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Loss of adiabaticity with increasing tunneling gap in nonintegrable multistate Landau-Zener models
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We consider the simplest nonintegrable model of the multistate Landau-Zener transition. In this model, two pairs
of levels in two tunnel-coupled quantum dots are swept past each other by the gate voltage. Although this 2 × 2
model is nonintegrable, it can be solved analytically in the limit when the interlevel energy distance is much smaller
than their tunnel splitting. The result is contrasted to the similar 2 × 1 model, in which one of the dots contains
only one level. The latter model does not allow interference of the virtual transition amplitudes, and it is exactly
solvable. In the 2 × 1 model, the probability for a particle, residing at time t → −∞ in one dot, to remain in the
same dot at t → ∞, falls off exponentially with tunnel coupling. By contrast, in the 2 × 2 model, this probability
grows rapidly with tunnel coupling. The physical origin of this growth is the formation of the tunneling-induced
collective states in the system of two dots. This can be viewed as a manifestation of the Dicke effect.
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I. INTRODUCTION

Motivations for the study of the transition probabilities
between multiple intersecting levels (multistate Landau-Zener
transitions) were different over different periods of time. For
example, Ref. [1], in which the scattering matrix was found for
a particular variant of crossing of the large number of levels,
was motivated by research [2–5] on inelastic atomic collisions.
A multilevel description of the electron transfer in the course
of the collision is required when the crossing levels are dense,
so that the tunnel splitting exceeds the level spacing. In this
situation, the conventional Landau-Zener (LZ) theory [6–9]
developed for a single crossing is inapplicable.

Later, the physics of multiple level crossings emerged in
quantum optics [10]; in particular, in the problem of two
optical transitions having a common level in an atom driven
by two laser beams. Theoretical works of this period [11–19]
broadened the class of exactly solvable models. Also, for
general multistate models, the exact results for certain elements
of the scattering matrix had been established.

Finally, the motivation for the very recent studies of the
multilevel LZ transitions [20–29] was the ongoing experimen-
tal research on qubit manipulation by time-dependent fields in
relation to information processing. In these studies [20–29] a
number of exactly solvable models were identified, although
the conclusion about their solvability was drawn on the basis
of numerics.

The simplification, which allowed the authors of Ref. [1] to
find the scattering matrix exactly, stemmed from the assump-
tion about the time evolution of the energy levels. Namely, it
was assumed that N − 1 out of N levels evolved with the same
velocity, and only one level evolved with differing velocity.
Thus, the number of crossings was N − 1. The behavior of
the amplitudes to stay on a given level at t → −∞, i.e., far
from all crossings, can be found semiclassically. The contour
integral method employed in Ref. [1] allows us to establish the
relations between these amplitudes at t → −∞ and t → ∞.
With N − 1 crossings, these conditions are sufficient to fix
all 1

2 (N2 + 3N − 2) nonzero transition probabilities [30]. The
above approach, along with others, was employed in later theo-
retical works. In particular, in Refs. [14] and [31], the transition
probabilities were derived upon summation of the perturbation
expansion in powers of the interlevel coupling strengths.

The fact that a given multistate LZ problem with a finite
number of intersecting levels can be solved exactly implies
that the elements of the scattering matrix can be constructed
from the partial LZ probabilities PLZ for individual pairs of
intersecting levels. In other words, the time intervals between
the successive intersections do not enter in the result even
when these intervals are much smaller than the characteristic
time of the LZ transition. Yet another way to express this re-
markable fact is that the independent-crossing approximation,
valid for small tunneling gaps, remains applicable even when
the gaps are much bigger than the energy separation of the
neighboring crossing points.

Note that, for sufficiently slow drive velocities or for
sufficiently big LZ gaps, when the individual PLZ values
approach 1, the “survival” probability for a particle to stay
on the initial level is exponentially small. This immediately
suggests that, for exactly solvable (integrable) models, the
survival probabilities fall off exponentially with increasing
gap. Then the question arises as to whether the above
conclusion is valid for nonintegrable models. This question is
addressed in the present paper. We focus on a simple example
of the electron transfer between two multilevel quantum dots.
Our main finding is that the survival probability can, actually,
increase with increasing tunneling gap. We relate this finding
to the Dicke effect [32]. The reason that the nonintegrable
model can be solved analytically is that, for a very slow drive,
the semiclassical approach for the time-dependent amplitudes
applies even in the vicinity of the LZ transition [33,34].
By “semiclassical approach” we mean the solution of the
Schrödinger equation for the amplitudes in the form of a slow
prefactors multiplied by the fast phase factor, common for all
amplitudes.

II. THE MODEL

We start by illustrating the difference between integrable
and nonintegrable models by using the simplest example of
two quantum dots, depicted in Fig. 1. In Fig. 1(a) there are
two levels in the left dot separated by 2� and one level in
the right dot. The left-dot levels are driven, say, by the gate
voltage, with velocity v/2, while the right-dot level is driven in
the opposite direction with the same velocity (if the velocities
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(a) (b)

FIG. 1. Two elementary multistate LZ models are illustrated: (a)
A 2 × 1 model of tunnel-coupled dots: a single level in the right dot
is swept by two levels in the left dot with relative velocity v. (b) A
2 × 2 model: the energy spacing 2� between the levels in both dots
is the same. Each level in one dot is coupled with both levels in the
other dot with coupling constant J .

are different, v is measured from the average velocity). Both
left-dot levels are coupled to the right-dot level by the same
coupling constant J . The matrix form of the Hamiltonian is
the following:

Ĥ2,1 =
⎛
⎝−� − vt

2 0 J

0 � − vt
2 J

J J vt
2

⎞
⎠. (1)

The evolution of the amplitudes a1(t), a2(t), and b1(t) [see
Fig. 1(a)], is governed by the Schrödinger equation

i

⎛
⎝ȧ1

ȧ2

ḃ1

⎞
⎠ = Ĥ2,1

⎛
⎝a1

a2

b1

⎞
⎠. (2)

To find the semiclassical eigenvalues we assume that all the
amplitudes a1(t), a2(t), b1(t) are proportional to the fast phase
factor exp [i

∫ t

C
dt ′�(t ′)], while the prefactors are the slow

functions of time. Neglecting the time derivatives of these
prefactors, we arrive at the following cubic equation for �(t):

�3 + vt�2 − (�2 + v2t2 + 2J 2)�

= vt(−�2 + v2t2 + 2J 2). (3)

It is easy to see that the behavior of �(t) (in the units of J )
as a function of the dimensionless time vt/J is governed by
a single dimensionless parameter �/J . Upon changing this
parameter, the semiclassical levels evolve as shown in Fig. 2.
For small gap, J � �, the levels exhibit two LZ transitions. At
critical � = 21/2J , the slope of the middle level changes sign.
Finally, for large coupling J � �, the asymptotic solutions of
Eq. (3) are

� ≈ vt, � ≈ ±(v2t2 + 2J 2)1/2. (4)

Equation (4) implies that, in the limit � � J , the middle
semiclassical level decouples from the upper and lower levels,
which are given by the conventional LZ expressions with J

replaced by 21/2J .
The power of the integrability can be now illustrated as

follows: Suppose that at t = −∞ the electron is in the right
dot. For large �, in order to remain in the right dot at t →
∞, it should survive two LZ transitions. Then the survival

(a) (b)

(c) (d)

FIG. 2. The evolution of the semiclassical levels in (a), (b) the
2 × 1 model and (c), (d) in the 2 × 2 model upon increasing the
tunnel coupling. In the 2 × 1 model the two individual LZ transitions
evolve into a single transition at big J , while the middle branch (red)
gets decoupled. In the 2 × 2 model the four individual LZ transitions
evolve into the fast transition (red) and the slow transition (blue). The
levels are plotted in units of J from the solutions of (a), (b) Eqs. (3) and
(c), (d) (14) for parameters (a), (c) �/J = 10 and (b), (d) �/J = 0.5.
The vertical scale is set by the gap at t = 0: 2(2 + �2/J 2)1/2 in panels
(a) and (b), and 2[1 + (1 + �2/J 2)1/2] in panels (c) and (d).

probability of each transition is given by

QLZ

∣∣∣∣
��J

= exp

(
−2π

J 2

v

)
. (5)

In the opposite limit of strong coupling the electron undergoes
a single LZ transition. Integrability suggests that the survival
probability in this limit is given by the same formula as for
weak coupling, i.e., one should have

QLZ

∣∣∣∣
��J

=
(

QLZ

∣∣∣∣
��J

)2

. (6)

Indeed, substituting 21/2J into Eq. (5), we realize that the
relation (6) holds.

We now turn to the nonintegrable four-level model with the
Hamiltonian

Ĥ2,2 =

⎛
⎜⎜⎝

−� − vt
2 0 J J

0 � − vt
2 J J

J J −� + vt
2 0

J J 0 � + vt
2

⎞
⎟⎟⎠. (7)

In this model, there are two levels in the right dot, which are
also split by 2�; see Fig. 1(b). Instead of the amplitudes a1,
a2, b1, b2, it is convenient to introduce the combinations

A1 = a1 + a2, A2 = a1 − a2, (8)

B1 = b1 + b2, B2 = b1 − b2. (9)

The time evolution of A1, A2, B1, B2 is governed by the system

iȦ2 − vt

2
A2 − �A1 = 0, (10)

iḂ2 + vt

2
B2 − �B1 = 0, (11)
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(a) (b)

FIG. 3. Different paths of the multilevel LZ transition are il-
lustrated for (a) 2 × 1 and (b) 2 × 2 models. Red and blue arrows
illustrate the two interfering paths.

iȦ1 − vt

2
A1 − 2JB1 = �A2, (12)

iḂ1 + vt

2
B1 − 2JA1 = �B2. (13)

The equation for the semiclassical levels similar to Eq. (3)
takes the form[(

� − vt

2

)2

− �2

][(
� + vt

2

)2

− �2

]

= 4J 2

[
�2 −

(
vt

2

)2
]
. (14)

The solutions of this equation are given by

�2 = 2J 2 +
(

vt

2

)2

+ �2

± 2

[
J 4 + J 2�2 + �2

(
vt

2

)2
]1/2

. (15)

Our main point is that, in the limit of strong coupling J � �,
the solutions Eq. (15) can be classified into “slow” and “fast”;
namely,

�s ≈ ±
[

4J 2 +
(

vt

2

)2
]1/2

, (16)

�f ≈ ±
[

�4

4J 2
+
(

vt

2

)2
]1/2

. (17)

We see that, while the characteristic time for the slow solution
is the conventional LZ time, ts ∼ J/v, the characteristic
time for the fast solutions is tf ∼ �2/Jv, i.e., it is much
shorter [see also Fig. 2(d)]. This is in striking contrast with
the integrable model. Unlike the integrable model, the splitting
enters the result even if this splitting is very small. Such a
sensitivity to the times of the level crossings can be viewed as
an indication that it is interference of the scattering paths which
makes the model nonintegrable. This interference is illustrated
in Fig. 3. In fact, the signs + and − in Eq. (15) describe the
constructive and destructive interference, respectively.

Note in passing that, in the opposite limit � � J , the
interference is also important. As illustrated in Fig. 3(b), it

affects the survival probability, but only if the system starts
in the excited state. Then the difference of � in Eq. (15)
corresponding to the sign + and to the sign − determines the
phase difference between the red and blue tunneling paths.

It is believed that, in nonintegrable models, the two-level
description is not applicable. In fact, Eq. (17) suggests
that the scattering process decouples into two two-level LZ
transitions with modified gaps. From Eqs. (16) and (17) we
can readily infer the survival probabilities of the slow and fast
transitions:

Qslow
LZ = exp

[
−2π

(
4J 2

v

)]
, (18)

Qfast
LZ = exp

[
−2π

(
�4

4J 2v

)]
. (19)

We see that, due to smallness of the “fast” gap, Qfast
LZ is much

bigger than Qslow
LZ , i.e., there is an anomalous survival of

electrons in a given dot. In other words, due to the interference,
the adiabaticity of the transition between the two dots is lifted.

The above consideration was purely semiclassical. Thus, it
applies when the probability Qfast

LZ is small. This requires that
the splitting 2�, while smaller than J , exceeds J (v/J 2)1/4,
as follows from Eq. (19). In the next section we go beyond
the semiclassics and demonstrate that the condition of strong
coupling, J � �, is sufficient for Eq. (19) to apply.

III. ANOMALOUS SURVIVAL PROBABILITY

Our goal is to find the asymptotic solution of the system
Eqs. (10)–(13) by using the small parameter �/J . It is seen
that, in the zeroth order, � → 0, the systems for A1, B1 and
for A2, B2 are completely decoupled from each other. In this
order, A1 is still coupled to B1 via a big coupling constant 2J .
For finite �, an indirect coupling between the amplitudes A2

and B2 via A1 and B1 emerges. We are interested to capture
the fast LZ transition described by the amplitudes A2 and B2.
For this reason, we start with Eqs. (12) and (13) and express
A1, B1 via A2 and B2 in the following way:

(
A1(t)
B1(t)

)
= c+

s (t)

(
X+

s (t)
Y+

s (t)

)
+ c−

s (t)

(
X−

s (t)
Y−

s (t)

)
, (20)

where X±
s (t) and Y±

s (t) are the pairs of the linear-independent
solutions of Eqs. (12) and (13) without the right-hand sides.
In the presence of the right-hand side, in order to satisfy the
system, the functions c+

s and c−
s should obey the following

conditions:

iċ+
s X+

s + iċ−
s X−

s = �A2, (21)

iċ+
s Y+

s + iċ−
s Y−

s = �B2. (22)

115437-3



RAJESH K. MALLA AND M. E. RAIKH PHYSICAL REVIEW B 96, 115437 (2017)

Solving the system (21) and (22), we find

iċ+
s = �

JWs

(A2Y
−
s − B2X

−
s ), (23)

iċ−
s = �

JWs

(B2X
+
s − A2Y

+
s ), (24)

where we have introduced the notation

JWs = X+
s Y−

s − Y+
s X−

s (25)

so that Ws has the meaning of the Wronskian, which is time
independent. Substituting Eqs. (23) and (24) into Eq. (20), and
then Eq. (20) into Eqs. (10) and (11), we arrive at the closed
system of integral-differential equations for A2(t) and B2(t):

iȦ2 − vt

2
A2 + i

�2

JWs

∫ t

−∞
dt ′Kxy(t,t ′)A2(t ′)

= i
�2

JWs

∫ t

−∞
dt ′Kxx(t,t ′)B2(t ′), (26)

iḂ2 + vt

2
B2 − i

�2

JWs

∫ t

−∞
dt ′Kxy(t ′,t)B2(t ′)

= i
�2

JWs

∫ t

−∞
dt ′Kyy(t ′,t)A2(t ′), (27)

where the three kernels are defined as

Kxx(t,t ′) = X+
s (t)X−

s (t ′) − X−
s (t)X+

s (t ′), (28)

Kyy(t,t ′) = Y+
s (t)Y−

s (t ′) − Y−
s (t)Y+

s (t ′), (29)

Kxy(t,t ′) = X+
s (t)Y−

s (t ′) − X−
s (t)Y+

s (t ′). (30)

Up to now, we did not make use of the smallness of �. As we
found above [see Eq. (17)], the characteristic time of the fast
LZ transition is tf ∼ �2/Jv, so that vtf � J . This allows us
to neglect the terms ±vt/2 in the equations for Xs and Ys ,
which, in turn, leads to the following solutions:

X+
s (t) = exp(2iJ t), Y+

s (t) = − exp(2iJ t), (31)

X−
s (t) = exp(−2iJ t), Y−

s (t) = exp(−2iJ t). (32)

In fact, the true asymptotic behavior of the solutions (31) and
(32) contains corrections originating from the vt/2 terms. For
example, the asymptote for X+

s has the form

X+
s (t) = exp(2iJ t) + exp

(
−π

4J 2

v

)
exp(−2iJ t). (33)

The second term can be neglected due to the condition that
the slow LZ transition is adiabatic. Under this condition, the
kernels also get greatly simplified and acquire the form

Kxx(t,t ′) = 2i sin[2J (t − t ′)], (34)

Kyy(t,t ′) = −2i sin[2J (t − t ′)], (35)

Kxy(t,t ′) = 2 cos[2J (t − t ′)], (36)

while the Wronskian assumes the value JWs = 2. The above
expressions for X and Y apply at short times t � ts ∼ J/v,

i.e., at times shorter than the time of the slow LZ transition.
Still, ts is much bigger than tf , which allows us to use the
kernels (28)–(30) in the system (26) and (27). The substitution
yields

iȦ2 − vt

2
A2 + i�2

∫ t

−∞
dt ′ cos[2J (t − t ′)]A2(t ′)

= �2
∫ t

−∞
dt ′ sin[2J (t − t ′)]B2(t ′), (37)

iḂ2 + vt

2
B2 − i�2

∫ t

−∞
dt ′ cos[2J (t − t ′)]B2(t ′)

= �2
∫ t

−∞
dt ′ sin[2J (t − t ′)]A2(t ′). (38)

As a next step, we argue that the kernels are rapidly oscillating
functions, while A2(t ′) and B2(t ′) are slow functions of time.
If we take them out of the integrals at t ′ = t , then the integral
on the left-hand side will turn to zero, while the integral in the
right-hand side will assume the value 1/2J . As a result, the
system (26) and (27) will simplify to

iȦ2 − vt

2
A2 = �2

2J
B2, (39)

iḂ2 + vt

2
B2 = �2

2J
A2. (40)

The above system describes the conventional LZ transition
with coupling �2

2J
, so that the corresponding survival probabil-

ity will be given by Eq. (19).
In our derivation we did not assume that the fast LZ

transition is adiabatic. In fact, Qfast
LZ can be comparable to 1.

Certainly, the simplification of the integrals in Eqs. (37) and
(38) requires justification. In the Appendix we consider this
simplification in detail.

IV. DISCUSSION

To illuminate our main message, let us compare the
theoretical predictions for the 2 × 2 model in two limits:
� � J and � � J . In the first limit the smallness of the LZ
gap allows us to obtain the transition probabilities from simple
reasoning. Suppose that at t = −∞ the electron is in the state
1 in the left dot; see Fig. 1. In this situation, the survival implies
that at t → ∞ the electron remains in the state 1, i.e., it survives
two LZ transitions. The probability for this is Q1→1 = Q2

LZ.
If at t = −∞ the electron is in the state 2, then the survival
probability is the sum of probabilities to remain either in state
2 or in state 1. The first probability is Q2→2 = Q2

LZ. With
regard to the second probability, it should be taken into account
that there are two paths from 2 to 1, as illustrated in Fig. 3.
Corresponding amplitudes interfere with each other. If the big
phase difference, accumulated during the time 2�/v, is treated
as random, one can add the corresponding probabilities, so that
Q2→1 = 2Q(1 − Q)2. The average (with respect to the initial
states) survival probability reads

QL = Q1→1 + Q2→2 + Q2→1

2
= QLZ

(
Q2

LZ − QLZ + 1
)
.

(41)
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Consider now the limit J � �. If initially the electron
is in the ground state, then at t → −∞ we have A1 = 1√

2

and A2 = 1√
2
. If the electron starts in the excited state, then

the initial conditions are A1 = 1√
2

and A2 = − 1√
2
. For both

initial conditions the outcome of the LZ transition is the same;
namely, A2 survives with high probability, while A1 survives
with low probability. Then for the net survival probability we
have

QL = 1

2

{
exp

[
−2π

v

�4

4J 2

]
+ exp

[
−2π

4J 2

v

]}
. (42)

We see that, for J � �, the probability (42) is much bigger
than (41), which seems counterintuitive. Moreover, for J �
�,QL increases with increasing tunneling, i.e., the adiabaticity
of the multilevel LZ transition gets suppressed.

In this paper we have focused on the simplest example of the
nonintegrable model: the crossing of two pairs of levels in the
left and right dots. It would certainly be interesting to establish
how general our conclusion is about the anomalous survival
of electron in a given dot. We can go one step further and
generalize the model to the case when two groups of N levels
in the left and right dots cross each other. Two assumptions
[13], (i) all N2 couplings are the same, and (ii) the levels are
aligned at t = 0, greatly simplify the analysis. Namely, instead
of Eq. (14) we get the following generalized equation:

[
N∑

k=1

1

� + εk − vt
2

]⎡⎣ N∑
p=1

1

� + εp + vt
2

⎤
⎦ = 1

J 2
. (43)

In the limit J � εk , which we assumed throughout the paper,
the structure of the solutions is the following. One solution
describes the fast transition. Neglecting εk in the denominators,
we find

�slow
N = ±

[(
vt

2

)2

+ N2J 2

]1/2

. (44)

The fact that �slow
N is much bigger than εk justifies neglecting

εk in the denominators. The corresponding survival probability
is

Qslow
LZ (N ) = exp

[
−2πN2J 2

v

]
= (Qslow

LZ

)N2

. (45)

This result should be contrasted to

Qslow
LZ (N ) = exp

[
−2πNJ 2

v

]
= (Qslow

LZ

)N
, (46)

which emerges within the independent crossing approach and
also applies to the integrable models. Indeed, to enforce
integrability in a multilevel model (see e.g., Ref. [27]), a
portion of tunnel couplings should be set to be zero.

The other N − 1 solutions of Eq. (43) describe the fast LZ
transitions. The values of � for these solutions are close to the
values �̃N for which the sum

∑N
k=1(� + εk)−1 passes through

zero. This emphasizes the role of interference in the formation
of the fast transitions. Indeed, the eigenvector, corresponding

to a given �̃n, is composed of many levels. If all εk reside
in the interval �, then the estimate for �̃n is also �, which
is much smaller than J . To find the corresponding survival
probabilities we expand Eq. (43) near �̃n. The linear terms
proportional to vt/2 get canceled out and we obtain

(� − �̃n)2 −
(

vt

2

)2

= 1

J 2
[∑N

k=1
1

(�̃n+εk )2

]2 . (47)

From here we find that the survival probability corresponding
to a given �̃n

Qfast
LZ (N ) = exp

⎧⎨
⎩−2π

v

1

J 2
[∑N

k=1
1

(�̃n+εk )2

]2
⎫⎬
⎭. (48)

All the terms in the sum
∑
k

(�̃n + εk)−2 are positive, and the

value of the sum is determined only by the levels εk closest
to −�̃n. The distance between these levels is ∼(�/N ). Thus,
the sum can be estimated as (N

�
)2. Finally, within a numerical

factor in the exponent, we have

Qfast
LZ (N ) = exp

{
−2π

v

�4

N4J 2

}
. (49)

We conclude that, for the fast transitions, the survival proba-
bility grows rapidly with N . Note also that the result (48) is
straightforward generalization of the result (19) to the case of
N intersecting levels. We derived it by using the semiclassical
approach. However, we have proven above that Eq. (19)
applies beyond semiclassics. This proof can be generalized
to demonstrate that Eq. (48) is valid beyond semiclassics.

To explain qualitatively the loss of adiabaticity with
increasing tunneling gap we draw the analogy between this
effect and the Dicke effect [32], which is well known in
optics. If two emitters are separated by a distance much
smaller than the emitted wavelength, the radiation lifetime
of the pair increases drastically. This is because the two
eigenmodes of the oscillating emitters are the symmetric and
antisymmetric combinations of the individual oscillations. The
antisymmetric mode weakly overlaps with the emission field.
Hence the long lifetime. In the model we considered, due to
tunneling, the correct eigenstates of, say, the left dot are also
A1 = 1√

2
(a1 + a2) and A2 = 1√

2
(a1 − a2). The gap for A1 is

twice the gap in the individual LZ transition, while the gap for
A2 is suppressed and decreases with J . This is the origin of the
anomalous survival. The bigger is the number of levels in each
dot, the less strict is the requirement that all tunnel couplings
are the same [35].

V. CONCLUDING REMARKS

(i) It is common to judge on whether the system with
many degrees of freedom is integrable based on numerically
generated level statistics in a limited spectral interval; see,
e.g., Ref. [36]. If the statistics is Poissonian, the system can
be decoupled into individual “blocks” which do not interact
with each other. This is an indication that the system is
integrable. If, alternatively, the level statistics is Wigner-
Dyson, different energy levels repel each other, suggesting that
the corresponding eigenstates “know” about the entire system.
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Such a system is nonintegrable. With regard to multistate LZ
models, a similar approach has been employed in Refs. [26,27].
If the time evolution of the semiclassical levels exhibited
avoided crossings, the model was judged to be nonintegrable.
Certainly, it is the interference of many partial amplitudes that
is responsible for the level repulsion in many-body systems.
Similarly, in nonintegrable multilevel LZ models the time
evolution between two distant level crossings allows more
than one path.

(ii) Although the integrable models in Refs. [21,22] contain
interfering paths, the parameters of these models are fine tuned
in order to enforce the destructive interference.

(iii) It might seem that if we modify the 2 × 2 model
by making the two spacings uneven and sending one of the
spacings to zero, the 2 × 2 model will cross over to the 2 × 1
model. We would like to emphasize that this is not the case.
Even if the levels in the right dot are separated by 2�1 � 2�,
we will not emulate the 2 × 1 situation. The formal reason for
this is that the level degeneracy in the right dot will be lifted
due to coupling of the degenerate levels via the left dot. With
asymmetry, the width of the gap corresponding to the fast LZ
transition is modified from �2/2J to ��1/2J .

ACKNOWLEDGMENTS

Illuminating discussions with V. L. Pokrovsky and E.
G. Mishchenko are gratefully acknowledged. The work was
supported by the Department of Energy, Office of Basic Energy
Sciences, Grant No. DE-FG02-06ER46313.

APPENDIX

In this Appendix we explore the assumptions leading from
the system (37), (38) to the system (39), (40). We first assume
that the system (39), (40) applies and use it to trace the above
assumptions.

Consider the integral on the right-hand side of Eq. (38).
Upon performing the integration by parts twice, it can be cast

into the form∫ t

−∞
dt ′ sin[2J (t − t ′)]A2(t ′)

= − 1

2J
A2(t) − 1

4J 2

∫ t

−∞
dt ′ sin[2J (t − t ′)]

∂2A2(t ′)
∂t ′2

.

(A1)

It is now convenient to combine the left-hand side with the
term containing the second derivative on the right-hand side:∫ t

−∞
dt ′ sin[2J (t − t ′)]

[
A2(t ′) + 1

4J 2

∂2A2(t ′)
∂t ′2

]

= − 1

2J
A2(t). (A2)

If the system (39), (40) applies, ∂2A2/∂t ′2 can be expressed
through A2. Substituting this expression into Eq. (A2), we get

∫ t

−∞
dt ′ sin[2J (t − t ′)]

{
A2(t ′)

[
1− �4

16J 4
+ i

v

4J 2
− v2t2

16J 2

]}

= 1

2J
A2(t). (A3)

Now we see that taking A2(t) out of the integral amounts to
keeping only the first term in the square brackets. Indeed, the
second term is much smaller than 1 by virtue of the condition
� � J . The third term is much smaller than 1 since the slow
transition is adiabatic. With regard to the fourth term, the
characteristic t ′ is of the order of the time of the fast LZ
transition. If the fast transition is adiabatic, then t ′ is of the
order of �2/Jv, so that the fourth term is of order of the
second term. If the fast transition is nonadiabatic, then t ′ is of
the order of v−1/2. In this limit the fourth term is of the order
of the third term. In both cases the terms which we neglected
are small. A similar consideration justifies the simplification
of the other integrals.
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