
PHYSICAL REVIEW B 96, 115444 (2017)

Spin-orbit coupling induced two-electron relaxation in silicon donor pairs
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We unravel theoretically a key intrinsic relaxation mechanism among the low-lying singlet and triplet donor-pair
states in silicon, an important element in the fast-developing field of spintronics and quantum computation. Despite
the perceived weak spin-orbit coupling (SOC) in Si, we find that our discovered relaxation mechanism, combined
with the electron-phonon and interdonor interactions, drives the transitions in the two-electron states over a
large range of donor coupling regimes. The scaling of the relaxation rate with interdonor exchange interaction
J goes from J 5 to J 4 at the low to high temperature limits. Our analytical study draws on the symmetry
analysis over combined band, donor envelope, and valley configurations. It uncovers naturally the dependence
on the donor-alignment direction and triplet spin orientation, and especially on the dominant SOC source from
donor impurities. While a magnetic field is not necessary for this relaxation, unlike in the single-donor spin
relaxation, we discuss the crossover behavior with increasing Zeeman energy in order to facilitate comparison
with experiments.
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I. INTRODUCTION

A pair of coupled donors in an enriched 28Si host crystal
forms the most cleanly defined two-qubit system or singlet-
triplet (S-T ) qubit in solid state materials [1,2]. The nearly
noise-free crystal environment [3–5] together with the repro-
ducible donor properties fixed by nature [6] places an essential
role for the intrinsic energy relaxation among the lowest
two-electron states by electron-phonon (e-ph) interaction
in studying the coherence limit of quantum computation
involving such qubits [7,8]. A proper treatment of this problem
with a transparent and physical basis is imperative, enabling its
various modifications such as proximity with interface [9], gate
potential [10,11], or quantum dots [12,13] which are necessary
for qubit control and operation.

Electron spin relaxation of single donor states in Si has been
studied since the 1950s. Much interest then was associated
with the ensemble spin resonance experiments which could
remarkably map out the detailed donor wave function by its
hyperfine interaction with the donor or 29Si nucleus [14,15].
Theoretical attention was thus originally paid to the simultane-
ous flip of electron and donor nucleus spins (TX) [16] through
hyperfine interaction, until later the importance of spin-orbit
coupling (SOC) driven spin relaxation was established [17–
20]. However, the two-electron relaxation on a coupled donor
pair has been much less studied over the decades, with only
a few works in the context of concentration-dependent spin
relaxation [21] or of quantum computation [7]. Both of these
previous studies focused on the hyperfine interaction to mix S

and T states, while neglecting SOC as too weak in Si.
Here we unravel a distinct general relaxation mechanism

among two-electron states to shed important light on this
long-standing physical problem (i.e., electron relaxation in
high-density coupled donors), motivated by the development
of Si donor-based spin qubits. This robust mechanism has
a parametrically dominating J 5 dependence on the 2-donor
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exchange coupling J for the S ↔ T transition, and becomes
always dominant at sufficiently strong coupling. This mecha-
nism relies only on the intrinsic SOC in the system to couple
spins, with the donor SOC dominating the Si host SOC, but
not on any structure-induced Rashba or Dresselhaus field.
This particular dominance of the donor SOC is absent in the
classical single-donor spin relaxation by g-factor modulation
[17]. The effectiveness of the two SOCs, i.e., of the host
and the impurity, is considered by taking full account of
the three physical “layers” in the problem: the Bloch bands,
the hydrogenic-like donor envelopes, and the multivalley
configurations. Within each layer rigorous selection rules are
enforced for e-ph, SOC, and interdonor perturbations, while
at the same time, the decoupling between the underlying fast-
oscillatory physics and the slowly varying localized envelopes
realizes an efficient leading-order quantitative estimation. The
unique donor and spin alignment dependence naturally falls
out of our analytical treatment. Finally, we elucidate the
crossover from low to high Zeeman energy as a reduction of
the two-electron problem into a single-electron one, although
the presence of spin splitting is not a priori essential for our
relaxation mechanism.

The rest of the paper is organized as follows. In Sec. II, we
lay out the theoretical framework, and focus on developing
a suitable strategy in order to have a clear insight and
efficient calculation of the two-electron state relaxation matrix
elements. The general idea follows the tradition of utilizing
symmetry properties to reduce the complexity as much as
possible, and to proceed with the physically correct grasp
(not to overlook dominant contributions or cancellations)
using perturbative approaches. To keep the flow of theoretical
development, we defer several particularly long derivation
details to the appendices. In Sec. III, we make approximate
quantitative evaluations for various relaxation transitions and
lifetimes based on well-known physical parameters of Si
band and donor energy structures, phonon dispersion, and
deformation potentials. We also analyze the relaxation trend
in two-electron states with external magnetic field going from
zero to large values. A summary is given in Sec. IV.
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II. THEORETICAL DERIVATION

To properly treat the relaxation problem driven by SOC in
a combined system of Si host and coupled double donors, the
potential energy part of the Hamiltonian (V ) for the donor outer
electrons includes both the Si crystal potential (Vcryst) and the
difference between Si atoms and the substitutional donor ions
(δVion,j , where j = α,β labels the donors). Combined with
the kinetic energy (K) and electron-electron interaction (Vee),
the Hamiltonian for the electron states in the absence of e-ph
interaction is

Hee =
∑
i=1,2

[K(ri) + V (ri)] + Vee(r1,r2), (1)

K = − h̄2∇2

2m
, V = Vcryst +

∑
j=α,β

δVion,j ,

Vee = e2

εr12
, (2)

where r12 ≡ |r1 − r2|, ε is the dielectric constant in Si, Vcryst =
Vcryst,0 + Vcryst,so contains spin-independent and SOC parts,
and δVion,j (r) = −e2/ε|r − Rj | + δVion,cc(r − Rj ) contains
the Coulomb potential as well as the short-range central-
cell correction at the core of the ion. δVion,cc = δVion,cc,0 +
δVion,cc,so and δVion,cc,so easily dominates the donor SOC
effect due to the fast-changing core potential [22], compared
with that from the smooth Coulomb potential away from
the central cell region. The e-ph interaction that induces the
electronic transition has the general form within the harmonic
approximation,

Hep = −
∑

k

δRk · ∇V (r − Rk), (3)

where the lattice displacement at atom k is a superposition
of phonon states, δRk = ∑

q

√
h̄/2ωλ

qM(aλ
qξλ

k,qe
iq·Rk ) + H.c.,

with M being the mass of Si crystal, ωλ
q, a

λ
q , and ξλ

k,q the
eigenfrequency of the λth phonon band at wave vector q, the
associated annihilation operator, and the normalized phonon
polarization vector, respectively [23]. Here we use the long-
wavelength acoustic phonons in bulk Si which can compensate
the small energy difference (�meV) in the two-electron states.
As we will see, these two-electron relaxations require the third-
order perturbation theory even using the bound Bloch states as
basis. As a result, the relevant intermediate states encompass
both large and small energy scales due to the various fast
(SOC and e-ph) and slow (exchange) perturbative terms. We
are forced to go beyond the usual conductance-band-bottom
effective mass approximation [6] to include other Bloch bands,
in addition to the central cell correction we have explicitly
taken into account. This study thus represents a complicated
single-particle problem which combines crystal and atomic
physics along with a relatively simple many-body (two-body)
problem. It is important to choose a systematic treatment for
efficient calculations and avoiding pitfalls.

We start with a set of two-electron representations satisfying
the symmetry of the specific two-donor system. While these
states mainly comprise the Heitler-London states out of un-
perturbed single-donor ground states, both nonpolar and polar
(“ionic”) mixtures are included. These excited components are
needed for incorporating nonzero e-ph and SOC coupling, and

TABLE I. For each d̂, [001], [111], or [110], we find its point
group and the IRs of the states and phonon modes. For d̂‖[111],
two subcases, with inversion symmetry (i) and without it (n),
depend on the alternating donor positions (even though individual
donors possess no inversion symmetry). To be definite, we set
z′‖[111], x ′‖[10-1], y ′‖[-12-1], z′′‖[110], x ′′‖[001], and y ′′‖[1-10].

[001] (D2d )
[111]n (C3v)
[111]i (D3d )

[110] (C2v)

S A1 A1 A1

T0 B1 A2(n),A′
1(i) A2

T± E E(n),E′(i)
A1(T+ + T−)
B2(T+ − T−)

A1

(
εzz

εxx + εyy

)
A1

(
εz′z′

εx′x′ + εy′y′

)
A1

(
εx′′x′′
εy′′y′′
εy′′y′′

)

εij B1(εxx − εyy)
B2(εxy)

E({εxz,εyz})
E

({εx′x′ − εy′y′ ,
2εx′y′ }

{εx′z′ ,εy′z′ }

)
B1(εx′′z′′ )
B2(εx′′y′′ )
A2(εy′′z′′ )

are mixed in by the interdonor interaction. The dominant effect
comes from the leading-order mixture where one of the two
electrons occupies the single-donor ground state. As a result,
the general states follow the concise expressions

S :
1 − P12

2
√

1 + χ2

[
ψS

α↑(r1)ψS
β↓(r2) − ψS

α↓(r1)ψS
β↑(r2)

]
, (4)

T0 :
1 − P12

2
√

1 − χ2

[
ψ

T0
α↑(r1)ψT0

β↓(r2) + ψ
T0
α↓(r1)ψT0

β↑(r2)
]
, (5)

T± :
1 − P12√
2(1 − χ2)

[
ψ

T+(−)

α↑(↓)(r1)ψ
T+(−)

β↑(↓)(r2)
]
, (6)

where P12 exchanges electrons 1 and 2, the one-electron wave
function ψα(β) is mainly located around donor α(β), χ =
〈ψα|ψβ〉, superscripts (S,T0,±) distinguish different mixture
components which are described in detail later [Eq. (22)], and
finally spins ↑ and ↓ (which generally are quasispins that
contain small opposite spin component due to SOC-induced
mixing) are along the α-β donor-alignment direction (d̂),
dictated by symmetry.

We next classify the two-electron states and the e-ph
interaction by the total system symmetries for three crystallo-
graphic directions d̂, listed in Table I. For brevity, we use strain
element εij in place of the e-ph interaction ∼[ridV/drj +
(i ↔ j )]/2 which transform the same way symmetry-wise.
For d̂‖[110], S or T− + T+ denotes the eigenstate with the
majority S or T− + T+ component, respectively, since they
belong to the same irreducible representation (IR).

This top-down symmetry approach immediately identifies
the allowed relaxation processes and the associated specific
acoustic phonon modes, independently of the quantitative
treatments one adopts. The nonvanishing phonon-induced
relaxation matrix elements are

〈T0|εxx − εyy |S〉[001], 〈T±|εxz ∓ (±)iεyz|S(T0)〉[001], (7)

〈T±|εx ′z′ ± iεy ′z′ ,εx ′x ′ − εy ′y ′ ± 2iεx ′y ′ |S,T0〉[111]n, (8)

〈T±|εx ′z′ ± iεy ′z′ ,εx ′x ′ − εy ′y ′ ± 2iεx ′y ′ |T0〉[111]i , (9)
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〈T0|εy ′′z′′ |S,T1〉[110], 〈T2|εx ′′z′′ |T0〉[110], (10)

〈T1|εx ′′x ′′ ,εz′′z′′ ,εy ′′y ′′ |S〉[110], 〈T2|εx ′′y ′′ |S,T1〉[110], (11)

where T1/2 ≡ T+ ± T− in Eqs. (10) and (11). We also have
taken into account the fact that S and T states (e-ph operator)
are two- (one-)body objects, removing all 〈T−|εij |T+〉 where
〈ψT−

α(β)↓|ψT+
α↑〉 are always strictly zero, solely by the C2(3)

operation in the d̂‖[001]([111]) case.

To evaluate the allowed relaxation matrix elements, the
first simplifications come from substituting the forms of S

and T states with Eqs. (4)–(6). Even though the specific
ψ’s are altered away from the single-donor wave function
by interdonor interaction, they still obey precise symmetry
relations among themselves due to the point group of a
given two-donor system. Utilizing these relations, the matrix
elements are reduced into products of single-electron ones. A
representative set of steps is shown for 〈T0|εxx − εyy |S〉[001],

〈T0|εxx − εyy |S〉[001] ∝ 1

4

〈
ψ

T0
α↑(r1)ψT0

β↓(r2) + ψ
T0
α↓(r1)ψT0

β↑(r2) − (1 ↔ 2)
∣∣

× [εxx(r1) − εyy(r1)]
∣∣ψS

α↑(r1)ψS
β↓(r2) − ψS

α↓(r1)ψS
β↑(r2) − (1 ↔ 2)

〉
= 1

4

∑
� = ↑ , ↓
γ=α,β

(−1)�+γ
{〈

ψ
T0
γ�

∣∣εxx − εyy

∣∣ψS
γ�

〉〈
ψ

T0

γ�
∣∣ψS

γ�
〉 − 〈

ψ
T0
γ�

∣∣εxx − εyy

∣∣ψS

γ�
〉〈
ψ

T0

γ�
∣∣ψS

γ�
〉

+ 〈
ψ

T0
γ�

∣∣εxx − εyy

∣∣ψS
γ�

〉〈
ψ

T0

γ�
∣∣ψS

γ�
〉 − 〈

ψ
T0
γ�

∣∣εxx − εyy

∣∣ψS

γ�
〉〈
ψ

T0

γ�
∣∣ψS

γ�
〉}

= 〈
ψ

T0
α↑

∣∣εxx − εyy

∣∣ψS
α↑

〉〈
ψ

T0
β↓

∣∣ψS
β↓

〉
(by σ[110],C2x,C2z)

− 〈
ψ

T0
β↑

∣∣εxx − εyy

∣∣ψS
α↑

〉〈
ψ

T0
α↓

∣∣ψS
β↓

〉
(by σ[110],S4z,C2z), (12)

where for brevity we use “∝” and omit the normalization factor 1/
√

1 ± χ2, γ or � denotes the opposite donor or spin
respectively, and at exponent α,↑ ≡ 0 and β,↓ ≡ 1. The key symmetry operations used for the reduction are explicitly marked
in the parentheses. Similarly, we can substitute the expressions from Eqs. (4)–(6) in the rest of relaxation matrix elements in
Eqs. (7)–(11), and utilize available symmetry operations to make the simplifications:

〈T0|εy ′′z′′ |S〉[110] ∝
∑

� =↑,↓
γ=α,β

(−1)γ
〈
ψ

T0
γ�′′

∣∣εy ′′z′′
∣∣ψS

α↑′′
〉〈
ψ

T0

γ�′′
∣∣ψS

β↓′′
〉

(by σy ′′ , C2x ′′ , and σz′′ ), (13)

〈T+|εxz ∓ iεyz|S/T0〉[001] ∝ ∓1√
2

∑
γ=α,β

(−1)γ
〈
ψ

T+
γ↑

∣∣εxz ∓ iεyz

∣∣ψS/T0
α↓

〉〈
ψ

T+
γ↑

∣∣ψS/T0
β↑

〉
(by S4z and C2z), (14)

〈T+|εx ′z′ + iεy ′z′ |S/T0〉[111]n ∝ ∓1

2
√

2

∑
γ,γ ′=α,β

(−1)γ+ γ ′
2 ∓ γ ′

2
〈
ψ

T+
γ↑′

∣∣εx ′z′ + iεy ′z′
∣∣ψS/T0

γ ′↓′
〉〈
ψ

T+
γ↑′

∣∣ψS/T0

γ ′↑′
〉

(by C3z′ ), (15)

〈T+|εx ′z′ + iεy ′z′ |T0〉[111]i ∝ 1√
2

∑
γ=α,β

(−1)γ
〈
ψ

T+
γ↑′

∣∣εx ′z′ + iεy ′z′
∣∣ψT0

α↓′
〉〈
ψ

T+
γ↑′

∣∣ψT0
β↑′

〉
(by C3z′ and i), (16)

〈T+ ± T−|εA1/εx ′′y ′′ |S〉[110] ∝
∑

� =↑,↓
γ=α,β

(−1)�+γ
〈
ψ

T1/2

γ↑′′
∣∣εA1/x ′′y ′′

∣∣ψS
α�′′

〉〈
ψ

T1/2

γ↑′′
∣∣ψS

β�′′
〉

(by σz′′ and σy ′′ ), (17)

〈T+ ± T−|εy ′′z′′/εx ′′z′′ |T0〉[110] ∝
∑

� =↑,↓
γ=α,β

(−1)γ
〈
ψ

T1/2

γ↑′′
∣∣εy ′′z′′/x ′′z′′

∣∣ψT0
α�′′

〉〈
ψ

T1/2

γ↑′′
∣∣ψT0

β�′′
〉

(by σz′′ and σy ′′ ), (18)

〈T+ − T−|εx ′′y ′′ |T+ + T−〉[110] ∝
∑

� =↑,↓
γ=α,β

(−1)γ+�〈
ψ

T2
γ�′′

∣∣εx ′′y ′′
∣∣ψT1

α↑′′
〉〈
ψ

T2
γ�′′

∣∣ψT1
β↑′′

〉
(by σz′′ and σy ′′ ), (19)

where ↑′ (↑′′) indicates that the spin is along the z′ (z′′) rather
than z direction, and again T1/2 ≡ T+ ± T− in Eqs. (17)–(19).

The transition matrix element magnitudes from S or T0 to T−
state are the same as those to T+ as obtained by switching
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between εxz ± iεyz (d̂‖[001]) or εx ′z′ ± iεy ′z′ (d̂‖[111]). In
d̂‖[111], one can just substitute εx ′z′ ± iεy ′z′ with εx ′x ′ −
εy ′y ′ ± 2iεx ′y ′ . We note that the additional inversion in the
[111]i case equates each of the two pairs in Eq. (15) of [111]n,
canceling 〈T±|εx ′z′ ± iεy ′z′ |S〉[111]i while leading to Eq. (16).
This set of equations arising from very general symmetry
considerations constitutes one of the key results in this work.

We apply the perturbation theory to quantify the single-
electron matrix elements in terms of SOC and exchange
coupling constants, in addition to the deformation potential
coupling (i.e., e-ph interaction with acoustic phonons). The
first two perturbations are necessary, as without them the
transitions reduce to those between pure opposite spins or
single-donor spin relaxation which must vanish. In particular,
the same-spin e-ph matrix element in Eq. (12) from 〈T0|εxx −
εyy |S〉[001] requires a z-component SOC operator, since〈

ψ
T0
α(β)↑

∣∣εxx − εyy

∣∣ψS
α↑

〉 = −〈
ψ

T0
α(β)↓

∣∣εxx − εyy

∣∣ψS
α↓

〉
(20)

by the σ[110] reflection symmetry. It is similar for the same-spin
transitions of d̂‖[110] in Eqs. (13), (17)–(19), except with the
εA1 or εx ′′z′′ modes, while all the rest manifestly require SOC
to flip the spin.

To proceed within the perturbation theory, we choose our
basis states to be the spinless donor states, i.e., the eigenstates
of He,0 = K + Vcryst,0 − e2/εr ,

{ψk} =
6∑

i=1

vk,iF
nlm
k,i (r)ψ

�j

k,i (r), (21)

which are identified by three indices: the Si bulk band
(�1,�2′ ,�2,�1′ , and �5) [24], the donor envelope with an
orbital number nlm (with ellipsoidal effective mass) [25], and
the Td (tetrahedral) group IR (A1,A2,E,T1, and T2) [26] which
determines vk,i (

∑
i |vk,i |2 = 1) considering the participating

�j and nlm. These three indices fix the energy level in a
roughly descending order. The three perturbations in addi-
tion to He,0(r1 − rα) + He,0(r2 − rβ) can now be explicitly
seen in Hee + Hep [from Eqs. (1) and (3)]: the SOC part,
Vcrysta,so; the obvious e-ph part, Hep; and the interdonor part,
Hint−d = Vee + δVion,α(r2) + δVion,β (r1), which is a two-body
interaction and its matrix element can be integrated over
one variable (e.g., r2) to obtain the mixture components it
contributes to a single electron wave function [e.g., ψ(r1) in
Eqs. (4)–(6)]. The effective single-electron interaction from
the interdonor coupling, defined in this way, is denoted
H int−d, as used in Eq. (23). Before exhaustively working out
all possible selection rules among this multitude of states,
we examine the essential physics of coupling strengths for
different perturbation interactions and select the stronger
couplings efficiently.

First, we focus on the interdonor interaction, including
direct Coulomb and exchange terms. It couples donor states
made of different bulk � bands very weakly. As we know, in
single donor ground states, bands other than the conduction
�1 band are routinely neglected due to their fast-oscillating
difference and the slowly varying nature of the Coulomb
interaction [6,27]. Here the coupling by interdonor interaction
is even weaker as the interdonor distance is several times
the Bohr radius. Within the same bulk band, it can couple

different donor envelopes as well as valley configurations
effectively, as their differences are (partly) slowly varying.
Second, the e-ph coupling between the same or different �j ’s
are efficient when allowed by symmetry, as the interaction
involves periodic ion potentials. This gives rise to various
intraband and interband deformation potentials. Once the
interaction matches the symmetry difference of the two bulk
bands, it can only couple the same envelopes as no extra
symmetry from the phonon mode compensates for the different
envelope symmetries. However, it may couple different valley
configurations as the intravalley e-ph coupling may change
from valley to valley. Last, we discuss the SOC of two different
types arising from the host and the donor [28]. For Si host SOC,
it couples symmetry-allowed � bands strongly but different
envelopes negligibly just like the e-ph coupling. The donor
impurity SOC may couple donor envelopes in the same band
effectively [20,29,30]. Additionally, both SOCs can couple
different valley configurations allowed by symmetry. However,
the host SOC together with the e-ph coupling connecting two
same � bands (imposed by the interdonor coupling) largely
recovers the “Elliott-Yafet” (E-Y) cancellation that occurs in
the bulk Si spin-phonon interaction [31,32], and suppresses
their effect by a large factor of the relevant phonon wavelength
divided by lattice constant. Without this suppression, the spin
mixing caused by the host SOC would be about �hst

SOC/�Ehst ∼
40 meV/4 eV (interband coupling) and comparable to that
by the P donor SOC, �dnr

SOC/�Ednr ∼ 0.03 meV/12 meV
(inter-bound-state coupling). For more details see Eq. (23). The
spin splitting in the donor states, on the other hand, depends
strongly on the donor types (P, As, Sb) and comes largely from
the donor SOC [20,33]. It measures the SOC contribution from
the Td potential deviating from a spherical one, i.e., the SOC
contribution that breaks the inversion symmetry and hence
annuls the first-order-in-wave-vector E-Y cancellation [31,32].

Understanding the potentially dominant couplings, one can
identify the symmetry-allowed ones among them. The e-ph and
SOC couplings follow conventional single-particle selection
rules, as discussed below. The two-body interdonor interaction,
however, requires a different treatment. We identify the
allowed Td IRs for the mixed single-donor states, such that
under every two-donor symmetry operation the resulting
ψγ� transforms the same way as that for the ground state.
Symmetry-wise there are totally 10 components under the
Td group: A1,A2,E,T1, and T2 IRs (here we do not include
SOC in this mixture, as we intend to account for interdonor
and SOC effects separately). By checking the character tables
of D2d , C3v(D3d ), or C2v groups for the symmetry operations
with d̂‖[001], [111]n(i), or [110], respectively, one can obtain
the allowed mixture components by comparison. To not get
distracted from the development of the central physical idea,
we list all the results systematically in Appendix A, providing
the explicit operation matrices for clarity. For instance, ψα↑ in
Eqs. (4)–(6) for d̂‖[001] follows

α↑ = αA1↑ + δ
β

0 βA1↑ +
∑

γ=α,β

(
iδ

γ

1 γA2↑ + iδ
γ

2 γEI
z ↑

+ δ
γ

3 γEII
z ↑ + δ

γ

4 γT1z↑ + iδ
γ

5 γT2z↑
)
, (22)

where “ψ” is omitted for shortness, and both the nonpolar
(γ = α) and polar (β) mixtures are included with time-reversal
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(TR) compatible phases and small real coefficients δ
γ

i . Each
δ is distinct for different states except in the same IR (e.g.,
T± of [001] in Table I). Without crystal anisotropy, its
difference between S and T is due to the exchange part (as
opposed to the direct Coulomb), and δ

β

0 = 0 for T states due
to Pauli exclusion. δ

γ

i ’s can be obtained perturbatively due
to the Hint−d interaction (see Appendix B). The magnitude
of a general γX mixture into the unperturbed αA1 state is
on the order of exchange interaction between two-electron
states, αA1 (r1)βA1 (r2) and αA1 (r2)γX(r1), divided by the energy
difference of these two states.

The perturbation theory for relaxation matrix elements
throughout Eqs. (12)–(19) then proceeds in a straightforward
manner following the above prescriptions. We find the sym-
metries of the relevant basis states and interaction operators,

and determine various perturbation integrals, as shown in the
technical details in Appendix C. Here we illustrate the key
common aspects by analyzing the representative Eq. (12) in
more detail. Both terms require interdonor interaction amount-
ing to two overlap factors, so neither of them may be neglected
a priori. As shown in Eq. (20), SOC is necessary. We find that
it is dominated by donor SOC (∼λsocL · s, where L denotes the
operator conjugating to the spin in SOC, i.e., L ∝ ∇V × p).
The donor Lz and εxx − εyy bring �1 band back to itself
allowing the remaining interdonor coupling (we note again
that the second electron of r2 in the Hint−d integral is always
in the donor ground states). εxx − εyy , moreover, connects
two available valley configurations comprising �1-1s states.
Together, the γ = α term in Eq. (12) contains a perturbation
expansion,

〈T0|εxx − εyy |S〉(1)
[001] ∝

∑
ν=1s,3d±1

〈
α

T0
�1,1s,A1

∣∣H int−d

∣∣αT0
�1,ν,T2z

〉〈
α�1,ν,T2z

∣∣Lz

∣∣α�1,1s,EI
z

〉〈
α�1,1s,EI

z

∣∣εxx − εyy

∣∣α�1,1s,A1

〉
(
E�1,1s,A1 − E�1,ν,T2

)(
E�1,1s,A1 − E�1,1s,E

) , (23)

plus another one with reversed ordering of interactions, where
H int−d couples A1 and T2z envelopes in the same donor [as
expected from Eq. (22)] of the S instead of T0 state. That
leaves only the exchange part of Hint−d effective (∼JA1T2 ).
E�1,1s,A1 − E�1,1s,E/T2 (E�1,3d±1,T2 ) ≈ −12 (40) meV [33],
and 〈EI

z |εxx − εyy |A1〉 = √
2/3�u with �u ≈ 8.77 eV [34].

Two major donor SOC couplings emerge: one is between
two 1s configurations and relates to the donor spin splitting
�dnr

SOC(∼0.03, 0.1, 0.3 meV for P, As, Sb donors, respectively;
this impurity core effect is deduced from experiments and
goes beyond effective mass approximation) [20,35]. The other
is between 1s and 3d±1 where 〈3d±1|Lz|1s〉 �= 0 within a
single (x or y) valley due to anisotropy of the 1s envelope [25].
We find the ν = 1s component can be safely used for an order
of magnitude estimate [36]. For the γ = β term in Eq. (12),
the JA1T2 factor is replaced by an exchange term with the
polar state βA1βT2 multiplied by another overlap factor which,
therefore, has the same order of magnitude. By reordering the
interactions, we see that two other perturbation expansions of
similar or smaller magnitudes are allowed [shown in Eqs. (C3)
and (C4)].

More perturbation terms of similar magnitudes exist,
representing the combined interaction operators. The typical
example is the Yafet term in the E-Y spin flip mechanism
(purely opposite spin states coupled by the SOC part of
e-ph interaction) [31]. Others include phonon-modulated
exchange interaction. It is not practical to enumerate each
term, however. Even in the much simpler pure bulk Si,
numerous comparable leading-order terms contribute [32]. In
the single-donor relaxation, for example, the Yafet term is not
considered [17]. More importantly, it is also not essential to do
so since these terms possess the same symmetry dependence on
operator components (e.g., εij ,si) according to the method of
invariants [37,38], justifying this treatment. The net numerical
prefactors are difficult to evaluate exactly, and should be
left to be extracted experimentally aided by our transparent
expressions.

III. QUANTITATIVE ANALYSIS AND DISCUSSION

Following the derivation shown above, we obtain
the leading-order magnitude |M| for relaxation channels
〈T0| . . . |S〉[110], 〈T±| . . . |S〉[111]n, and 〈T+ + T−| . . . |S〉[110]

(indexed by κ = 2,3,4 whereas 〈T0| . . . |S〉[001] by κ = 1) via
donor SOC,

Mκ,λ ≈ ε
ph

κ,λFκ

JA1T2

√
2
3�u �dnr

SOC

�E1�E2
, (24)

where λ is the phonon mode, �E1(2) = −12 meV, channel-

dependent factor F1,2,3,4 = 1, 1√
2
, 3

√
2i

8 , 2
3
√

2
, respectively, and

ε
ph

κ,λ = ε̃κ,λ

√
h̄(nqλ

+ 1)/2ρωλ(q). ε̃κ,λ for κ = 1,2 is 1
2 (ε̃xx −

ε̃yy), for κ = 3 is 1
3
√

2
(ei π

6 ε̃xx − iε̃yy − e−i π
6 ε̃zz + e−i π

6 ε̃xy +
iε̃xz − ei π

6 ε̃yz), and for κ = 4 is ε̃zz + 1
2 (ε̃xx + ε̃yy) where

ε̃ij ≡ i(qiξj + qj ξi)/2, and then phonon polarization ξ (q)
is projected into λ = LA, TA1, TA2 by elastic continuum
approximation [39]. ρ = 2.33 g/cm3, h̄ωλ = h̄vλq equals the
relaxation energy, vLA(TA) = 8.7(5) × 105 cm/s, and nq is
the phonon distribution. Equation (24) is not expected to
be exact as discussed above. Our goal is to provide the
leading-order estimate for M and its functional dependence
on J and temperature. We find for 〈T±| . . . |S〉[001] and 〈T+ −
T−| . . . |S〉[110] the leading-order term vanishes by symmetry
and effective-mass analysis, as shown in Appendix C, and our
mechanism is overshadowed by hyperfine-induced relaxation
[7]. M between T states are also obtained with a critical
difference regarding the interdonor coupling. Unlike between
S and T states, its effect stems from the anisotropic SOC part
of Hint−d and scales down roughly by a large factor |J/I |
where I = ET0 − ET± .

Our result differs from the existing hyperfine-coupling
theory on two-donor relaxation in Refs. [21] and [7] in a
critical way that the spin mixing scales with |SOC cou-
pling/spinless coupling | (∼0.03 meV/12 meV) instead of
|hyperfine(A)/exchange(J )| (A ∼ 0.2 μeV and J is on the
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FIG. 1. (a) Relaxation time τ for four leading-order channels
driven by P donor SOC as 0.1 meV < J < 2 meV. The numerical
result for T0 → S, d̂‖[001] (from [7]) is marked by solid dots.
(b) τ of T+ → S and d̂‖[111]n for three different J ’s as B < 20 T.
The inset shows an increasing τ at gμBB � kBT , a feature of finite
exchange coupling. T = 1 K and the single-electron relaxation uses
experimental parameters from [18].

order of 1 meV for d ∼ 8 nm). Thus our mechanism provides
a comparable or stronger relaxation channel at the higher
end of the two-qubit coupling regime (�10 nm) [40,41], and
is therefore extremely relevant for the quantum computing
platforms involving S-T donor-pair qubits [10,11,42]. Also
our stronger scaling on J (by J 2) offers a clear experimental
distinction between the two mechanisms.

Figure 1(a) quantifies the relaxation time τ for
exchange coupling between 0.1 and 2 meV, by
τ−1 = 2π

h̄

∫
d3q

(2π)3

∑
λ |Mλ|2δ(J − h̄vλqλ) via Eq. (24) and∫

d�q|ε̃κ,λ|2 [43]. τ ∝ J−5 (kBT � J ) or T J 4 (kBT � J ).
The dependence on the phonon mode, which is rigorous from
Eqs. (12)–(19), is made explicit here. The numerical factor
due to interdonor interaction, however, is crudely averaged as
exchange splitting J . Various exchange terms from different
perturbation expansions [as discussed between Eqs. (23) and
(24)] lead to superposed oscillations over donor vector d,
unrealistic for a perturbation calculation like ours to specify.
To have a rough idea about the relative trends between our
mechanism and the hyperfine-induced one, we also add the
hyperfine result from Ref. [7] in Fig. 1(a). Although the spin
mixing is generally stronger in our mechanism, the phonon-
mode related factors ε̃κ,λ reduce our relaxation rates somewhat

relatively. The ratio of relaxation time over exchange gate time
goes as Jτ/π ∼ 1/J 4 and decreases sharply with J . However,
even the smallest ratio in this figure, for T0 → S,d̂‖[001]
at J = 2 meV, is about 7 million, well satisfying the need
for quantum error correction. We remark that for As and Sb
donors, the crossover between SOC and hyperfine mechanisms
occurs at smaller J . In this regime, our mechanism indicates
that quantum computation using As [11,44] or Sb [45] donors
has a much shorter intrinsic relaxation time compared to
that of P donors. Note that while some uncertainty in the
overall prefactors may raise or lower our curves in Fig. 1(a),
the parametrically dominant J 5 dependence is robust and
independent of quantitative details, clearly establishing the
dominance of our mechanism for stronger interdonor exchange
coupling.

Finally, TR forbids spin relaxation by SOC on a single
donor strictly at zero magnetic (B) field [17] whereas it does
not affect any transition among the lowest two-electron states.
As a result, the application of B field has the most effect
on driving one-electron spin flips, which dominate electron
relaxation when gμBB � J . Indeed, we see a crossover
behavior with increasing B in Fig. 1(b) for an S → T−
relaxation. The crossover is much sooner for T0 → T− as
gμBB ∼ I . In fact, since the B power-law dependence
for single donors and our J or I dependence are exactly
the same for any temperature, the crossover occurs at a
fixed gμBB/J (I ) ratio depending only on the donor type.
This is an important finding independent of quantitative
details.

IV. SUMMARY

In conclusion, we have established that two-electron relax-
ation in Si donor pairs driven by the intrinsic SOC is important,
despite the decade-long perception that the SOC in this system
is too weak and only hyperfine-induced relaxation needs to be
taken into account [7,21]. It is crucial that we identify that the
SOC from the central cell region of the donor core, not from
the ion Coulomb potential or bulk Si, is the dominant source.
The central cell SOC stems from the fast-varying core potential
(which the smooth Coulomb potential does not exhibit) and at
the same time breaks the Elliott-Yafet cancellation that comes
with the bulk spin-phonon interaction in Si. We unravel the
intricate relaxation matrix elements which invoke interdonor,
SOC, and e-ph interaction on top of the Si crystal and
ionized donor potentials, by utilizing the exact symmetries
possessed by the two-donor system Hamiltonian and also the
approximate ones by the individual donors and bulk crystal
(resulting in various � bands at six points of the � stars). In this
way, we are able to finally obtain a relatively simple and robust
dependence of the relaxation rates on the donor alignment
and exchange interactions, phonon modes and deformation
potentials, and SOC constants, which cannot be ascertained by
brute-force numerical simulations. Our mechanism dominates
the qubit relaxation when the two-donor separation is relatively
small or the interqubit coupling is large, and is especially
important for donor-based singlet-triplet qubits. Therefore, this
study is essential for any serious quantum computing proposals
based on Si-donor spin qubits.
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Together with the hyperfine-driven two-electron relaxation
in the coupled donor systems that has been the only known
mechanism for half a century [7,21], we now have a full theory
for the noise-free intrinsic relaxation limit of the two-donor
spin states. When both hyperfine and SOC are included,
the effect should be of higher order and thus comparably
negligible (i.e., our effect and hyperfine effect are additive
to leading order). Future developments incorporating charge
noise and realistic interface or quantum well confinement
potentials can expand on our results and provide quantitative
estimates for comparisons with experimental data when they
become available in the strong donor-coupling regime. On the
experimental side, the SOC and hyperfine related relaxation
mechanisms can be disentangled and compared by varying
donor separation and alignment direction, and by going over
different donor species (P, As, Sb).
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APPENDIX A: SYMMETRY IDENTIFICATIONS
OF THE INTERDONOR COUPLED MIXTURE

In this Appendix, we present the allowed IRs of mixture
for each of the donor-alignment directions d̂ to be [001],
[111], and [110]. The leading-order mixtures of interest are
such that one of the two electron states is the same as
that in the unperturbed Heitler-London ground states. The
mixed components and their coefficients have to obey all the
spatial and time reversal (TR) symmetry of the two-donor
systems.

To avoid ambiguity and for consistency, here we provide
explicitly the matrices we use (i.e., our convention) for
all symmetry operations upon the symmetrized states. See
Tables II, III, and IV. The physical conclusions will not depend
on the specific convention (and the resulting coefficient phases)
we choose as long as it is consistently carried out. We find the
following most general symmetry-allowed mixtures without
SOC, compatible with the forms of Eqs. (4)–(6). For d̂‖[001]
we find

[001] : α ↑ ⇒ αA1↑ + δi
0βA1↑ +

∑
(γ,t)=(α,c),(β,i)

(
iδt

1γA2↑ + iδt
2γEI

z ↑ + δt
3γEII

z ↑ + δt
4γT1z↑ + iδt

5γT2z↑
)
,

β ↓ ⇒ βA1↓ + δi
0αA1↓ +

∑
(γ,t)=(β,c),(α,i)

(
iδt

1γA2↓ + iδt
2γEI

z ↓ + δt
3γEII

z ↓ − δt
4γT1z↓ − iδt

5γT2z↓
)
,

α ↓ ⇒ αA1↓ + δi
0βA1↓ +

∑
(γ,t)=(α,c),(β,i)

(−iδt
1γA2↓ − iδt

2γEI
z ↓ + δt

3γEII
z ↓ − δt

4γT1z↓ + iδt
5γT2z↓

)
,

β ↑ ⇒ βA1↑ + δi
0αA1↑ +

∑
(γ,t)=(β,c),(α,i)

(−iδt
1γA2↑ − iδt

2γEI
z ↑ + δt

3γEII
z ↑ + δt

4γT1z↑ − iδt
5γT2z↑

)
, (A1)

the first of which is Eq. (22) of the main text. The spins are along the z direction, and the small coefficients δi (derived later
in Appendix B) are real, and superscripts c and i denote covalence and ionic, respectively. The δ’s have no relation between
each other for different singlet and triplet functions unless they are connected by symmetry in a degenerate IR for a given
alignment (i.e., T± in [001] or [111] alignment). Specifically, we note that δi

0 = 0 for T0 or T± due to Pauli exclusion. Regarding
the restriction imposed by the symmetry, we note in particular the C2z symmetry operation which keeps the atom site and spin
orientation. As a result, each mixed component should transform back to itself under C2z. Another constraint is that both σ[1±10]

and TR connect the same pair of wave functions (i.e., α ↑↔ α ↓ , β ↑↔ β ↓) up to a global phase difference. This constraint
sets the phase of the coefficient for each mixed term, as well as the linear combination of degenerate mixed components.

For d̂‖[111], we find that the first restriction (by simultaneously satisfying C+
3[111] and C−

3[111]) eliminates the possibility of
mixing in E IR and two of the three combinations belonging to T1 or T2 IR:

[111] : α ↑ ⇒ αA1↑ + δi
0βA1↑ +

∑
(γ,t)=(α,c),(β,i)

(
iδt

1γA2↑ + δt
2γT1x+T1y+T1z↑ + iδt

3γT2x+T2y+T2z↑
)
,

α ↓ ⇒ αA1↓ + δi
0βA1↓ +

∑
(γ,t)=(α,c),(β,i)

(−iδt
1γA2↓ − δt

2γT1x+T1y+T1z↓ + iδt
3γT2x+T2y+T2z↓

)
,

α ↔ β, (A2)

where spins are along the [111] direction, and the δ’s have no relations between different d̂ alignments. Each δi for α and β need
not be to the same for the [111]n case as no symmetry operation in C3v connects atoms α and β, while it is the same for [111]i.
δi

0 = 0 for T0 or T±.
Finally, for d̂‖[110], all IR components are allowed to be mixed in, since there is no “self-projecting” operation as in the d̂‖

[001] or [111] case. The σ[1−10] and TR symmetry still dictate the linear combination of mutually connected components (T1x

and T1y ; T2x and T2y):

[110] : α ↑ ⇒ αA1↑ + δi
0βA1↑ +

∑
(γ,t)=(α,c),(β,i)

(
iδt

1γA2↑ + iδt
2γEI

z ↑ + δt
3γEII

z ↑ + δt
4γT1z↑ + iδt

5γT2z↑ + δt
6γT1x+T1y↑

+ iδt
7γT1x−T1y↑ + iδt

8γT2x+T2y↑ + δt
9γT2x−T2y↑

)
,
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TABLE II. Transformation matrices of spatial and TR symmetry operations for a two-donor system aligned along the [001] direction,
i.e., D2d group, upon Td group IRs and spin basis states. For concreteness, we specify for the degenerate IRs that EI

z ∼ x2 − y2, EII
z ∼

(x2 + y2 − 2z2)/
√

3; T1x ∼ Rx,T1y ∼ Ry,T1z ∼ Rz; and T2x ∼ x,T2y ∼ y,T2z ∼ z in terms of their transformation properties.

A1 A2 EI ,EII T x
1 ,T

y

1 ,T z
1 T x

2 ,T
y

2 ,T z
2 ↑z,↓z

C2z 1 1
(

1 0
0 1

) (
−1 0 0
0 −1 0
0 0 1

) (
−1 0 0
0 −1 0
0 0 1

) (−i 0
0 i

)

ρ[1−10] 1 −1
(−1 0

0 1

) (
0 −1 0

−1 0 0
0 0 −1

) (
0 1 0
1 0 0
0 0 1

) (
0 1−i√

2

− 1+i√
2

0

)

ρ[110] 1 −1
(−1 0

0 1

) (
0 1 0
1 0 0
0 0 −1

) (
0 −1 0

−1 0 0
0 0 1

) (
0 − 1+i√

2
1−i√

2
0

)

C2x 1 1
(

1 0
0 1

) (
1 0 0
0 −1 0
0 0 −1

) (
1 0 0
0 −1 0
0 0 −1

) (
0 −i

−i 0

)

C2y 1 1
(

1 0
0 1

) (
−1 0 0
0 1 0
0 0 −1

) (
−1 0 0
0 1 0
0 0 −1

) (
0 −1
1 0

)

S+
4z 1 −1

(−1 0
0 1

) (
0 1 0

−1 0 0
0 0 1

) (
0 −1 0
1 0 0
0 0 −1

) (
− 1+i√

2
0

0 i−1√
2

)

S−
4z 1 −1

(−1 0
0 1

) (
0 −1 0
1 0 0
0 0 1

) (
0 1 0

−1 0 0
0 0 −1

) (
1−i√

2
0

0 1+i√
2

)

TR 1 1
(

1 0
0 1

) (
−1 0 0
0 −1 0
0 0 −1

) (
−1 0 0
0 −1 0
0 0 −1

) (
0 −i

i 0

)

β ↓ ⇒ βA1↓ + δi
0αA1↓ +

∑
(γ,t)=(β,c),(α,i)

(
iδt

1γA2↓ + iδt
2γEI

z ↓ + δt
3γEII

z ↓ + δt
4γT1z↓ + iδt

5γT2z↓ − δt
6γT1x+T1y↓

− iδt
7γT1x−T1y↓ − iδt

8γT2x+T2y↓ − δt
9γT2x−T2y↓

)
,

α ↓ ⇒ αA1↓ + δi
0βA1↓ +

∑
(γ,t)=(α,c),(β,i)

(−iδt
1γA2↓ − iδt

2γEI
z ↓ + δt

3γEII
z ↓ + δt

4γT1z↓ + iδt
5γT2z↓ − δt

6γT1x+T1y↓

+ iδt
7γT1x−T1y↓ + iδt

8γT2x+T2y↓ − δt
9γT2x−T2y↓

)
,

TABLE III. Transformation matrices of spatial and TR symmetry operations for a two-donor system aligned along [111] direction, i.e.,
C3v group without inversion or D3d group with inversion (which connects α and β donors and keeps the spin direction), upon Td group IRs and
spin basis states.

A1 A2 EI ,EII T x
1 ,T

y

1 ,T z
1 T x

2 ,T
y

2 ,T z
2 ↑[111],↓[111]

C+
3[111] 1 1

(
− 1

2 −
√

3
2√

3
2 − 1

2

) (
0 0 1
1 0 0
0 1 0

) (
0 0 1
1 0 0
0 1 0

) (
e

−iπ
3 0

0 e
iπ
3

)

C−
3[111] 1 1

(
− 1

2

√
3

2

−
√

3
2 − 1

2

) (
0 1 0
0 0 1
1 0 0

) (
0 1 0
0 0 1
1 0 0

) (
e

iπ
3 0

0 e
−iπ

3

)

ρ[1−10] 1 −1
(−1 0

0 1

) (
0 −1 0

−1 0 0
0 0 −1

) (
0 1 0
1 0 0
0 0 1

) (
0 1−i√

2

− 1+i√
2

0

)

ρ[10−1] 1 −1

(
1
2 −

√
3

2

−
√

3
2 − 1

2

) (
0 0 −1
0 −1 0

−1 0 0

) (
0 0 1
0 1 0
1 0 0

) (
0 −i

−i 0

)

ρ[01−1] 1 −1

(
1
2

√
3

2√
3

2 − 1
2

) (
−1 0 0
0 0 −1
0 −1 0

) (
1 0 0
0 0 1
0 1 0

) (
0 − 1+i√

2
1−i√

2
0

)

i 1 −1

(
1
2

√
3

2√
3

2 − 1
2

) (
−1 0 0
0 0 −1
0 −1 0

) (
1 0 0
0 0 1
0 1 0

) (
0 − 1+i√

2
1−i√

2
0

)

TR 1 1
(

1 0
0 1

) (
−1 0 0
0 −1 0
0 0 −1

) (
−1 0 0
0 −1 0
0 0 −1

) (
0 −i

i 0

)
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TABLE IV. Transformation matrices of spatial and TR symmetry operations for a two-donor system aligned along [110] direction, i.e.,
C2v group, upon Td group IRs and spin basis states.

A1 A2 EI ,EII T x
1 ,T

y

1 ,T z
1 T x

2 ,T
y

2 ,T z
2 ↑[110],↓[110]

C2z 1 1
(

1 0
0 1

) (
−1 0 0
0 −1 0
0 0 1

) (
−1 0 0
0 −1 0
0 0 1

) (
0 −i

−i 0

)

ρ[110] 1 −1
(−1 0

0 1

) (
0 1 0
1 0 0
0 0 −1

) (
0 −1 0

−1 0 0
0 0 1

) (−i 0
0 i

)

ρ[1−10] 1 −1
(−1 0

0 1

) (
0 −1 0

−1 0 0
0 0 −1

) (
0 1 0
1 0 0
0 0 1

) (
0 −1
1 0

)

TR 1 1
(

1 0
0 1

) (
−1 0 0
0 −1 0
0 0 −1

) (
−1 0 0
0 −1 0
0 0 −1

) (
0 −i

i 0

)

β ↑ ⇒ βA1↑ + δi
0αA1↑ +

∑
(γ,t)=(β,c),(α,i)

(−iδt
1γA2↑ − iδt

2γEI
z ↑ + δt

3γEII
z ↑ − δt

4γT1z↑ + iδt
5γT2z↑ + δt

6γT1x+T1y↑

− iδt
7γT1x−T1y↑ − iδt

8γT2x+T2y↑ + δt
9γT2x−T2y↑

)
, (A3)

where spins are along the [110] direction. δi
0 = 0 for T0 or T±.

APPENDIX B: OBTAINING MIXTURE COEFFICIENTS δ

The mixture coefficients δi can be obtained perturbatively. The general procedure for the nonpolar mixture is shown in the
following. Take the component to be mixed as X IR, which can be any of those in Eqs. (A1)–(A3). Together with the unperturbed
(denoted by superscript “0”) basis states

S(T0)0 :
(1 − P12)

2
√

1 ± χ2
A1

[
αA1↑(r1)βA1↓(r2) ∓ αA1↓(r1)βA1↑(r2)

]
, (B1)

where χA1 = 〈αA1 |βA1〉, the generic S(T0) component with A1 and X electrons on different atoms has the form

S(T0)′ :
(1 − P12)

2
√

2
(
1 ± χ2

A1X
± χA1χX

) [
eiaαA1↑(r1)βX↓(r2) + eibαX↑(r1)βA1↓(r2) ∓ eicαA1↓(r1)βX↑(r2) ∓ eidαX↓(r1)βA1↑(r2)

]
,

(B2)

where a,b,c,d are determined by symmetry as shown in Eqs. (A1)–(A3), χA1X = 〈αA1 |βX〉. These coefficients will cancel out
due to the same symmetry operations of the two-donor system when one computes 〈S(T0)′|Hint−d|S(T0)0〉 where Hint−d is always
identity under all symmetry operations. The mixtures for T± states are exactly the same as those for the T0 state if one neglects
the small anisotropic SOC effect, which accounts for the energy splitting between the triplet states (the nondegeneracy is shown
in Table I of the main text by symmetry). Between basis states that are not exactly orthogonal, like in our cases due to the
finite overlap, the leading-order approximation [46] is to replace Hint−d with Hee − ES(T0)0 , where ES(T0)0 = 〈S(T0)0|Hee|S(T0)0〉
and Hee is the total Hamiltonian for the two-electron system [Eq. (1)]. The mixture coefficient of X component follows
〈S(T0)′|Hee − ES(T0)0 |S(T0)0〉/(ES(T0) − ES(T0)′), and straightforwardly we have

ES(T0)0 = 1

1 ± χ2
A1

〈
αA1βA1

∣∣Hee

∣∣αA1βA1 ± βA1αA1

〉

= 1

1 ± χ2
A1

[
2EA1 + 〈

αA1βA1

∣∣ e2

r12

∣∣αA1βA1

〉 + e2

rαβ

− 2
〈
αA1

∣∣ e2

r1β

∣∣αA1

〉

±
(

2χ2
A1
EA1 + 〈

αA1βA1

∣∣ e2

r12

∣∣βA1αA1

〉 + χ2
A1

e2

rαβ

− 2χA1

〈
αA1

∣∣ e2

r1α

∣∣βA1

〉)]

≈ 2EA1 + O
(
e−2rαβ/aL

B

)
, (B3)
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ES(T0)′ = 1

1 ± χ2
A1X

± χA1χX

〈
eiaαA1βX

∣∣Hee

∣∣eiaαA1βX + eibαXβA1 ± eicβXαA1 ± eidβA1αX

〉

= 1

1 ± χ2
A1X

± χA1χX

{
EA1 + EX + 〈

αA1βX

∣∣ e2

r12

∣∣αA1βX

〉 + e2

rαβ

− 〈
αA1

∣∣ e2

r1β

∣∣αA1

〉 − 〈βX| e2

r2α

|βX〉

+ ei(b−a)
〈
αA1βX

∣∣ e2

r12

∣∣αXβA1

〉 ± ei(c−a)

(〈
αA1βX

∣∣ e2

r12

∣∣βXαA1

〉 + χ2
A1X

e2

rαβ

− 2χA1X

〈
αA1

∣∣ e2

r1β

|βX〉

+ 2χ2
A1X

EA1 − 2χA1X

〈
αA1

∣∣ e2

r1β

|βX〉
)

± ei(d−a)

[〈
αA1βX

∣∣ e2

r12

∣∣βA1αX

〉 + χA1χX

e2

rαβ

+χA1χX

(
EA1 + EX

) − χX

〈
αA1

∣∣ e2

r1β

∣∣βA1

〉 − χA1〈βX| e2

r2β

|αX〉
]}

≈ EA1 + EX + O
(
e−2rαβ/aX

B

)
, (B4)

〈S(T0)′|S(T0)0〉 =
√

2e−ia√(
1 ± χ2

A1

)(
1 ± χ2

A1X
± χA1χX

) 〈
αA1βX

∣∣αA1βA1 ± βA1αA1

〉 = ±
√

2e−ia√(
1 ± χ2

A1

)(
1 ± χ2

A1X
± χA1χX

)χA1χA1X,

(B5)

〈S(T0)′|Hee|S(T0)0〉 =
√

2e−ia√(
1 ± χ2

A1

)(
1 ± χ2

A1X
± χA1χX

) 〈
αA1βX

∣∣H ∣∣αA1βA1 ± βA1αA1

〉

=
√

2e−ia√(
1 ± χ2

A1

)(
1 ± χ2

A1X
± χA1χX

)
[〈

αA1βX

∣∣ e2

r12

∣∣αA1βA1

〉 − 〈βX| e2

r2α

∣∣βA1

〉

±
(〈

αA1βX

∣∣ e2

r12

∣∣βA1αA1

〉 + χA1χA1X

e2

rαβ

+ 3χA1χA1XEA1 − χA1〈βX| e2

r2β

∣∣αA1

〉)]

∼ O
(
e−rαβ (1/aL

B+1/aX
B )

)
, (B6)

where r1,2 is omitted and the first (second) wave function in the
state belongs to the first (second) electron, and the dielectric
constant ε is also omitted above. In Eq. (B3), the second to
fourth terms are the direct Coulomb energy of two neutral
atoms and sum to ∼e−2rαβ/aL

B [47], where unlike the hydrogen
atoms the unperturbed S(T0)0 of Si donors is formed by the 1s

state whose decay lengths are a
L(S)
B along the larger (smaller)

effective mass direction. In Eq. (B4), again the third to seventh
terms sum up to ∼e−2rαβ/aX

B where aX
B is about the longest decay

length in the X’s envelope. In Eq. (B6), the first two terms are
the coupling of βA1 and βX by a neutral α atom and largely
cancel out. Later we will see that the mixture coefficients due
to the direct Coulomb interaction cancel out when calculating
the relaxation matrix elements, leaving the physical effects
induced only by exchange interaction. Quantitatively, the net
effect of the interdonor perturbation is to couple excited donor
states with weights the order of J (αA1βA1 ; αA1βX)/(EA1 − EX).
The numerator is similar to the S-T splitting involving the
given envelopes in A1 (i.e., 1s) and X (similar arguments in J

estimation in Ref. [48]). Furthermore, for relaxation between
triplet states, the mixture coefficients cancel out except for
the effect of anisotropic SOC not shown above. We can also
examine the mixture with polar excited states following a
similar procedure. Again, the important part is the differ-
ence between mixture coefficients in the singlet and triplet
states.

APPENDIX C: DETAILS ON PERTURBATIVE EXPANSION
OF EQUATIONS (12)–(19)

Using the physical principles discussed in the main text
for identifying the strongest coupling strengths among all
perturbations, we obtain the essential perturbation expansions
of the relaxation matrix elements derived in Eqs. (12)–(19)
one by one.

We start with Eq. (12) of 〈T0|εxx − εyy |S〉[001]. As dis-
cussed, interdonor interaction, Hint−d, or overlap has to be
involved to have finite relaxation. In the first term, there are
two ways to have perturbation made by Hint−d: the mixture of
nonpolar (covalent) excited states, or the mixture of the polar
(ionic) excited states. For the nonpolar ones, the one-electron
mixture is on the same donor [see Eqs. (A1)–(A3)] and the
coefficient is proportional to e−irαβ (1/aL

B+1/aX
B ). The polar ones

require another overlap factor. In the second term of Eq. (12),
one factor utilizes the polar mixture with coefficient ∝ e−rαβ/aX

B

while the other factor goes with overlap ∝ e−rαβ/aL
B , and is

comparable to the first term (the double overlap contribution
mostly cancels out due to TR symmetry).

Next we study the first term due to its nonpolar coupling by
Hint−d. We find out that the dominant term comes with donor
impurity SOC ∼ Lzσz. Lz belongs to the T1z IR of the Td group
(Lz ∼ T1z). It only couples the same � band strongly. Then
the Hep has to couple the same � band (in addition to the same
envelope state) as a result. We find this is possible, although
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εxx − εyy ∼ �z
2 in the z valleys, εxx(yy) ∼ �

x(y)
1 , and εyy(xx) =

1
2 [(εyy(xx) + εzz) + (εyy(xx) − εzz)] ∼ �

x(y)
1 + �

x(y)
2 in the x(y)

valleys. εxx − εyy belongs to the EI
z IR of the Td group, to

which one of the donor state configurations out of the �1 band
also belongs. So εxx − εyy couples �1 − 1s − A1 to �1 −
1s − EI

z , which in turn is coupled by Lz to �1 − 1s − T2z

(EI
z × T1z = T2z), which is finally coupled back to �1 − 1s −

A1 by Hint−d [allowed in Eq. (A1)]. For the polar mixture
contribution, we need to keep everything except replacing the
T2z mixture in the same donor to all the possible mixtures
X in the other donor by Hint−d each multiplying an overlap
〈αT2z

|βX〉. For the second term of Eq. (12), we can replace the
interdonor mixture by a simple overlap, multiplied by a polar
mixture with the T2z IR.

As the combined interaction of Hep with diagonal strain
elements (which give rise to deformation potential within the
�1 band) and SOC is used frequently, we show their combined
Td symmetry explicitly. T1 × E = T1 + T2,

T1 : {(εyy + εzz − 2εxx)σx,(εxx + εzz − 2εyy)σy,

× (εxx + εyy − 2εzz)σz},
T2 : {(εyy − εzz)σx,(εzz − εxx)σy,(εxx − εyy)σz}. (C1)

The most important one of the perturbation expressions
follows as Eq. (23) of the main text, plus the term reversing
perturbation ordering. From Eqs. (B3)–(B5), we know that
the two coefficients are differed by parts due to the exchange
interaction integrals. By reversing the matrix element ordering
in the numerator, it essentially takes the TR operation. The
key is that Li is odd under TR, while εij and Hint−d are even
under TR. These parities yield a minus sign between these two
orderings, and as a result the direct Coulomb integrals of the
interdonor mixture in S and T0 cancel out. This cancellation
makes physical sense, as the singlet and triplets respond the
same way to the direct Coulomb part of the interaction. The
otherwise cancellation between two same S (or T ) states can
also be generally reached by TR,

〈
ψS

α

∣∣εijLk

∣∣ψS
α

〉 = −〈
ψS

α

∣∣εijLk

∣∣ψS
α

〉
, (C2)

for any i,j,k components.
The other two orderings involve T1z states which cannot be

formed out of s envelopes but only with d±1 envelopes:

〈T0|εxx − εyy |S〉(2)
[001] ∝ 〈�1,1s,A1|Lz|�1,3d±1,T1z〉〈�1,3d±1,T1z|H int−d

∣∣�1,1s,EI
z

〉〈
�1,1s,EI

z

∣∣εxx − εyy |�1,1s,A1〉
[E(�1,1s,A1) − E(�1,3d±1,T1)][E(�1,1s,A1) − E(�1,1s,EI )]

+ terms reversing ordering. (C3)

This term is similar in magnitude to those in Eq. (23) involving 3d intermediate states:

〈T0|εxx − εyy |S〉(3)
[001] ∝ 〈�1,1s,A1|H int−d

∣∣�1,3d±1,T
z

2

〉〈�1,3d±1,T2z|εxx − εyy |�1,3d±1,T1z〉〈�1,3d±1,T1z|Lz|�1,1s,A1〉
[E(�1,1s,A1) − E(�1,3d±1,T1)][E(�1,1s,A1) − E(�1,3d±1,T2)]

+ terms reversing ordering. (C4)

This term is smaller than Eq. (C3) because of the two relatively
large energy denominators instead of one.

For Eq. (13) of 〈T0|εz′′y ′′ |S〉[110], the first and third terms
dominate by one less SOC. As for the d̂‖[001] case, Lz′′ =

1√
2
(Lx + Ly) is required in conjunction with εz′′y ′′ to couple

〈ψT0
α | . . . |ψS

α(β)〉, due to the σy ′′ reflection symmetry. εz′′y ′′ ≡
ε[110][1−10] = εxx − εyy . And we have a coupling similar to
that for Eq. (12). Using Eq. (C1), the combined interaction is
symmetrized as

(εxx − εyy)(Lx + Ly)

= − 1
2 [(εyy − εzz)Lx + (εzz − εxx)Ly]

− 1
2 [(εyy + εzz − 2εxx)Lx + (εxx + εzz − 2εyy)Ly]

∼ (
T x

2 + T
y

2

) + (
T x

1 + T
y

1

)
. (C5)

With the T x
2 + T

y

2 part, we can follow Eqs. (15), (C3), and
(C4) and replace (εxx − εyy)Lz with (εyy − εzz)Lx and (εzz −
εxx)Ly . With the T x

1 + T
y

1 part, the perturbation expansion is
similar except that there is at least one denominator energy
∼40 meV, since T1 cannot be formed from 1s envelopes.

For Eq. (14) of 〈T+|εxz − iεyz|S〉[001], since εxz − iεyz

does not partially belong to �1 in any valley, it has to go
with interband coupling, which cannot be brought back to the

�1 band state considerably by donor SOC or Hint−d. As noted
in the main text, the host SOC leads to an E-Y cancellation.
In all cases, the contributing terms are substantially smaller
than Eq. (23).

For Eq. (15) of 〈T+|εx ′z′ + iεy ′z′ |S〉[111]n, the first (third)
term cannot be connected to the second (fourth) term due to
the lack of α ↔ β symmetry operations (they are constructive
in the d̂‖[001] case and destructive in the d̂‖[111]i case). Now
we go into more details about them. 〈↑|Lx ′σx + Ly ′σy |↓〉 =
Lx ′ − iLy ′ =

√
2
3 [eiπ/6Lx − iLy − e−iπ/6Lz] is necessary.

εx ′z′ + iεy ′z′ = √
2/3[e−iπ/6εxx + iεyy − eiπ/6εzz + eiπ/6εxy

− iεxz − e−iπ/6εyz]. Since the e-ph part contains both the
diagonal and off-diagonal strain tensor elements, we have
respectively the perturbation within the �1 band (using
diagonal εii with donor SOC) and via the �5 band (using
εij ,i �= j , and host SOC), the latter of which is dropped due
to E-Y cancellation.

We study for the diagonal e-ph part. The coefficients in
e−iπ/6εxx + iεyy − eiπ/6εzz add up to 0, showing there is no
εxx + εyy + εzz ∼ A1 component. Therefore it contains only
E IR components. We know Li ∼ T1i . E × T1 = T1 + T2.
So in the first case the combined e-ph and SOC mixes in
some components of T1 or T2. Now we check Eq. (A2) to see
whether and what T1,2 components can be coupled by Hint−d.
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Indeed, not all the components but only T1x + T1y + T1z and
T2x + T2y + T2z are allowed. In order to see whether they are
contained in the combined e-ph and SOC, we use Eq. (C1) to
make symmetrization,

(e−iπ/6εxx + iεyy − eiπ/6εzz)(e
iπ/6Lx − iLy − e−iπ/6Lz)

=
√

3i

2
[(εyy − εzz)Lx + (εzz − εxx)Ly + (εxx − εyy)Lz]

− 1

2
[(εyy + εzz − 2εxx)Lx + (εxx + εzz − 2εyy)Ly

+ (εxx + εyy − 2εzz)Lz], (C6)

and find out that it does contain both
∑

i T1i and
∑

i T2i

components. Basically, this is a very similar situation as shown
in Eq. (C5) of the [110] S − T0 case. The major contributing
terms in the first (or second) term are identified as follows,

〈
ψ

T+
α↑′

∣∣e−iπ/6εxx + iεyy − eiπ/6εzz

∣∣ψS
α↓′

〉
[111]n

∝
∑

i=x,y,z;
n=1s,3d±1

√
3i

2

〈�1,1s,A1|H int−d|�1,n,T2i〉〈�1,n,T2i |Li

∣∣�1,1s,EI
i

〉〈
�1,1s,EI

i

∣∣(εjj − εkk)|�1,1s,A1〉
[E(�1,1s,A1) − E(�1,n,T2)][E(�1,1s,A1) − E(�1,1s,E)]

+
∑

i=x,y,z;

√
3i

2

〈�1,1s,A1|H int−d|�1,3d±1,T2i〉〈�1,3d±1,T2i |(εjj − εkk)|�1,3d±1,T1i〉〈�1,3d±1,T1i |Li |�1,1s,A1〉
[E(�1,1s,A1) − E(�1,3d±1,T2)][E(�1,1s,A1) − E(�1,3d±1,T1)]

+
∑

i=x,y,z;

√
3i

2

〈�1,1s,A1|(εjj − εkk)
∣∣�1,1s,EI

i

〉〈
�1,1s,EI

i

∣∣H int−d|�1,3d±1,T1i〉〈�1,3d±1,T1i |Li |�1,1s,A1〉
[E(�1,1s,A1) − E(�1,1s,E)][E(�1,1s,A1) − E(�1,3d±1,T1)]

−
∑

i=x,y,z

1

2

〈�1,1s,A1|H int−d|�1,3d±1,T1i〉〈�1,3d±1,T1i |Li

∣∣�1,1s,EII
i

〉〈
�1,1s,EII

i

∣∣(εjj + εkk − 2εii)|�1,1s,A1〉
[E(�1,1s,A1) − E(�1,3d±1,T1)][E(�1,1s,A1) − E(�1,1s,E)]

−
∑

i=x,y,z

1

2

〈�1,1s,A1|H int−d|�1,3d±1,T1i〉〈�1,3d±1,T1i |(εjj + εkk − 2εii)|�1,3d±1,T1i〉〈�1,3d±1,T1i |Li |�1,1s,A1〉
[E(�1,1s,A1) − E(�1,3d±1,T1)][E(�1,1s,A1) − E(�1,3d±1,T1)]

−
∑

i=x,y,z

1

2

〈�1,1s,A1|(εjj + εkk − 2εii)
∣∣�1,1s,EII

i

〉〈
�1,1s,EII

i

∣∣H int−d|�1,3d±1,T1i〉〈�1,3d±1,T1i |Li |�1,1s,A1〉
[E(�1,1s,A1) − E(�1,1s,E)][E(�1,1s,A1) − E(�1,3d±1,T1)]

+ terms reversing ordering, (C7)

where i,j,k ordered cyclicly. Polar mixture also exist in all four terms of Eq. (15) similarly to that of Eq. (12).
For Eq. (17) of 〈T+ + T−|εA1 |S〉[110], the first term consists of one spin-independent matrix element, 〈ψT

α↑|εA1 |ψS
α↑〉 ≈

〈ψA1 |εA1 |ψA1〉 = �d + �u/3 (which are the usual dilation and shear deformation potentials [34]), and one spin-flip overlap
〈ψT2

β↑′′ |ψS
β↓′′ 〉, which we treat similarly to the manner above:

〈
ψT

β↑′′
∣∣ψS

β↓′′
〉
[110] ∝

〈�1,1s,A1|H int−d|�1,3d±1,T1,n〉〈�1,3d±1,T1|Lz − i√
2
(Lx − Ly)|�1,1s,A1〉

E(�1,1s,A1) − E(�1,3d±1,T1)
+ terms reversing ordering,

(C8)

relatively small due to the 3d intermediate state. The second
term contains 〈ψT

α↑′′ |εA1 |ψS
α↓′′ 〉, where εA1 stands for εx ′′x ′′ ≡

εzz and εz′′z′′(y ′′y ′′) ≡ ε[1±10][1±10] = (εxx + εyy ± 2εxy)/2. We
can similarly symmetrize the operator as before. Seeking the
dominant T2 components, we take from εzz or εxx + εyy the EII

z

part (dropping the A1 part), ∼εxx + εyy − 2εzz, and the Lx −
Ly part from Lx ′′ − iLy ′′ to obtain

(εxx + εyy − 2εzz)(Lx − Ly)

= (εyy − εzz)Lx + (εzz − εxx)Ly, (C9)

similarly to Eq. (C5), which the the rest of the steps follow.
For Eq. (17) of 〈T+ − T−|εx ′′y ′′ |S〉[110], SOC is needed

such that 〈ψT2
α(β)|εx ′′y ′′Lz′′ |ψS

α 〉 is nonvanishing (due to σy ′′ ),

so the first and third terms require SOC2, much smaller than
the second and fourth terms. For 〈ψT2

α↑′′ |εx ′′y ′′ |ψS
α↓′′ 〉, εx ′′y ′′ =

1√
2
(εxz − εyz). We have to go through the �5 intermediate

state and host SOC. The result is suppressed by the E-Y
cancellation.

The relaxation matrix elements between different triplet (T)
states. As discussed in the main text [also see Eq. (C2)], the
relaxation does not vanish only when the mixtures into the two
states by interdonor interaction are not the same. This can be
satisfied between S and T states by exchange interaction even
the crystal field is completely uniform. Between the T states,
by the same reason, the different mixtures have to come from
field anisotropy with respect to triplet spin orientations. The
same origin leads to the small splitting (I , much smaller than
the S-T splitting, J ) between different triplet states. We briefly
discuss the perturbation expansion from these matrix elements.

For Eq. (14) of 〈T+|εxz + iεyz|T0〉[001], due to the nondi-
agonal e-ph element, εxz + iεyz, the host SOC is invoked
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and E-Y cancellation is switched on [as for Eq. (14) of
〈T+|εxz − iεyz|S〉[001]] making this matrix element small even
among ones for the triplet relaxations.

For Eq. (15) of 〈T+|εx ′z′ + iεy ′z′ |T0〉[111]n, the e-ph and SOC
couplings follow those of 〈T+|εx ′z′ + iεy ′z′ |S〉[111]n in Eq. (15),
while the exchange part is much suppressed as discussed
above. The first (third) and second (fourth) terms become equal
to each other in Eq. (16) of 〈T+|εx ′z′ + iεy ′z′ |T0〉[111]i .

In Eq. (18) of 〈T+ + T−|εy ′′z′′ |T0〉[110], the first and third
terms scale with SOC2 (without taking the interdonor SOC

effect into account) and are much smaller than the second
and fourth terms. εy ′′z′′ = (εxx − εyy)/

√
2 ∼ EI

z , and Lx ′′ −
iLy ′′ = Lz − i√

2
(Lx − Ly) ∼ T1. E × T1 = T1 + T2. So the

perturbation expansion has a similar form to that in Eq. (C7).
Finally, in Eq. (18) of 〈T+ − T−|εx ′′z′′ |T0〉[110] and (19)

of 〈T+ − T−|εx ′′y ′′ |T+ + T−〉[110], εx ′′z′′ = 1√
2
(εxz + εyz) and

εx ′′y ′′ = 1√
2
(εxz − εyz) both invoke E-Y cancellation and sup-

press the two matrix elements even further, as in Eq. (14) of
〈T+|εxz + iεyz|T0〉[001].
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