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Spectral properties and the Kondo effect of cobalt adatoms on silicene
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(Received 26 May 2017; revised manuscript received 5 September 2017; published 29 September 2017)

In terms of the state-of-the-art first-principles computational methods combined with the numerical
renormalization-group technique the spectroscopic properties of Co adatoms deposited on silicene are analyzed.
By establishing an effective low-energy Hamiltonian based on first-principles calculations, we study the behavior
of the local density of states of Co adatoms on external parameters, such as magnetic field and gating. It is shown
that the Kondo resonance with a Kondo temperature of the order of a few kelvins can emerge by fine-tuning the
chemical potential. The evolution and splitting of the Kondo peak with external magnetic field is also analyzed.
Furthermore, it is shown that the spin polarization of an adatom’s spectral function in the presence of magnetic
field can be relatively large, and it is possible to tune the polarization and its sign by electrical means.
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I. INTRODUCTION

The discovery of graphene, a two-dimensional (2D) honey-
comb lattice of carbon atoms, in 2004 [1] spurred an interest in
other 2D materials, especially those sharing graphene’s crystal
structure. The search was motivated by the hope that such
materials would also share the defining feature of graphene,
i.e., the presence of Dirac cones in their electronic structures
[2]. The suppression of the backscattering characteristic of
Dirac fermions should then lead to similarly high carrier
mobilities [3–6] and possible use of graphene siblings in
ultrafast electronic devices [7–11]. The continuously growing
list of elements and compounds for which the existence of
such graphene analogs was predicted theoretically and, in
some cases, confirmed experimentally includes Si (so-called
silicene) [12–18], Ge (germanene) [12,13], Sn (stanene)
[19,20], Al (aluminene) [21,22], and hexagonal BN (white
graphene) [23].

Of these, silicene is particularly interesting thanks to its
compatibility with the current Si-based electronic technology.
The first proof-of-concept field-effect transistor made out
of silicene has already been demonstrated [24]. Many of
the characteristic properties of graphene are predicted to be
present also in its silicon counterpart. The band structure of
free-standing silicene exhibits the expected Dirac cones [12],
which can be preserved also on suitably selected substrates
[25]. The zigzag edges of silicene nanoribbons are predicted
to be spin polarized [12,26,27], just like in the case of graphene
[2]. However, some notable differences also exist between the
two materials. While graphene is planar, in silicene the two
sublattices are shifted vertically (buckling) because of a larger
in-plane lattice constant (weaker π bonds) and the element’s
preference for forming sp3 hybrids (no graphite analog exists
for Si). Consequently, the π and σ bands are hybridized.
The spin-orbit (SO) interaction in silicene is three orders of
magnitude stronger than in graphene and is responsible for a
small 1.5 meV gap in the electronic structure [28,29]. This may
lead to the realization of the spin Hall effect in experimentally
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accessible temperatures. The symmetry-breaking effect due to
buckling opens an interesting possibility of fine-tuning the gap
using the vertical electric field [30,31].

Another way of affecting the properties of 2D materials
is by deposition of magnetic adatoms on the surface. In fact,
the presence of impurities has been invoked to explain the
spin-relaxation time in graphene [32]. Besides modification of
material properties, individual magnetic adatoms themselves
can pose very interesting objects to study. This is because
strong coupling between localized states of adatoms and the
band of a 2D material can result in various nontrivial effects.
One such effect, which has been widely studied in the context
of quantum dots and molecules, is undoubtedly the Kondo
effect [33]. In this effect the magnetic moment of confined
electrons, either in an adatom or a quantum dot, becomes
screened by surrounding mobile electrons. This results in the
formation of a resonance in the local density of states at the
Fermi level [34]. The Kondo effect due to the presence of
magnetic adatoms has already been considered in the case
of graphene [35,36]. Moreover, the spectroscopic properties
of Co adatoms on graphene have also been examined [37],
and recently, the presence of the Kondo effect has been
reported [38]. Thus, while there are several considerations of
spectroscopic properties of magnetic adatoms on graphene, not
much is known about the spectral features and, in particular,
the Kondo effect for other 2D materials, such as silicene. The
aim of this paper is therefore to shed light on the physics of Co
adatoms on silicene, with an emphasis on the Kondo regime.

This paper is organized as follows. In Sec. II we discuss the
first-principles methods used to determine the lowest-energy
geometry and the density of states (DOS) of silicene with a Co
adatom. Section III is devoted to numerical renormalization-
group calculations. First, we formulate the effective Hamil-
tonian and describe the method, and then we discuss the
numerical results. The paper is summarized in Sec. IV.

II. FIRST-PRINCIPLES CALCULATIONS

The first-principles calculations were performed using the
generalized gradient approximation (GGA) of the density
functional theory (DFT). The specific method applied was the
full-potential linearized augmented plane wave (FLAPW) [39]
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FIG. 1. Three possible high-symmetry positions of a Co adatom
over the silicene plane. The two silicene sublattices are marked A and
B, with B being the higher one. Note that because of the buckling
positions 1 and 3 are nonequivalent.

as implemented in the WIEN2K package [40]. The Perdew-
Burke-Ernzerhof parametrization [41] of the exchange po-
tential was used in all the cases. The 2D Brillouin zone
(2D BZ) integration was performed using the mesh densities
corresponding to several hundreds k points (or more) in
the single-unit 2D BZ. The convergence criteria for energy,
charge per atom, and forces were set to 10−4 Ry, 10−3e, and
2 mRy/a.u., respectively. In all the calculations the silicene
planes were separated by 14 Å, ensuring the lack of hopping
between the neighboring planes.

In the first step the lattice constant and the sublattices’
displacement of bulk silicene were optimized. For the lowest-
energy configuration we found the in-plane lattice constant
and the vertical displacement to be equal to a = 3.86 Å and
� = 0.46 Å [42], respectively, in good agreement with the
previous calculations [12,28]. When the spin-orbit interactions
were included in the calculations the small band gap of �E ≈
1.5 meV separating the tips of the Dirac cones appeared in the
band structure, also in good agreement with the literature [28].

Next, we compared three possible high-symmetry locations
of the Co adatom over the silicene. These are indicated in Fig. 1
and include the locations over two nonequivalent lattice sites
(1 and 3) and also the position over the center of the hexagon
(2). The calculations were performed using 3 × 3 supercells
with the full relaxation of the atomic positions within the
supercell. It has been found, in agreement with earlier works
[43,44], that the order of the total energies is as follows:

E2 < E1 < E3;

that is, the central position 2 is the most favorable energetically,
followed by the position over the “lower” sublattice A. The
ground state is separated from the other two configurations
by �ETot ≈ 0.17 Ry. These conclusions were additionally
confirmed by 4 × 4 calculations for cases 1 and 2 with the
same overall results.

In order to make sure that the size of the supercell used is
sufficiently large that the limit of the single impurity is reached
we next studied the convergence of the magnetic moment and
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FIG. 2. The total density of states for a 7 × 7 supercell with a
centrally located Co adatom on silicene. The green line corresponds
to the density of states of pure silicene. The Fermi energy corresponds
to ε = 0. The inset shows a small gap induced by the spin-orbit
interaction in pure silicene.

the local density of states (LDOS) of the Co adatom against
the size of the supercell. Because of the huge computational
costs involved, the structural relaxation was not performed
during these calculations. Instead, we adopted the geometry
obtained in 4 × 4 calculations for Co and its surroundings
(up to R = 8 Å radius, corresponding to four coordination
zones), embedding so-defined “cluster” into the bulk silicene.
As the deviations of Si atoms from bulk positions were found
to be negligible at this distance from Co, the procedure is
reasonable. We found that both quantities stopped changing
meaningfully when 7 × 7 (corresponding to the supercell
lattice constant asc = 27 Å) or larger supercells were used.
The total magnetic moment, located predominantly on Co,
equals 1μB . We conclude therefore that the impurity can be
effectively treated as a spin-1/2 in the Anderson model.

In the final step we calculated global and local DOS using
a 7 × 7 supercell and including the spin-orbit coupling. The
2D BZ integration was performed at this point using a suitably
dense mesh corresponding to 104 k points in the original 1 × 1
2D BZ. The results for the total DOS of the structure, together
with the DOS of pure silicene, are presented in Fig. 2. In the
vicinity of the adatom the hybridization effect comes into play,
and it drastically rebuilds the LDOS. As a consequence, the
DOS of the system with an adatom follows the same general
outline as the DOS of pure silicene but with additional modula-
tions visible in Fig. 2. The most notable of these is perhaps the
sharp peak located exactly at the Fermi energy in the minority-
spin channel. Analysis of the orbital contribution to the local
density of states of cobalt shown in Fig. 3 indicates that the
peak at the Fermi energy in the total DOS of the structure
originates mainly from the d3z2−r2 orbitals of the adatom.

III. NUMERICAL RENORMALIZATION-GROUP
CALCULATIONS

A. Effective model

Based on the first-principles results we can now establish
an effective Hamiltonian for the Co adatom on silicene. The
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FIG. 3. The local density of states of a Co adatom. Both total and
partial orbital-resolved contributions are indicated.

calculated magnetic moment of the adatom justifies the usage
of a spin-1/2 single-impurity Anderson model [45]. In order
to find the parameters of the effective single-orbital model
we follow the procedure described in Ref. [46]. From the
calculated occupancy of Co orbitals, nd ≈ 7.8 (in agreement
with Ref. [44]), we conclude that charge fluctuations can occur
between the states with 7, 8, and 9 electrons. Starting with the
Anderson model with full fivefold degeneracy of the d-shell
electrons, we note that in the mean-field approximation the
energies of the respective charge states enumerated by j can be
expressed as E(j ) = jε + Uj (j − 1)/2, where ε is an adatom
on-site energy and U denotes the Coulomb correlations.
Following Ref. [44], the latter parameter will be set equal to
U = 4 eV. From the minimum-energy condition with respect
to j we can estimate the on-site energy ε = (1/2 − nd )U .
Focusing on consecutive energies of the states with 7, 8,
and 9 electrons (with respect to the lowest energy), we
can find from ε̃d = E(8) − E(7) and 2ε̃d + Ũ = E(9) − E(7)
the parameters for the effective impurity Hamiltonian, ε̃d =
−1.2 eV, Ũ = U , which has the following form:

H = Hband + Himp + Htun. (1)

Here, Hband = ∑
σ

∫
dε ε c†σ (ε)cσ (ε) describes the electrons

in silicene with the corresponding density of states (see
Fig. 2). The second term models the adatom and is given
by Himp = ∑

σ ε̃dd
†
σ dσ + Ũd

†
↑d↑d

†
↓d↓ + gμBSzB, where ε̃d

is the energy of an electron occupying the impurity and
Ũ denotes the Coulomb correlation energy. The last term
accounts for the Zeeman splitting, with B being the external
magnetic field and Sz denoting the spin of the adatom. The
operator d†

σ creates a spin-σ electron on the adatom, and c†σ (ε)
is the corresponding creation operator for spin-σ electrons
in silicene. Finally, the coupling between the substrate and
the adatom is modeled by the tunneling Hamiltonian Htun =∑

σ

∫
dεV

√
ρ(ε)[c†σ (ε)dσ + d†

σ cσ (ε)], where V denotes the
tunnel matrix elements assumed to be equal to V = 0.65 eV
and ρ(ε) is the density of states of bulk silicene (see Fig. 2).
The parameter V has been evaluated by Harrison’s scaling
method [47] for the average Si-Co bond length r = 2.45 Å.
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FIG. 4. The zero-temperature total spectral function of the Co
adatom calculated by NRG for a few values of chemical potential
μ, EF = μ, plotted on (a) linear and (b) logarithmic scales. The
inset in (a) presents a close-up of the low-energy behavior where
the Kondo effect can emerge. The associated Kondo temperatures,
obtained from the half width at half maximum of the resonance in the
spectral function, are indicated in the legend of (b). The parameters
are Ũ = 4 eV, ε̃d = −1.2 eV, V = 0.65 eV, and B = 0. We also set
h̄ ≡ 1.

Since we are interested in nonperturbative effects resulting
from the hybridization of a Co adatom and silicene, to get the
most accurate information about the system’s spectral proper-
ties we employ the numerical renormalization group (NRG)
method [48–50]. In NRG, the band is first discretized in a
logarithmic way with a discretization parameter �. Then, such
a discretized Hamiltonian is tridiagonalized numerically and
transformed to a tight-binding Hamiltonian of the following
form:

HNRG = Himp +
∑

σ

V (d†
σ f0σ + f

†
0σ dσ )

+
∞∑

n=0

∑

σ

[εnf
†
nσ fnσ + tn(f †

nσ fn+1σ + f
†
n+1σ fnσ )],

(2)

where f
†
nσ is the creation operator of an electron with spin σ

on the nth site of the chain, tn denotes the hopping integral,
and εn is the on-site energy. In NRG calculations we assumed
� = 1.7 and kept at least 1500 states at each iteration. To
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obtain the most accurate results for the spectral functions, we
also optimized the broadening parameter appropriately [51].

B. Discussion of numerical results

We now focus on the behavior of the spectral function
of the Co adatom, Aσ (ω) = −ImGR

σ (ω)/π , where GR
σ (ω) is

the Fourier transform of the corresponding retarded Green’s
function, GR

σ (t) = −i
(t)〈{dσ (t),d†
σ (0)}〉. The total spectral

function, A(ω) = A↑(ω) + A↓(ω), corresponds to the local
density of states of the adatom, which can be experimentally
examined with a weakly coupled probe, such as the tip of a
scanning tunneling microscope.

1. Spectral properties and the Kondo effect

Because, experimentally, the position of the Fermi level
can be adjusted by gating, in Fig. 4 we present the energy
dependence of A(ω) calculated for different values of the
chemical potential μ,EF = μ. Let us first focus on the case of
no gating, μ = 0. One can see that the total spectral function
exhibits Hubbard resonances for ω = ε̃d and ω = ε̃d + Ũ . For
typical spin-1/2 quantum impurity models, at low energies,
the Kondo physics plays an important role [33]. In the Kondo
effect the conduction electrons screen the impurity’s spin,
resulting in an additional resonance at the Fermi energy in
the local density of states, the half width of which is related to
the Kondo temperature TK [34]. In the case considered here,
however, due to the depletion of states at the Fermi energy the
screening of the adatom spin is not possible, and consequently,
the Kondo peak is not present (see Fig. 4 for μ = 0).

One can consider if it is possible to reinstate the Kondo
resonance by changing the chemical potential via gating. First
of all, it can be seen that, quite naturally, by tuning μ the
position of the Hubbard resonances changes accordingly (see
Fig. 4). Moreover, by adjusting the Fermi energy, one can also
considerably affect the low-energy behavior of the system. In
fact, for values of μ selected in Fig. 4, a pronounced Kondo
resonance develops. This can be clearly seen in Fig. 4(b), which
shows the spectral function plotted on a logarithmic scale, as
well as in the inset of Fig. 4(a), which presents a close-up of
the low-energy behavior of A(ω). For the considered values
of gating, there is a sufficient number of states at the Fermi
energy to screen the adatom’s spin. One can then observe the
Kondo effect with a relatively large Kondo temperature, of the
order of up to a few kelvins, as estimated from the half width
at half maximum of the Kondo peak [see Fig. 4(b)].

To gain a deeper understanding of the effect of gating
on the local density of states, we also analyze the behavior
of the spectral function by continuously tuning the chemical
potential. This is presented in Fig. 5, which shows the energy
and chemical potential dependence of the local density of
states, with the bottom panel zooming into the low-energy
behavior of A(ω). First, we note that for μ ≈ −1.2 eV and
μ ≈ 2.8 eV, the spectral function exhibits maxima related to
resonant tunneling since then the empty and doubly occupied
states of the adatom cross the Fermi energy (the adatom
enters the mixed-valence regime). In the range of chemical
potentials between these two values, the impurity effectively
hosts a spin 1/2; Fig. 6(a) presents the chemical-potential
dependence of the occupation 〈n〉 of the orbital level, where

A(ω) (a.u.)

A(ω) (a.u.)

FIG. 5. (a) The total spectral function plotted versus energy ω and
the chemical potential μ, EF = μ, calculated for the same parameters
as in Fig. 4. (b) Close-up of the low-energy behavior of A(ω).

n = ∑
σ d†

σ dσ . Consequently, one can expect that the Kondo
effect will emerge if the number of states is sufficient to screen
the impurity’s spin. The occurrence of the Kondo resonance is
thus strongly dependent on the hybridization, which changes
with μ. As a matter of fact, one can indeed clearly identify
regions where the resonance at the Fermi energy develops.
These regions are more visible in Fig. 5(b), which shows the
close-up of the low-energy behavior of the spectral function.
From the inspection of this figure one can see that for values of
chemical potential ranging from μ ≈ 1.2 eV to μ ≈ 2.5 eV, the
Kondo resonance develops with Kondo temperature strongly
dependent on μ. The Kondo temperature becomes enhanced
for μ ≈ 2 eV, where TK ≈ 1.5 K. Moreover, a relatively large
Kondo temperature can be also found for μ = −0.78 eV, where
TK ≈ 3.48 K [see Fig. 4(b)].

We recall that the Kondo temperature depends in an
exponential fashion on the ratio of hybridization between the
orbital level and the host and the Coulomb correlations [34].
Thus, from a theoretical point of view, if the host’s density
of states at the Fermi energy is finite, the Kondo peak should
emerge even if DOS is very low. However, the corresponding
Kondo temperature would then be extremely small, and
thus, the Kondo peak would be completely undetectable
experimentally. In Fig. 6(b) we present the chemical-potential
dependence of the spectral function at ω = 0 for several
experimentally relevant values of temperature. By looking
at the orbital-level occupation [Fig. 6(a)], one can recognize
an enhanced spectral function due to resonant tunneling in
the mixed-valence regime and due to the Kondo effect in
the local-moment regime. Moreover, one can also inspect
how quickly the Kondo correlations become smeared out by
thermal fluctuations, which is especially visible in the range
of μ from μ ≈ 1.2 eV to μ ≈ 2.5 eV.
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The other parameters are the same as in Fig. 4. Note that the
occupation hardly depends on temperature since the energy scales
of the adatom are still much larger than the considered temperatures.

2. Effect of external magnetic field

Let us now consider how external magnetic field affects
the behavior of the local density of states of a Co adatom.
The energy dependence of the spin-resolved and total spectral
function calculated in the presence of external magnetic field
B = 2 T is depicted in Fig. 7, where the insets show a
close-up of the low-energy behavior of A(ω). First of all, one
can see that magnetic field strongly affects the behavior of
the spectral function. An important observation is a strong
spin polarization of Hubbard resonances: A↑ (A↓) becomes
suppressed for ω > 0 (ω < 0). Moreover, magnetic field also
has a strong effect on the low-energy behavior of A(ω): the
Kondo resonance becomes split if the Zeeman energy EZ

becomes larger than kBTK,EZ = gμBB � kBTK . The spin
polarization of the spectral function can be clearly seen in
Figs. 7(a) and 7(b), while the splitting of the Kondo peak
is nicely visible in the inset of Fig. 7(c). We note that the
largest suppression of the Kondo peak occurs for μ = 0.65 eV.
For this value of gating we estimated TK ≈ 0.32 K, which is
smaller than for the case of μ = 2 eV and μ = −0.78 eV.
Consequently, larger suppression of the Kondo resonance is
observed for smaller TK since the condition EZ � kBTK is
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FIG. 7. The zero-temperature (a) spin-up, (b) spin-down, and (c)
total spectral functions for different values of the chemical potential,
as indicated, calculated in the presence of external magnetic field
B = 2 T. The insets present close-ups of the low-energy behavior of
the spectral function. Parameters are the same as in Fig. 4, and we
assumed the g factor g = 2.

then better satisfied. We also notice that the effect of splitting
and suppression of the Kondo peak in the presence of magnetic
field is in fact similar to the effect of an exchange-field splitting
of the orbital level caused by the presence of ferromagnetic
correlations [52–56]. Thus, if, due to the proximity effect
of the magnetic substrate, the density of states of silicene
becomes spin polarized, the Kondo effect may also be split
and suppressed even in the absence of magnetic field.

It is also interesting to analyze the energy and chemical-
potential dependence of the local density of states for several
values of external magnetic field. This is presented in Fig. 8,
which shows A(ω) for B = 1,2,5 T. In Fig. 8 we focus on
the low-energy regime, where the Kondo effect can emerge,
and the interplay between the Zeeman splitting and Kondo
correlations is clearly revealed. One can see that, depending
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A(ω) (a.u.)

A(ω) (a.u.)

A(ω) (a.u.)

FIG. 8. The energy and chemical-potential dependence of the
total spectral function for different values of external magnetic field:
(a) B = 1 T, (b) B = 2 T, and (c) B = 5 T. The other parameters are
the same as in Fig. 4.

on the value of external magnetic field and gating, the Kondo
resonance can become split and suppressed. This is especially
visible for μ = 1.5 eV, where, with increasing B, one shifts the
position of the split Kondo peaks. Moreover, there are values of
μ, especially those close to the mixed-valence regime, where
the magnetic field is not strong enough to suppress the Kondo
resonance (see Fig. 8).

The effect of external magnetic field can be better revealed
when one considers the spin polarization of the spectral
function, which is defined as P = [A↑(ω) − A↓(ω)]/A(ω).
The dependence of the spin polarization on energy ω and
chemical potential μ for a few values of magnetic field is
shown in Fig. 9. This figure is generated for the same values
of B as those considered in Fig. 8, again focusing on the
low-energy behavior. When the impurity is either empty or
doubly occupied, the spin polarization is suppressed and
approaches zero. Its behavior, however, becomes completely
changed in the local-moment regime (see Fig. 9). The first
observation is that P can change sign around ω = 0, and
such a sign flip occurs in the regime where the impurity is
occupied by a single electron. This effect is associated with

P

P

P

FIG. 9. The energy and chemical-potential dependence of
the spin polarization of the spectral function, P = [A↑(ω) −
A↓(ω)]/A(ω), calculated for different values of external magnetic
field: (a) B = 1 T, (b) B = 2 T, and (c) B = 5 T. The other parameters
are the same as in Fig. 4.

the spin splitting of the adatom orbital due to the Zeeman field.
One can notice that for higher energies the spectral function
becomes fully spin polarized, P ≈ 1 for ω < 0 and P ≈ −1
for ω > 0. Interestingly, it can also be seen that the interplay
of finite Zeeman splitting and the density of states of silicene
can result in a sign change of the spin polarization at ω = 0
around μ = 0.5 eV, which is clearly visible for B = 5 T [see
Fig. 9(c)]. At low energies and for μ � 0.5 eV (μ � 0.5 eV),
P becomes positive (negative).

Finally, in Fig. 10 we study the evolution of the splitting
of the Kondo peak with external magnetic field. Figure 10 is
calculated for selected values of the chemical potential, the
same ones as considered in Fig. 7. It can be seen that the
Kondo peak becomes suppressed when magnetic field is so
strong that the condition EZ � kBTK is fulfilled. Thus, the
suppression occurs first for the case of μ = 0.65 eV, while
larger field is needed to destroy the Kondo resonance for
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A(ω) (a.u.)

A(ω) (a.u.)

A(ω) (a.u.)

FIG. 10. The spectral function plotted as a function of energy and
magnetic field for selected values of chemical potential for which a
pronounced Kondo peak develops in the absence of magnetic field:
(a) μ = 2 eV, (b) μ = 0.65 eV, and (c) μ = −0.78 eV. The dotted
lines mark the Zeeman energy EZ = ±gμBB. The other parameters
are the same as in Fig. 4.

the other two cases (see Fig. 10). When magnetic field is large
enough that EZ � kBTK , A(0) becomes suppressed, and the
spectral function shows only side peaks, which occur exactly
at the spin-flip excitation energy ω = ±EZ . The position of
those side peaks depends thus linearly on magnetic field, which
can be nicely seen in Fig. 10, where the dotted lines mark the
Zeeman energy EZ .

IV. CONCLUSIONS

We have theoretically considered the spectroscopic proper-
ties and the Kondo effect of Co adatoms on silicene. By using
the first-principles calculations, we have determined the total
density of states of the Co-silicene system and estimated the
orbital-level occupancy together with the magnetic moment
of Co. Our DFT results allowed us to formulate an effective
low-energy Hamiltonian for spin-1/2 impurity, which was
further used to analyze the spectral properties of Co adatoms.
This analysis was performed by employing the numerical
renormalization-group method with a nonconstant density of
states. We focused on the behavior of the local density of states
(spectral function), which can be probed experimentally by
using scanning tunneling spectroscopy. The analysis involved
the effects of external magnetic field and gating of silicene.
We showed that by appropriately tuning the parameters one
can obtain clear signatures of the Kondo effect. We also
analyzed the evolution and splitting of the Kondo resonance
with an external magnetic field. Finally, we studied the
spin polarization of the spectral function in the presence of
magnetic field, whose magnitude and sign were found to
greatly depend on the position of the chemical potential.
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