that the chiral magnetic
conductivity is anisotropic and in general nonuniversal, even
though the chiral anomaly is unmodified by the tilt. Our results
for the homogeneous and static limit are summarized in Fig. 4.

Current-current response function. We consider a pair of
Weyl cones with opposite chiralites &= that are doped with
chemical potentials @y = u + s, defined with respect to
the Weyl nodes, as depicted in Fig. 1. The chiral chemical
potential us indicates a chiral population imbalance that can
be created by applying an electric field pulse with a component
parallel to an already present magnetic field. We also allow
the Weyl nodes to be split up in energy, which we denote
by AE = E; — E_, and we comment on the effect of this
later on. The topological anomalous Hall effect, however, is
well understood and therefore not discussed throughout the
following. Furthermore, we consider for simplicity cones with
an isotropic Fermi velocity vg, which is straightforwardly
generalized to the anisotropic case.
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FIG. 1. Illustration of a band structure with two imbalanced Weyl
cones at chiral chemical potentials ;4 and node energies E, both
tilted in the same direction t.

Tilting the cones in a direction t can be achieved in two dis-
tinct ways: Either we introduce a momentum-dependent chiral
chemical potential us(k) = pus — hvgk - t, or a momentum-
dependent chemical potential u(k) = u — hvgk - t, where ik
is the momentum. Only the latter replacement breaks inversion
symmetry [32]. Physically, breaking inversion symmetry
corresponds to tilting the two cones in the same direction
(cf. Fig. 1), while inversion symmetry is preserved upon tilting
the two cones in opposite directions. In this Rapid Communi-
cation we perform all calculations explicitly in the case that
inversion symmetry is broken, and we comment on the other
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case in our discussion. Hence, the appropriate Hamiltonian
reads (A = 1)

HK) = (vik -0 — uso®)t* + (vpk - t — )% %, (1)

where t are the Pauli matrices acting in orbital space and o
in spin space, complemented by the 2 x 2 unit matrices 7°
and ¢°. The Hamiltonian has four distinct eigenvalues o Ey +
vrk -t — py, with Ex = vp|k| the dispersion relation of the
massless fermions and o,0’ = . Here, we consider type-I
(semi)metals, meaning that we restrict ourselves to 0 < ¢ < 1
for t = |t|. For simplicity, we consider the two cones to have
the same absolute value for the tilt 7, but also this is easily
generalized.

In order to calculate the response to an externally applied
magnetic or electric field, we couple the fermions with charge
—e to an external vector potential A via the minimal coupling
prescription k — k 4+ eA. Next, we perform second-order
perturbation theory in the external gauge field to obtain the
current-current response function i (q,w; t). In the process,
the subtraction of the two Dirac seas of the cones leads to
the elimination of a logarithmic ultraviolet divergence. In
terms of the frequency ot = w + i0, the antisymmetric part
of the retarded current-current response function IT;(q,w; t) =
€i1T17(q,w; t)/2 reads

,k+q

Ne(Ex — 0'145(K)) — 0’0" Np(Ex+q — 0" po(k + (1))} @)

ot —vpq-t+0'Ex —0"Exq

4qt-k)—(q-tk

o
k| lk + qi

In Eq. (2) we denoted the Fermi-Dirac distribution by Ng(x) =
(e**sT 1+ 1)~! and all three sums run over o,0’,0" = +.
Physically, the sum over o accounts for the two cones, whereas
the sums over o’ and o account for the four possibilities for
particle-hole pairs in a chiral cone consisting of two touching
bands. In the limit t = 0 the expression in Eq. (2) reduces to the
well-known result for a three-dimensional chirally doped Weyl
semimetal [33]. Including a tilt alters the energy-dispersion
relation and yields an additional term in the interaction vertex,
resulting in the last term in the structure factor in Eq. (3).

The antisymmetric part of the current-current response
function in Eq. (2) is in general [34] spanned by a linear
combination of the vectors q and t, i.e., we can decompose
1t as

iM(qo™;t) = o™ (q0)q + o *"F(q.0)0n.  (4)

As explicitly indicated, this gives rise to two distinct effects:
a chiral magnetic effect and a tilt-induced planar intrinsic
anomalous Hall effect (AHE) [35-37]. The corresponding
currents read

JME(q,0) = 0™ (q,0)B(q,w), Q)

AHE AHE
J

(q,0) = 0™ (q,0)t x E(q,0), (6)

—0 : 3
Ik + q|[k]|

(

in terms of the chiral magnetic and anomalous Hall conductiv-
ities 0“ME(q,w) and o*ME(q,w), respectively. The intimate
relation between these two effects is even more clear in
relativistic notation, where we have that [TV = je* v Pq,
and thus J* =TI"VA, = €“**VP, F,,/2, where F,, is the
Faraday tensor and P* = (0 “ME o/HEt) elegantly combines
the two conductivities. Note that the gauge invariance of the
result is then also manifest.

In the following, we discuss the tilt dependence of both ef-
fects separately. In principle, both 0 “ME(q,w) and o *HE(q,w)
depend on the angle between q and t. In order to make
analytic progress, however, we specialize to zero temperature
and first consider as an illustrative example the propagation
of a purely transverse electromagnetic wave (light) with
q || t for arbitrary wave numbers and frequencies. This case
correspondsto B L t, E L t,and B L E, as the magnetic field
is given in momentum space by B(q,w) = iq X A(q,w) =
q x E(q,w)/w, and gives an effective CME response that,
interestingly, is a combination of the chiral magnetic and
anomalous Hall effects.

Effective chiral magnetic effect for a transverse
wave with q | t. In the above case, the total current
along the magnetic field is determined by the -effec-
tive CME conductivity o ™F(q,w) = iq'Tl;(q,0*;t)/¢> =
o ME(q,w) + o AME(q,w)wt /g, with g = |q|. The details of the
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FIG. 2. Plot of the real (solid lines) and imaginary (dashed lines)
part of STME for 24, /vrg = 25 and for t = 0 (red, green) and ¢ =
1/3 (blue, orange). The left plot shows the behavior for small w/vrq,
whereas the right plot shows the resonance for larger values of w /vrq.
The black dotted-dashed lines indicate the static and homogeneous
limit for t = 0.

calculation can be found in the Supplemental Material [38]. Ul-
timately we find for the effective chiral magnetic conductivity

LGRS S (CAPRLIN BE)
4m? —~ Vg Vrq

The dimensionless function SSME(x,y;r) captures all
frequency, wave number, and tilt dependence of the
conductivity. It is given by

2
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in terms of the dimensionless functions
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H,,(x,y;t) = log (1 +

The expression for the conductivity in Eq. (7) has a nontrivial
dependence on the wave number ¢ and frequency w of the
externally applied field. In fact, it is a function of the fraction
w/vrq, giving a different result in the homogeneous limit
and the static limit. Indeed, in the static limit (w/vpg — 0),
we find the well-known [8,19] universal result e’us/272,
whereas in the homogeneous limit (w/vpqg — 00), we find
the tilt-dependent result

2
lim 0 ™ (g, ) — [1 —2l(t)+r1(z)i]%, (1)
= vrq | 27
in terms of the function
1 L+6) 1m0l
I =~log(— | -5 2= 12
® 213 Og(l—t) 12 3 12)

We thus obtain the result e?j5/6m2 for the homogeneous
limit of Eq. (11) if # =0 [29]. The function I(¢) diverges
upon taking the limit + — 1. The physical reason for this
divergence is that then the cones are tilted up to the point
that the density of states becomes infinite, thus resulting in an
infinite conductivity. In fact, the conductivity in Eq. (11) is due
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FIG. 3. Anisotropic behavior of Re[SME] for r =1/2 as a
function of the angle ¢ and the radial coordinate w/vrg. In the
static (small radius) and homogeneous (large radius) limit, we obtain
the isotropic results 1 and (1 — ¢2)I(¢) >~ 0.3.

to the presence of the in-plane anomalous Hall effect formally
always infinite in the homogeneous limit /vpqg — 00. Note,
however, that for light propagation, we have that w/q is equal
to the speed of light in the material.

We plot the full dependence of the real and imaginary
part of SSME(w* Jvpg — t,1L6 /VFq,t) 0N w/VEq for a fixed
value of u,/vpg and different values of the tilt 7 in Fig. 2.
When ¢ = 0, the real part interpolates between the value 1
in the static limit and 1/3 in the homogeneous limit [33,39].
Additionally, there is a resonance at w = 2., after which the
conductivity goes to zero as 1/w. This resonance is effectively
shifted to infinity in the homogeneous limit. For a nonzero tilt
t, the static limit remains unchanged and in the homogeneous
limit the real part of the conductivity diverges as tI(¢)w/vrq,
rather than becoming constant as in the case of zero tilt. The
resonance at @ = 2, remains present at nonzero tilt but
becomes broader, as its width is now set by 2u,, /(1 = t). Note
that the conductivity JEME(q,a}) depends in a highly nonlinear
way on the chiral imbalance 1t5. Theoretically, this implies that
the CME is not fully determined by the triangle diagram of
the chiral anomaly. This is only true in the long-wavelength
limit [40,41].

At this point it is important to discuss why the conductivity
is finite in the static limit in equilibrium. In deriving Eq. (2)
a logarithmic divergence was avoided by a cancellation of the
Dirac-sea contributions of the two cones. This cancellation
is correct up to a constant, which is proportional to the
energy separation AE = E,; — E_ of the Weyl nodes [42-44].
Hence, our answers for the static limit and Eq. (11) only
apply when the energy separation between the nodes is zero.
If that is not the case, then the true equilibrium situation
corresponds to the situation where the chiral imbalance is
exactly canceled by the energy separation between the Weyl
nodes, i.e.,2us = uy — - = —AE. Using this renormaliza-
tion condition, we find that the chiral magnetic conductivity is
zero in equilibrium, as expected. We will follow the same
procedure when we consider a general angle between the
externally applied magnetic field and the tilt direction.

Angle dependence of the chiral magnetic effect. We define
¥ to be the angle between q and t, such thatq - t = gt cos ¥ =
qt,. For arbitrary angles ¢+ we cannot perform the necessary
integrals analytically for all wave numbers g and frequencies
. However, we can investigate the tilt dependence of the
long-wavelength limit of the conductivity for arbitrary angles.
To do so, we take the limit ¢ — 0 in the integrand of Eq. (2),
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FIG. 4. Results for the long-wavelength limit of the chiral
magnetic conductivity. We show the cases (I) where 2ius = —AE and
(II) where the Weyl node separationis zero, i.e., AE = 0. The zero-tilt
results are [28,29] (bottom, left) e?AE /672, and (bottom, right)
e’ j15/6m?. The response in the second row is sometimes referred
to as gyrotropy.

while keeping w/vrq fixed. Keeping in mind that we are
not considering a possible topological contribution to the
anomalous Hall effect, we find in general the interesting
relation o AHE(q, ) = o ™ME(q,w)/vp(1 — t?) with

s o™
oMo =~ SCME(— - t;t). (13)
T Vrq

The dimensionless function SCME(x; t) is given by

(x +1)H(x;t)

CME 1) =
ST D 2N(x:t)

(1 =11 = x*) [1

N2(x,t) :| 14

in terms of N(x;t)=.,/(1 -1 —x2)+ (x + 1)),
H(x;t)y=)Y__, olog[(x —o)M,(x;t)], and finally also
Ms(x;) =[1 4+ N ) +x](1 —oty) — t* — tHZ)(l + ox)
[38]. In Fig. 3 we show the resulting angular dependence
of the conductivities. In the static limit we have that the
chiral magnetic conductivity is equal to e’us/27* and is
independent of the tilt [19]. In the homogeneous limit we
find the result (1 —2)[(t)e*us/2m> for all angles [45].
Again, we need to add an appropriate renormalization
constant for AE # 0 such that the chiral magnetic current
is zero in equilibrium. Using this subtraction procedure,
which in particle physics amounts to adding a Bardeen
counterterm [44], we find a general answer that depends on
us and AE and modifies the results in the homogeneous
limit. We displayed the final results for the special cases of
equilibrium and zero energy separation between the cones in
Fig. 4.

Frequency dependence of the anomalous Hall effect. As
advertised, the tilt induces another interesting effect, namely,
a planar intrinsic anomalous Hall effect with a current given
by Eq. (6) that is perpendicular to both the external electric
field and the tilting direction. Apart from the long-wavelength
limit following from Eq. (7), we are also able to obtain the full
frequency dependence of the homogeneous anomalous Hall
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FIG. 5. Plot of the real (solid lines) and imaginary (dashed lines)
parts of the function SAE(w* /u,;t) for t = 1/3 (red, green), and
t = 1/2 (blue, orange) [35]. The black dotted-dashed line indicates
the tilt-independent limit.

conductivity as [38]

O'AHE(O,CL)) —

&2 ot
o ouaSAHE(—; r), (15)
TV Mo
in terms of the dimensionless function

1 !
SYMEyi) = =25+ ) 0 Loy Doy (0,1/y30), (16)

where L,(y;t) = [y?t> — (2 — 0y)*]/16yt®> and again we
encounter the functions H,, (x,y;t) from Eq. (10). This result
was recently obtained in a different way both analytically
[35,36] and numerically [37]. In the zero-frequency limit the
conductivity reduces to o*HE(0,0) = I(1)e*us/2m vy, which
corresponds exactly to the slope of the linear divergence in
Eq. (11). We plot the dependence of the real and imaginary part
of SAME(wt /1u,1) on w/ i, in Fig. 5 for several magnitudes
of the tilt. Again, we observe a resonance behavior around
w =24, similar to the one in Fig. 2, because the current
response in that figure is dominated by the AHE at large
frequencies.

Discussion. We have shown that the electric and magnetic
response of a pair of tilted Weyl cones is in general nonuniver-
sal and depends on the magnitude of the tilt and on the angle
between the tilt direction and the wave vector of the magnetic
field. However, the chiral anomaly is due to the lowest Landau
level, which only obtains a change of slope due to a tilting
of the cones [2]. Hence, we expect the chiral anomaly to be
unmodified and thus isotropic. Using the relation between the
current-current correlation function and the triangle diagram
in the static (adiabatic) limit, we find for the time derivative of
the chiral number density ns = n, —n_,

d 2 +
% = lim %SCME<:{)— - t”;t)E ‘B. (17

In the static limit we have SME(w™ /vpg — #);t) — 1, such
that we indeed find an unmodified chiral anomaly.
Additionally, we showed that the chiral magnetic effect
is closely related to an in-plane tilt-induced anomalous Hall
effect, for which we calculated the dynamical conductivity.
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We have also performed all these calculations in the case that
inversion symmetry is not broken, corresponding to tilting the
Weyl cones in opposite directions. An important consequence
is that in the long-wavelength limit the anomalous Hall effect
becomes proportional to 2, instead of 25, i.e., o AHE(0,0) =
(e u / 27%vp. The chiral magnetic effect, however, remains
proportional to 2us due to Bloch’s theorem [46].
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