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Cross-section geometry effects in the subband structure and spin-related
properties of a HgTe/CdTe nanowire

J. A. Budagosky*

Donostia International Physics Center (DIPC), Manuel de Lardizabal Pasealekua, E-20018 Donostia, Basque Country, Spain
(Received 8 June 2017; revised manuscript received 14 August 2017; published 25 September 2017)

By means of a multiband effective mass Hamiltonian, a theoretical characterization of the effect of the
geometrical features of the confinement profile—in particular, a longitudinal groove—on the subband dispersion
and spin-related properties of a rectangular HgTe/CdTe nanowire is presented. Through an external electric field
applied perpendicular to the wire, the interplay of the induced Rashba spin splitting and these geometrical features
is investigated. It is found that by exploiting this interplay, a rich complexity of the subband structure arises,
permitting the generation and modulation of spin-polarized currents without magnetic fields.
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I. INTRODUCTION

Research on the spin-related phenomenology in magnetic
and semiconductor materials has grown considerably in the last
years, primarily motivated by the increasing interest in the field
of spintronics [1–5]. In order to understand properly the oper-
ation of these devices, a detailed knowledge of the band struc-
ture and related aspects of the spin is of paramount importance.

One of the main advantages in the use of semiconductors
in spintronics is the spin-orbit coupling (SOC) and the
resulting spin splitting associated with these materials. In
low-dimensional semiconductor systems, one can tune the
spin splitting [6–8], taking advantage of the presence of the
Dresselhaus [9] and Rashba [10] SOC. The Dresselhaus SOC
arises in materials whose crystal structure lacks inversion
symmetry (bulk inversion asymmetry, BIA) and leads to a
spin splitting which depends on the electron wave vector, while
Rashba SOC arises due to the absence of inversion symmetry
of the confinement profile of a heterostructure [10] (structural
inversion asymmetry, SIA). The spin splitting is very important
since it allows, for example, the control of the spin polarization
by an electric field and the determination of the spin relaxation
rate [5]. The interference between the spin splitting due to
Dresselhaus and Rashba SOC can lead to macroscopic effects,
important for their potential applications [11–14]. Additional
complexities in the energy subband structure can be obtained
in the presence of an external magnetic field. Furthermore, it
is well known that the simultaneous presence of the SOC
and external fields gives rise to a spatial variation in the
distribution of the spin density, also known as spin texture,
for each subband. The spin current concept is closely related
to the spin texture because, experimentally, this current can be
measured in terms of local variation of spin density [15]. The
coherent transmission of information within electronic devices
is the main goal considered when production, detection, and
manipulation of spin currents are investigated [16,17].

Most of the investigations carried out in connection with
SOC effects focus on two-dimensional heterostructures and
quantum wires (quasi-one-dimensional structures) with rel-
atively simple shapes. However, the study of the effects of
the SOC in more complicated structures, such as quantum
wires with nontrivial cross sections, is interesting by virtue
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of the new effects that may arise from these configurations.
In this work some numerical results, obtained by means of
an eight-band k · p Hamiltonian, are shown in order to study
in detail the effects of the SOC on the energy spectrum and
spin polarization of a HgTe rectangular thin quantum wire
embedded within a CdTe matrix. In addition, a longitudinal
groove is included as part of the cross section. As we will
see later, this type of constriction has profound consequences
on the subband structure and spin texture when an external
electric field perpendicular to the nanowire is included.

We have chosen the HgTe/CdTe heterostructure as our
model system for two reasons: First, HgTe is a negative gap
material, i.e., the �6 band, together with the �7 band and the
±3/2-spin branches of the �8 band, behave as valence bands,
while the ±1/2-spin branches of the �8 band behave as the
conduction band. This feature makes HgTe a semimetal. This
band inversion between �6 and �8 has profound consequences
when the HgTe forms part of a heterostructure together with
an insulator or a positive gap semiconductor, e.g., CdTe.
The transition between an inverted (negative gap) subband
structure and regular (positive gap) subband structure of a
quantum well formed by the system CdTe/HgTe/CdTe, or a
combination of their alloys, depends on the thickness of the
well. (For example, for a HgTe/CdTe quantum well this critical
thickness is about 6.5 nm.) The most striking consequence
of the particular alignment of the subband structure in HgTe
quantum wells is the appearance of interfacial, or edge states
[18–20]. Second, together with its topological insulator (TI)
character and tunability, the HgTe is a material with a quite
large SOC, which makes it very interesting for spintronics.
Furthermore, the lattice parameters of HgTe and CdTe are
very similar, so the strain generated by the lattice mismatch
between these materials is negligible. The latter will allow
us to focus on the purely geometrical characteristics of the
nanostructures studied in this paper.

The paper is organized as follows: Section II describes the
theoretical background and the numerical method used in our
calculations, and in Sec. III we show and discuss the obtained
results.

II. DESCRIPTION OF THE MODEL

In this section, we will describe the implementation of
the envelope function theory, together with the Hamiltonian
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FIG. 1. Schematic model of one of the two HgTe/CdTe nanowires
considered in our study. The other is the same as that shown here
(rectangular shape) but without the groove.

used for studying the rectangular wire with and without the
longitudinal groove.

Figure 1 shows the system under study: a HgTe rectangular
thin quantum wire surrounded by a CdTe barrier. A longitudi-
nal, semielliptical groove may be included in the upper facet
of the wire cross section. These types of shapes could be real-
izable, e.g., by etching or lithographic techniques [21,22]. The
dimensions of the computational domain are defined by Ly and
Lz. A plane-wave expansion method is used in order to obtain
the electronic structure of our system, which implies the use of
periodic boundary conditions. In addition, an external uniform
electric field, ε = (0,0,εz), is applied parallel to the z axis.

We work in the framework of the Burt-Foreman (BF)
envelope function theory [23–25], employing an eight-band
effective mass Hamiltonian that includes BIA [26,27]. The
electric field is added to the diagonal elements of the Hamilto-
nian matrix. Since in this Hamiltonian the interaction between

the conduction and valence bands is described explicitly,
the Rashba-type spin splitting is automatically generated by
including the asymmetry in the confining potential, making
the electric field different from zero. The basis of the Bloch
wave functions used to construct this Hamiltonian is
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where |X〉, |Y 〉, |Z〉, and |S〉 are the orbital wave functions of
the top of the valence bands (px,y,z-type orbitals) and the bot-
tom of the conduction band (s-type orbital), respectively. The
symbols ↑ and ↓ denote spin-up and spin-down components.
For the sake of clarity, we have divided the Hamiltonian into
two parts: the zero-field Hamiltonian without BIA, Ĥk , and a
8×8 matrix with the BIA-related parameters, ĤBIA:
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where k± = kx±iky, ky = −i∂/∂y and kz = −i∂/∂z. The su-
perscript † refers to Hermitian conjugation, T means transpose,
and ∗ means complex conjugation. In the [001]-oriented
Hamiltonian, the terms Tk, Pk,Qk, Sk,�k, Rk , and Mk in
Eq. (2a) are given by

Tk = Ec + h̄2

2m0
(kxγ

′kx + kyγ
′ky + kzγ

′kz) (3a)
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′
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√
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′
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Here, Ec,Ev , and �SO are the conduction band edge, the
valence band edge, and the spin-orbit split-off parameters,
respectively, while χ is an anisotropy parameter and P0 is the
Kane momentum matrix element. In addition, γ ′ and γ ′

i are the
conduction band parameter and the valence band parameters,
respectively. The values of these have been chosen properly to
describe the coupling to the remote bands. On the other hand,
the terms Ak,Ok,Nk,Dk, Lk are given by

Ak = k−B+
8vkz + kzB

+
8vk− (4a)

Ok = kxB
−
8vkx − kyB

−
8vky + i(kxB

+
8vky + kyB

+
8vkx) (4b)

Nk = kxB
−
8vkx + kyB

−
8vky − 2kzB

−
8vkz (4c)

Dk = kxB7vky + kyB7vkx (4d)

Lk = k+B7vkz + kzB7vk+, (4e)

where B±
8v and B7v are the BIA band parameters related with

the terms quadratic in k in Eq. (2b). The terms linear in k are
weighted by the parameter C0. All parameters described above
were taken from Refs. [28] and [29]. Except for P0, B

±
8v , and

B7v , the rest of the parameters are position dependent. This
dependence is described explicitly as

f (r) = f CdTe + (f HgTe − f CdTe)α(r), (5)

f HgTe (f CdTe) being the value of the parameter in the wire
(barrier) and α(r) a characteristic function that defines the
shape of the cross section of the nanowire (set as unity within
the wire and zero in the barrier). This is calculated numerically
in a real-space grid.

Note that we have made the operator form of the wave
vector explicit for all components (even along the wire axis),
so these expressions are valid also for three-dimensional
quantization. In addition, all the elements of the matrices (2a)
and (2b) that depend linearly on the wave vectors are treated
in a symmetrized fashion. Finally, the Hamiltonian can be
expressed as

Ĥ = Ĥk + ĤBIA + Î8×8(eεzz), (6)

where Î8×8 is the 8×8 unit matrix and εz is the external electric
field strength applied parallel to z.

A. Plane-wave expansion method

We have implemented the above Hamiltonian for our prob-
lem using a plane-wave expansion within the first Brillouin
zone, as this is demanded by the exact envelope function theory
[27]. The unit-cell dimensions have been chosen to maintain a
balance between maximizing the efficiency of the calculation
and minimizing the coupling with the rest of the periodic array,
at least with regard to the conduction and valence subbands
considered here. Note that the eigenvalue problem using the
Hamiltonian of Eq. (6) should be written formally in Fourier
representation and not in real space. The characteristic function
α(r) in Eq. (5) is transformed accordingly using a fast Fourier
transform (FFT) routine.

To start, we write the electron wave function in the material
as an eight-component spinor:

|ψkx
(r)〉 = eikxx

8∑
α=1

χα(r)|uα〉, (7)

where r = (y,z) and χα(r) is an envelope function associated
with the slowly varying Bloch function of the bulk material.
The first step in the plane-wave expansion method consists in
expanding the envelope function as a linear combination of
plane waves,

χα(r) = 1√
�

∑
q

Aαqe
iq·r , (8)

being q = (2πmy/Ly,2πmz/Lz),� = LyLz the area of the
unit cell, and Aαq a set of complex coefficients to be
determined. Here, mi = −(Mi − 1)/2, . . . , + (Mi − 1)/2, Mi

being the total number of plane waves along direction i.
For a given value of kx and using standard diagonalization
techniques [30], the energy levels and eigenfunctions of the
nanowire are found by solving the matrix eigenvalue problem
of dimension N×N (with N = 8×My×Mz), obtained from
the differential equation that results from introducing Eq. (7)
into Eq. (6):

8∑
β=1

∑
q

hαβ(q ′.q,kx)Aβq = EAαq′ . (9)

In order to set up the matrix of Eq. (9), we must first
evaluate the matrix elements hαβ(q ′,q,kx) linking plane-wave
basis states of wave vectors q ′ and q:

hαβ(q ′,q,kx) = 1

�

∫
�

e−iq′·rĤαβeiq·rd2r . (10)
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The evaluation of hαβ(q ′,q,kx) is greatly facilitated if we
take into account that the elements Ĥαβ of the 8×8 Hamiltonian
matrix are expressed as linear combinations of elements of the
form

ζ1 = f (r), (11a)

ζ2 = f (r)kn = knf (r), and (11b)

ζ3 = kmf (r)kn, (11c)

with n,m = y,z. The elements ζi are evaluated in the basis of
plane waves in the same way as in Eq. (10), but replacing Ĥαβ

by ζi :

ζi(q ′,q) = 1

�

∫
�

e−iq′·rζie
iq·rd2r . (12)

By making the substitutions

knf (r) → − i

2
(∂nf (r) + f (r)∂n),

kmf (r)kn → −∂mf (r)∂n, (13)

and integrating in Eq. (12), the resulting expressions for the
elements ζi(q ′,q) are

ζ1(q ′,q) = f CdTeδq′,q + �f

�
α̃(q ′ − q), (14a)

ζ2(q ′,q) = (q ′
n + qn)

2
ζ1(q ′,q), (14b)

ζ3(q ′,q) = q ′
mqnζ1(q ′,q), (14c)

with �f = f HgTe − f CdTe and α̃ the characteristic function
α(r) in Fourier representation, evaluated at q ′ − q. Once the
elements ζi(q ′,q) are evaluated, obtaining the matrix elements
hαβ(q ′,q,kx) is straightforward.

B. Spin polarization and transport

For the study of spin and charge transport in our system,
we calculate the charge and spin-polarized conductance (we
restrict ourselves to the ballistic regime) along the axis of the
wire as a function of the Fermi level. We assume a sufficiently
long wire connected at both ends with two reservoirs with
chemical potentials μS (source) and μD (drain). The external
bias that generates the current is assumed to be created by
a difference between these chemical potentials, eVc = μS −
μD . Starting from the definition given in Refs. [31] and [32], at
very low temperature and in the limit of small bias (μS ≈ μD),
the ballistic charge conductance can be rewritten in terms of
the wave vector kx as,

G(Ef ) = e2

h

∑
n,s

∫ +∞

−∞
vn,s�[vn,s]δ[En,s(kx) − Ef ]dkx ,

(15)

where vn,s is the electron group velocity, vn,s(kx) = ∂En,s(kx)/
(h̄∂kx), for propagation along the wire with energy En,s(kx),�
is the Heaviside function (the sign of vn,s defines the sign of the
bias and, for instance, the direction of current propagation), and

Ef is the Fermi level. Here, n is the orbital quantum number,
running from the lowest energy subband to the highest,
while s = ±1 labels the spin branch of the nth subband.
Finally, for numerical purposes, the δ[En,s(kx) − Ef ] function
is approximated by a narrow Gaussian.

On the other hand, by numerical diagonalization of the
Hamiltonian, it is possible to take a look at the spin polarization
described by a momentum-dependent vector field, S(kx) =
(〈Sx〉,〈Sy〉,〈Sz〉), where Sm are the Cartesian components of the
spin matrix operator in the eight-band representation [33,34].

In that sense, from the obtained spectrum, we can calculate
the average spin components of each s = ±1 spin branch per
nth subband along the i = x,y,z directions,

〈Si〉n,s =
∫

�

d2rψ∗
n,s,kx

(r)Siψn,s,kx
(r) . (16)

Thus, following [35–37], for a given Fermi level Ef the
spin-polarized current related to components 〈Si〉n,s can be
written as

J i
x(Ef ) = e2

h

∑
n,s

∫ +∞

−∞
〈Si〉n,svn,s

�[vn,s]δ(En,s(kx) − Ef )dkx , (17)

which is basically the same expression as for the charge con-
ductance [Eq. (15)] but including the average spin polarization
in the integrand. Finally, it is important to recognize that, due
to the SOC, the label s is no longer a good quantum number.
Nevertheless, we kept using it in some cases along this work for
the sole purpose of differentiating between the lower (s = −1)
and higher (s = +1) spin branches of the same nth subband.

III. NUMERICAL RESULTS AND DISCUSSION

For the numerical calculations, we have used the following
parameters: Ly = 100 nm, Lz = 20 nm, Wy = 80 nm, Dy =
20 nm, and Dz = 2.5 nm. The center of coordinates of our
system (y = 0,z = 0) are located at the center of the nanowire.
Through the paper, we considered several values for the
thickness, Wz.

As discussed in the Introduction, quantum well systems
based on the combination HgTe/CdTe, and their alloys, are
extremely sensitive to the well thickness. Therefore, it is
convenient to begin by analyzing the structure of the subbands
in the nanowire as a function of its thickness Wz, in a nanowire
with the cross section shown in Fig. 1 and also without the
longitudinal groove, in order to show some basic features
before studying in detail the effect of the external electric
field and the Rashba splitting in our system. This first step will
allow us to establish some definitions that will be useful in the
rest of the paper.

Figure 2(a) shows the dependence of the energy spectrum
versus Wz of the rectangular nanowire, calculated at kx = 0.
Since the spectrum is calculated at the � point and there is
no external magnetic field present, each of the states shown
in the figure is twofold spin degenerate (Kramers doublet), so
the label s is absent in the labels used. The color scale applied
to the spectrum shows the main composition of these states
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FIG. 2. (a) Subband energies at kx = 0 in a thin HgTe/CdTe
nanowire with rectangular cross section (without groove) as a function
of its thickness along the z axis, Wz. All the energy levels shown in
the spectrum have a color scale indicating their main character (from
100% �6 to 100% �8). (b) The probability density, |ψ(r)|2, for the
states H1 and E1 at the same selected Wz values indicated in (a): A
(4.5 nm), B (6.1 nm), C (7.5 nm), and D (8.5 nm).

in terms of the symmetry groups �6 and �8. (For the energy
range considered here the contribution of �7 is negligible and
was excluded from the analysis.) The parameter τ (spanning
the range [−1 : 1]) associated with each color is given by

τ =
2∑

α=1

∫
�

d2r|χα(r)|2 −
6∑

α=3

∫
�

d2r|χα(r)|2. (18)

At first sight, the qualitative behavior of the energy levels
E1 and H1 is slightly similar to that of a quantum well [19,29],
especially for smaller thicknesses Wz. In the latter, the BIA
opens a small gap, of approximately 2.9 meV, where the
crossing between levels E1 and H1 should occur. In our case,
however, the extra confinement along the y axis modifies the
dependence on Wz in two ways, in the first place on the energy
levels, shifting the crossing between E1 and H1 to values of
Wz over 9 nm. The position of the crossing in the Wz axis
is strongly related to the width Wy of the nanowire [38].
For the width considered here, this crossing coincides with
a dense group of �8 valence states that shifts upwards. In
the second place, on the composition of the states. Contrary
to what is observed in the quantum well, where the crossing
also coincides with the �6 → �8 inversion, here E1 goes from
�6 to �8 long before the crossing with H1 (around 6.1 nm
in this case). This transition is not abrupt but rather occurs
progressively. In the case of states En > E1, the �6 → �8

transition occurs even at a smaller thicknesses.
The fact that the bulk effective masses inside and outside

the HgTe/CdTe quantum well are of opposite sign makes
some eigenstates tend to locate at the interfaces of the well.
In the case of the nanowire, it is possible to observe a
similar effect. Note in Fig. 2(b) that, as the thickness Wz is
increased, the progressive hybridization of E1 with H1 gives
place to the formation of states mainly located at the interfaces
perpendicular to the y axis. For the narrowest wire, the shape
of the wave function is different in H1 and E1. Nevertheless,
as Wz is increased, both states become more and more similar
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FIG. 3. The same as in Fig. 2 but for the case of the nanowire
with the longitudinal groove as part of its cross section.

in shape, in line with the progressive reduction of the energy
gap between these.

The presence of a longitudinal groove modifies significantly
the energy spectrum and its dependence on the nanowire
thickness. As one might expect, in Fig. 3(a) we observe that the
differences—both quantitative and qualitative—between this
spectrum and those shown in Fig. 2(a) become more and more
remarkable as Wz decreases. The most obvious difference is
the progressive approach between the E1 and E2 doublets (also
between E3 and E4 and so on) as Wz reach 4 nm, where they
are almost degenerate. This behavior can also be observed
between H1 and H2.

The origin of the strong approach between the first two
Kramers doublets becomes clear by setting our problem in
terms of a double potential well, i.e., two quantum wells
separated by a potential barrier right in the middle: if the
barrier between the two wells tends to infinity, then the two
lowest states are degenerate. This zero energy difference can
be broken when the barrier between the wells is thin enough to
allow tunneling. In our case, each one of the lowest (highest)
conduction (valence) Kramers doublets E1 and E2 (H1 and
H2) is split into two parts, spatially separated due to the
longitudinal groove [see Fig. 3(b)]. However, this geometrical
configuration still permits a small interaction between the two
regions located left and right of the groove, which is the origin
of the small energy difference between these states. Obviously,
this “tunneling splitting” increases as we increase Wz.

In Fig. 4, the subband structures of the rectangular quantum
wire, for the four thicknesses Wz considered previously, are
shown. As expected for the HgTe, note that the dispersion of
the conduction subbands is far from being parabolic. In the case
of the rectangular nanowire, as Wz is increased, the dispersion
tends to resemble more and more a Dirac cone while the gap
between the conduction and valence subbands decreases, as
we could see in Fig. 2(a). Also, as Wz is increased, the band
inversion occurs mainly around the � point and for the few
lowest conduction subbands. For values of kx far enough from
zero (not shown here), the wave functions associated with
these subbands change from p type to s type again as these
recover the orbital character associated to a normal order of
the Energy bands [19,39]. In all cases, the BIA spin splitting
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FIG. 4. (a–d) Calculated subband energy dispersions of the
nanowire with the rectangular cross section for different thicknesses:
(a) Wz = 4.5 nm, (b) Wz = 6.1 nm, (c) Wz = 7.5 nm, and (d) Wz =
8.5 nm. The color scale has the same meaning that in Figs. 2 and 3.
(e) Probability densities and Cartesian components of the spin density

(both in arbitrary units) for the states E1,±1, at kx = −0.001 Å
−1 = k−

and kx = +0.001 Å
−1 = k+, of the 8.5-nm-thick nanowire [indicated

by two thick black dots on the inset in (d)]. Regarding the spin
densities, the dark blue color corresponds to negative values while
the red corresponds to positive values. Here, only the doublet E1 is
shown since H1 presents identical qualitative features.

in the conduction subbands is so small that it is impossible to
observe it at the scale of the figures. (The inset in Fig. 4(a)
shows a closeup of the subbands E1,±1 just around kx = 0.)
However, due to the confinement along the y axis, the BIA
is manifested not only in the splitting of the subbands as a
function of the momentum, but in the modification of the
subbands energy at kx = 0. Except for the splitting, the effect
does not seem to be important in the case of the conduction

subbands, but in the case of the valence bands it is (not shown
here).

Finally, by direct visual inspection of the wave functions
and spin densities one can check that the states in the subbands
E1,±1 and H1,±1, that form the Dirac-type cones just around
kx = 0 in Fig. 4(d) (see the inset), behave as edge states.
These are located very close to the interfaces (in this case,
those perpendicular to the y axis). On the other hand, the only
nonzero average spin projection is the component 〈Sx〉, i.e.,
parallel to the axis of the wire and to the interfaces where
these states are located. The latter is evident by observing, for
example, the probability density |ψ(r)|2 and the components
of spin density Si(r) = ψ∗(r)Ŝiψ(r) (i = x,y,z) in Fig. 4(e)

for the states E1,±1 at kx = ±0.001 Å
−1

. In both subbands, the
Sy and Sz components have a symmetric texture that translates
into a zero average for each one of these. As for its spatial
distribution, the local behavior of Sz(r) allows us to verify
the spin-momentum correlation characteristic of the helical
edge states [20] in the region coincident with the maxima
of the |ψ(r)|2. In each branch of the doublet E1, each edge
holds two counterpropagating modes (with momentum k− and
k+) whose spin components Sz are antiparallel. In principle,
since time-reversal symmetry is preserved, these states are
topologically protected against backscattering from time-
reversal-invariant potentials (e.g., nonmagnetic impurities).
However, this is rigorously true for a single edge or for two
edges with no interaction between them. For the nanowire
width considered here (Wy = 80 nm), the overlap between the
tails of the spatially separated edge states, although small, is
not negligible. In this situation, in the presence of a scattering
source, the probability that an electron moving along one of
the edges performs a backscattering by jumping to the opposite
edge would not be zero. This aspect should be ruled out by
increasing the width of the nanowire enough to make this
overlap negligible.

Moving away from kx = 0, the progressive approach of the
edge states to the bulk-type subbands results in a decrease
in the accumulation of the probability density at the edges
[40]. Far from kx = 0, the result agrees with what would be
expected in a BIA spin-orbit coupled nanowire with normal
band ordering.

In the case of a nanowire with the longitudinal groove
(see Fig. 5), we observe that for both Wz = 4.5 nm and
Wz = 6.1 nm, the separation between the two lowest (highest)
Kramers doublets of the conduction (valence) subbands is so
small that it is difficult to distinguish them from the scale we
have used in the figures. In the insets of Figs. 5(a) and 5(b),
a closeup of the lowest energy conduction subbands E1,±1

and E2,±1 is shown around the � point: note in the inset
in (a) that both E1,±1 and E2,±1 are mostly �6 whereas in
the inset in (b) only E1,±1 are �6. As in Fig. 4, just around
kx = 0 the dispersion of the lowest subbands is approximately
parabolic. Then, as Wz increases, the gap between the
conduction and valence subbands not only decreases, but also
a progressive modification towards a linear dispersion around
the � point is observed. Finally, note in the Fig. 5 how,
as Wz increases, this tunneling splitting occurs exclusively
around �.

Next we will study the effects of an external electric field
on the energy spectrum at kx = 0 first, where Rashba SOC
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FIG. 5. The same as Figs. 4(a)–4(d), but for the case of the
nanowire with the longitudinal groove.

effects are not present. Figure 6 shows the dependence of the
energy levels of the nanowire—the two shapes considered
in this work—as a function of the electric field strength.
Here, only the conduction subbands are shown. Since we are
mostly interested in studying the dependence of the relative
separation in energy between the subbands, all the energies
have been shifted with respect to the highest valence energy
level (H1) for each value of εz. Thus, the lowest conduction
energy level shown in Fig. 6 set, in fact, the value of the
gap between the conduction and valence bands. Apart from
the obvious symmetry of the spectrum with respect to the
sign of the electric field, the first feature that one can extract
from Figs. 6(a)–6(d) is that the separation between E1 and E2

varies very little as the strength of the field increases, whereas
the same does not occur in the states with higher energies.
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FIG. 6. (a–d) Subband energies calculated at kx = 0 of the
nanowire with the rectangular cross section as a function of the
external electric field strength along the z axis εz for different
thicknesses: (a) Wz = 4.5 nm, (b) Wz = 6.1 nm, (c) Wz = 7.5 nm,
and (d) Wz = 8.5 nm. Only the conduction-type subbands are shown
here. The energy of the lowest conduction subband was subtracted on
each level at each value of εz, i.e., En − E1. (e–h) The same as plots
(a–d) but for the case of the nanowire with the longitudinal groove.

In the latter case, a rapid decrease in the energy separation
between these states and E1 is observed in nanowires with
Wz � 6.1 nm. For Wz = 4.5 nm, the strong confinement in the
same direction as the electric field avoids the displacement of
these states associated to the tilt of the confinement profile,
making this separation negligible. On the other hand, in the
nanowire with the longitudinal groove [Figs. 6(e)–6(h)], the
behavior of the energy levels as a function of the electric field
is different depending on its sign. This difference is important
in nanowires with larger thicknesses, whereas in the case of the
4.5-nm-thick nanowire it is observed to a lesser extent. In the
latter case, the doublets E1 and E2 are separated by the small
tunneling splitting previously defined. As it was studied above,
the increase of Wz results in an increasing tunneling splitting at
εz = 0. However, in (g) and (h), the tunneling splitting between
the first two subbands decreases rapidly by increasing the
electric field in the direction parallel to the z axis (εz > 0). (On
the contrary, in the higher energy subbands this effect is not
evident.) When applying the electric field in this direction, part
of the states E1 and E2 move towards the upper interface of the
nanowire, just where the groove is located. The combination
of the tilt of the confinement profile along z and the presence of
the longitudinal groove forces these states to separate spatially,
showing again characteristic features of a double potential well
and thus reducing the tunneling splitting between them. In
addition, one can observe in (g) and (h) that, for εz > 0, the
levels E1 and E2 both shift toward higher energies due to the
crossing of the conduction and valence bands.

We now turn to study the effects of the SOC changing our
attention to states away from kx = 0, where one can expect
the occurrence of the Rasha spin splitting. The presence of
this splitting has important effects on the energy spectrum,
as it might lead to the appearance of multiple kx-dependent
anticrossings. These anticrossings represent “hot spots” in
which transitions between opposite-spin states are more
probable. In the following, we will study the structure of
subbands in the two types of nanowire in the presence of
the Rashba splitting for some of the examples shown above,
together with the spin and charge conductances associated with
these dispersions.

In terms of applications in realistic devices, the lowest
energy subbands are those that usually determine the transport
properties of the device, so in the following we have focused
on these. Figures 7(a) and 7(b) show the dispersion of the
lowest conduction subbands of the 6.1-nm-thick rectangular
nanowire for two electric field strengths: εz = 150 kV/cm and
εz = 300 kV/cm, respectively. In addition, the spin and charge
conductances are also shown. In the latter, a staircase with step
heights in units of 2×e2/h is obtained (typical of quantum
wires, e2/h being the quantum for charge conductance). The
first feature to note in Fig. 7(a) is that the spin projection
〈Sy〉 of the subbands changes very little except around the
anticrossings, where hybridization between adjacent subbands
with opposite-spin projections results in a strong reduction of
the magnitude of these. We have chosen to represent this pro-
jection in the figure, perpendicular to both the electric field and
the nanowire axis, because it turns out to be the dominant. The
〈Sz〉 component is zero across the range of energies studied,
while the component 〈Sx〉, parallel to the wire axis, although
not zero, is very small in comparison with 〈Sy〉. The latter can
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FIG. 7. (a) Subband energy dispersions of the 6.1-nm-thick
rectangular nanowire at εz = 150 kV/cm. The color scale refers
to the y component of kx-dependent expectation value of the spin
〈Sy〉, which in our case is the dominant component. The labels (n,s)
refer to the index of the subband En,s . (b) The x and y components
of the spin-polarized conductance as a function of the Fermi level.
(Here we considered only left-to-right propagation, i.e., only those
channels with positive group velocities.) (c) The charge conductance
calculated under the same assumptions as in (b). Figures (d), (e), and
(f) describe the same as Figs. (a), (b), and (c), respectively, but at
εz = 300 kV/cm.

be inferred directly from Fig. 7(b). This result coincides with
what might be expected from the Rashba effect [41].

The calculated spin conductance for this band structure is
mainly polarized along y and is negative. The sign of this
conductance comes from the combination of the sign of the
spin projection and the sign of the group velocity in Eq. (18).
Also, the sign of the conductance will be linked in this case to
the sign of the electric field. (For this symmetric wire a negative
εz gives an identical spin conductance but with an opposite
sign.) On the other hand, although J

y
x does not change its

sign and is approximately regular within the range of energies
considered, it is possible to see small variations in its value. The
position of these shallow dips in J

y
x coincides with the energies

where the anticrossings of the band structure occur. Since
these anticrossings are still far from kx = 0, the change in the
curvature of the dispersion of the subbands induced by these,
and consequently, in the group velocities, is not important
enough to appreciably affect the shape of the spin conductance.
This situation changes completely as the electric field strength
is increased up to 300 kV/cm [Figs. 7(d)–7(f)]. In this case,
the Rashba splitting turns out to be large enough to cause the
anticrossings to move towards the � point. The hybridization
between the subbands E1,+1 and E2,−1 makes E1,−1 the only
subband that contributes to J

y
x (with 〈Sy〉 > 0). Therefore, a

change of sign in J
y
x from negative to positive values occurs.

Since the anticrossing is just below the E2,±1 subbands, as
just as Ef is increased two new propagation modes appear.
This time the value of the component 〈Sy〉 of the states with
positive group velocities that participate in the propagation is
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FIG. 8. (a) Subband energy dispersions of the 4.5-nm-thick
groove nanowire at εz = −300 kV/cm. (b) The x and y components
of the spin-polarized conductance as a function of the Fermi level.
(c) The charge conductance as a function of the Fermi level. The color
and line-type details are the same as those in Fig. 7. (d–f) Details of
the shaded areas in (a), (b), and (c), respectively. (g–i) The same as
(d), (e), and (f) but at εz = +300 kV/cm.

quite close to −1/2, so they contribute to J
y
x in such a way

that the sign of the latter changes to negative values again.
We have verified that the presence of a longitudinal groove

in a flat nanowire gives rise to a kind of tunneling splitting
between some of the subbands (following the analogy of
the double potential well). Depending of the deepness of
the groove and the thickness of the nanowire, that tunneling
splitting may be comparable or smaller to the Rashba spin
splitting for moderate electric fields, which may produce
interesting effects in the subbands structure and, consequently,
in the spin and charge transport properties. Analogously to that
shown in Fig. 7, Fig. 8 shows the dispersion of the first lowest
conduction subbands in a 4.5-nm-thick groove nanowire at
εz = −300 kV/cm. [Figures 8(g)–8(i) correspond to the case
εz = +300 kV/cm.] Unlike the rectangular nanowire, the
small energy difference between the doublets E1,±1 and E2,±2

(and between E3,±1 and E4,±2) at kx = 0 and the large Rashba
splitting generated by the electric field produce a strong
shift of the anticrossings toward the � point. The resulting
modification in the curvature of the subbands involved in
the anticrossings opens a “mini gap” that is qualitatively
similar to the zero-momentum splitting induced by an external
magnetic field (Zeeman splitting), with the particularity that
in our case, the splitting does not occur between two subbands
with opposite spins but between pairs of subbands. In the
momentum interval between the � point and the anticrossing,
the subbands En,±1 have spin projections with opposite signs.
This changes after the anticrossing so, within the energy
interval spanned by the mini gap, the average spin 〈Sy〉 of
both subbands has the same sign. This is important if we
consider that the group velocities of both subbands also have
the same sign within the energy range spanned by the mini
gap. As a result, both subbands contribute constructively to
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FIG. 9. The same as in Fig. 8 but for a 6.1-nm-thick groove
nanowire at εz = −300 kV/cm.

the spin conductance. As it can be seen in Fig. 8(b) [8(e)
and 8(h)], the spin conductance shows a series of well-defined
and narrow pulses coincident with the position of the mini
gaps. The polarization of these pulses is close to unity for two
propagation modes. This is equivalent to a y-component spin
projection close to ±1/2 for each mode. Note also that the
opening of one of these mini gaps manifests itself as a dip in
the charge conductance.

Despite the asymmetry in the shape of the nanowire, the
fact that one can observe almost identical results, qualitatively
speaking, for two opposite directions of the electric field
should not be surprising considering our previous analysis
of the energy spectrum (at kx = 0) as a function of the field
strength. However, this situation changes as the thickness of
the nanowire increases. As it can be seen in Figs. 9 and 10,
the increase of the tunneling splitting at kx = 0 gives place
to an increase in the width of the mini gaps mentioned above.
Nevertheless, a higher density of subbands interacting between
them due to the strong Rashba splitting and the anticrossings
gives rise to a progressive loss of polarization and to a more
irregular profile of the spin conductance as Ef is increased.

In conclusion, in the framework of an eight-band envelope
function theory, we performed a theoretical study of the band
structure and spin-related properties of a HgTe/CdTe nanowire
with a rectangular cross section having a longitudinal groove.
The characterization of the band structure has allowed us
to verify the presence of edge states in the lowest (highest)
conduction (valence) subbands. The emergence of these states
coincides with the �6 − �8 band inversion when the thickness
of the nanowire is increased. Similarly to the case of a
[001]-oriented quantum well formed by the same material
combination, the existence of these edge states is limited to
the nearest neighborhood of the � point. For the two types
of nanowire studied in this work, those states are localized
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FIG. 10. The same as in Fig. 10 but at εz = 300 kV/cm.

at the interfaces perpendicular to the y axis, at least for the
range of thicknesses considered here. The helicity of these
edge states, characteristic of quantum spin Hall systems, has
been verified for the rectangular nanowire. However, since
there is a not negligible overlap between the edge states
of opposite edges, the question about topological protection
against backscattering is open in this particular case. A more
detailed study about transport properties (including scattering
sources) in this system would be required.

On the other hand, we found that the interplay between the
Rashba SOC generated by an external electric field and this
particular geometry of the nanowire has a significant impact
on the electronic subband structure and allows the modulation
and control of a polarized spin conductance without the need of
any external magnetic field. This might be helpful, considering
that electric fields are more easily accessible and controllable
in genuine electronic devices at the nanoscale than magnetic
fields. Regular pulses of the spin conductance as a function
of the Fermi level with a well-defined polarization and with
different widths might be obtained by varying some structural
parameters of the nanowire, e.g., for a nanowire with a small
thickness, and considering a shallower groove it might be
possible to increase the width of these spin conductance pulses
without losing their strong polarization or regularity. We think
that similar effects might be extrapolated to other quantum
wires with different shapes and with a different number
and distribution of longitudinal grooves. This may allow, in
principle, more room for manipulation regarding the handling
of these spin-conductance pulses and their polarization.
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